与圆有关的位置关系及圆中的计算练习题(含答案)

与圆有关的位置关系及圆中的计算练习题(含答案)
与圆有关的位置关系及圆中的计算练习题(含答案)

与圆有关的位置关系及圆中的计算(讲义)

? 课前预习

1. 半径为r 的圆的周长为__________,面积为__________.

2. 如图,圆心角为n °的扇形的弧长为_______,面积为________.

3. 已知圆上一段弧长为4π cm ,它所对的圆心角为120°,则圆的半径为____________.

4. 默写圆周角定理的相关推论:

推论1:同弧或等弧所对的圆周角相等;

推论2:________________________________________; _______________________________________________. 推论3:圆内接四边形对角互补.

5. 我们知道扇形能够围成圆锥,如图,从半径为4的⊙O 上剪下一个圆心角度数为n 的扇形,用其围成一个圆锥,在围成的过程中,扇形的弧长与底面圆的周长恰好相等.已知圆锥底面圆的半径为1,则n 的值为__________.

6. 根据给出的圆锥的相关信息,画出圆锥的三视图,并标注相

关线段长.

? 知识点睛

1. 点与圆的位置关系

d 表示__________①点在圆外:_____________; ②点在圆上:_____________; ③点在圆内:_____________.

A

2. 直线与圆的位置关系

d 表示__________________的距离,r 表示__________. ①直线与圆相交:____________; ②直线与圆相切:____________; ③直线与圆相离:____________.

切线的性质定理:__________________________________; 切线的判定定理:__________________________________ __________________________________________________. *切线长定理:______________________________________ __________________________________________________. *3. 圆与圆的位置关系

d 表示__________的距离,R 表示________,r 表示_________. ①圆与圆外离:_________________; ②圆与圆外切:_________________; ③圆与圆内切:_________________; ④圆与圆内含:_________________; ⑤圆与圆相交:_________________. 4. 圆内接正多边形

_______________________________叫做圆内接正多边形,这个圆叫做该正多边形的_________. 中心角:___________________________________________; 边心距:___________________________________________. 5. 圆中的计算公式

弧长公式:____________________.

扇形面积公式:①________________;②________________. 圆锥的侧面积公式:_________________________________. 圆锥的全面积公式:__________=__________+__________. 扇形及其所围圆锥间的等量关系:

①________________________________________________; ②________________________________________________.

? 精讲精练

1. 矩形ABCD 中,AB =8

,BC ,点P 在AB 边上,且BP =3AP ,如果圆P 是以点P 为圆心,

PD 为半径的圆,那么下列判断正确的是( ) A .点B ,C 均在圆P 外

B .点B 在圆P 外、点

C 在圆P 内 C .点B 在圆P 内、点C 在圆P 外

D .点B ,C 均在圆P 内

2. 如图,在Rt △ABC 中,∠C =90°,

∠A =60°,BC =4 cm ,以点C 为圆 心,以3 cm 长为半径作圆,则⊙C 与AB 的位置关系是__________.

3. 在Rt △ABC 中,∠C =90°,AC =3,BC =4.以C 为圆心,R 为半径所作的圆与斜边AB 有且只有

一个公共点,则R 的取值范围是_________________.

4. 在△ABC 中,∠C =90°,AC =3 cm ,BC =4 cm .若⊙A ,⊙B 的半径分别为1 cm ,4 cm ,则⊙A ,

C

B

A

E

⊙B 的位置关系是_______.

5. 若有两圆相交于两点,且圆心距为13公分,则下列哪一选项中的长度可能为此两圆的半径( )

A .25公分、40公分

B .20公分、30公分

C .1公分、10公分

D .5公分、7公分

6. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,∠CDB =20°,过点C 作⊙O 的切线,交AB 的

延长线于点E ,则∠E =______.

第6题图 第7题图 7. 如图,P A ,PB 是⊙O 的切线,A ,B 是切点,点C 是劣弧AB 上的一个动点,若∠P =40°,则∠

ACB =_______.

8. 如图,EB ,EC 是⊙O 的两条切线,

B ,

C 是切点,A ,

D 是⊙O 上两点, 如果∠

E =46°,∠DC

F =32°,那么 ∠A =______.

9. 如图,O 是正方形ABCD 的对角线

BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在边AD ,DC

上.现将△DEF 沿着EF 对折,折

痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2,则正方形ABCD 的边长是________.

10. 如图,在⊙O 中,FC 为直径,长为8.分别以F ,C 为圆心,以⊙O 的半径R 为半径作弧,与⊙

O 相交于点E ,A 和D ,B ,则A ,B ,C ,D ,E ,F 是⊙O 的六等分点,

顺次连接AB ,BC ,CD ,DE ,EF ,F A .

过点O 作OG ⊥BC ,垂足为G ,则OG

长为_______.

11. 如图,在△ABC 中,AB =AC ,以AB

,BC 于点D ,E ,点F 在线段AC

的延长线上,且1

2

CBF CAB ∠=∠.

(1)求证:直线BF 是⊙O 的切线; (2)若AB =5,sin 5

CBF ∠=

,求BC 和BF 的长. P

O

F

E D

C B

A F

D

12. 如图,⊙O 的半径是1,A ,B ,C 是圆周上的三点,∠BAC =36°,则劣弧BC 的长是___________.

第12题图 第13题图

13. 如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ′,则图中阴影部分的面

积是________.

14. 如图,一把打开的雨伞可近似地看成一个圆锥,若伞骨(面料下方能够把面料撑起来的支架)末

端各点所在圆的直径AC 的长为12分米,伞骨AB 的长为9分米,则制作这样的一把雨伞至少需要绸布面料__________平方分米.

15. 一个几何体的三视图如图所示,其中主视图和左视图都是腰长为4、底边为2的等腰三角形,则

这个几何体的侧面展开图的面积为__________.

16. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则图中阴影部分的面积为__________.

俯视图

左视图

主视图

44

17. 如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50 cm .小红同学为了在圣诞节联欢

晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10 cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是____________.

18. 如图1,在正方形铁皮上剪下一个扇形和一个半径为1 cm 的圆形,使之恰好围成图2所示的一个

圆锥,则圆锥的高为_______.

【参考答案】 ? 课前预习

1. 2πr ,πr 2

2. 180

n r π,2360n r π 3. 6 cm

4. 直径所对的圆周角是直角;90°的圆周角所对的弦是直径

5. 90

6.

图形略

? 知识点睛

1. 点到圆心,圆的半径.d r >;d r =;d r <.

2. 圆心O 到直线l ,圆的半径.d r <;d r =;d r >.

图1

图2

圆的切线垂直于过切点的半径;

过半径外端且垂直于半径的直线是圆的切线. 过圆外一点所画的圆的两条切线长相等. 3. 圆心之间,大圆半径,小圆半径.

d R r >+;d R r =+;d R r =-;0d R r <-≤;R r d R r -<<+. 4. 顶点都在同一圆上的正多边形,外接圆;

一个正多边形的相邻的两个顶点与它的中心的连线的夹角叫中心角; 正多边形的每条边到其外接圆的圆心的距离叫做边心距.

5. 180n R l π=.①2360n R S π=;②2

lR

S =.

S =πlr .

全面积=侧面积+底面积.

①圆锥的底面圆周长等于扇形的弧长;②圆锥的侧面积等于扇形面积.

? 精讲精练

1. C

2. 相交

3. 34R <≤或125

R = 4. 外切 5. B 6. 50° 7. 110° 8.

99°

9. 2

10.

11. (1)证明略;(2)BC =20

3

BF =

12. 25π 13. 6π 14. 54π 15. 4π

16. 163π

17. 18°

18.

与圆有关的位置关系及圆中的计算(随堂测试)

1. 如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,且AB >AD +BC .若AB 是⊙O 的直径,则直线CD

与⊙O 的位置关系是_______________.

第1题图 第2题图

2. 如图,已知AB 是⊙O 的一条直径,延长AB 至点C ,使得AC =3BC ,CD 与⊙O 相切,切点为D .若

CD

=,则线段BC 的长度为__________.

3. 如图,

如果从半径为9 cm 的圆形纸片上剪去1

3

圆周的一个扇形,将留下的扇形围成一个圆锥(接

缝处不重叠),那么这个圆锥的高为___________.

4. 如图是某公园的一角,已知∠AOB =90°,AB ︵的半径OA 的长是6米,C 是OA 的中点,点D 在AB

︵上,且CD ∥OB ,则图中休闲区(阴影部分)的面积是___________.

【参考答案】

1. 相交

2. 1

3. cm

4. (62

π-

m 2

与圆有关的位置关系及圆中的计算(习题)

? 巩固练习

1. 在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2.下列说法中不正确...

的是( )

A .当a < 5时,点

B 在⊙A 内 B .当1< a < 5时,点B 在⊙A 内

C .当a < 1时,点B 在⊙A 外

C 3B

D .当a > 5时,点B 在⊙A 外

2. 已知⊙O 1,⊙O 2的半径分别是12r =,24r =,若两圆相交,则圆心距O 1O 2可能取的值是( )

A .2

B .4

C .6

D .8

3. 如图,在矩形ABCD 中,AB =6,BC =4,⊙O 是以AB 为直径的圆,则直线CD 与⊙O 的位置关系

是( ) A

第3题图

第4题图

4. 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB =45°.点P 在数轴上运动,若

过点P 且与OA 平行的直线与⊙O 有公共点,设OP x =,则x 的取值范围是

_______.

5. 如图,PA ,PB 是⊙O 的两条切线,切点分别为A ,B .如果OP =4,PA =.

第5题图 第6题图 6. 7. 8. 已知宽为3 cm 的刻度尺的一边与⊙O 相切,另一边与⊙O 的两个交点处的读数如图所示(单位:cm ),则⊙O 的半径为__________cm .

9. 如图1,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,

CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,且CE =5 cm .如图2,将量角器沿DC 方向平移2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,则AB 的长为__________cm .(结

A

6cm 12cm

果保留根号)

图1 图2

10. 如图,AB 与⊙O 相切于点B ,OA

=AB =3,若弦

BC ∥OA ,则劣弧BC 的弧长为________.

第10题图 第11题图

11. 一圆锥的主视图如图所示,则该圆锥侧面展开图的圆心角的度数为________. 12. 已知圆锥底面圆的半径为6 cm ,高为8 cm ,则该圆锥的侧面积为__________cm 2.

13. 如图,把一个半径为12 cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸

筒的侧面(衔接处无缝隙且不重叠),则该圆锥的底面半径是________cm .

第13题图 第14题图

14. 如图,在Rt △ABC 中,∠C =90°,CA =CB =4.分别以A ,B ,C 为圆心,以

2

1

AC 为半径画弧,则三条弧与边AB 所围成的阴影部分的面积是____________.

15. 已知在△ABC 中,AB =6,AC =8,∠A =90°.把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其

表面积为S 1,把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,则S 1:S 2=________. 16. 如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,P 是BC 边上的动点.设BP =x ,若能在AC

边上找到一点Q ,使

∠BQP =90°,则x 的取值范围是________.(提示:考虑90°的圆周角所对的弦是直径)

17. 如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,已知∠AEC =∠ODB . (1)判断直线BD 和⊙O 的位置关系,并给出证明; (2)当AB =10,BC =8时,求的长.

E

C B

A

A

B C

D

Q

P

A

B

C

BD F

E C

D

B

O

A

? 思考小结

1. 判断与圆有关的位置关系,关键是找准_____和_______,在直线与圆位置关系中,它们分别代表

____________________和_________________.

2. 已知圆锥的母线长为l ,底面圆的半径为r ,借助扇形及其所围成圆锥间的等量关系,推导圆锥的

侧面积公式S lr =π.(写出证明的关键环节)

3. 借助圆中思考角度及问题处理时“见到什么想什么”处理下面两道题目. 【试题1】已知:点P 是⊙O 外一点,PA 是圆的切线,PC 与⊙O 交于另一点B

求证:2PA PB PC =?.

思路分析

① 由要证明的比例形式,将其改写成

PB PA

PA PC

=

的形式,问题转化为证明△

PBA ∽△PAC ;

② 分析相似三角形的特征,问题进一步转化为证明∠PAB =∠PCA ; ③ ∠PAB 跟切线有关,考虑“遇切线,连接圆心和切点”,∠PCA

为圆周角,由

角看弧,找圆心角,连接OB ,转移边,转移角分析. 根据上面提供的思路,写出证明过程.

【试题2】如图,半圆O 的直径AB =7,两弦AC ,BD 相交于点E ,弦CD =,且BD =5,则DE 等于_________.

2

7

思路分析

①“遇直径,找直角”,结合已知的AB和BD的长,连接AD,可求出AD的长,此时DE放到Rt△

DEA中;

②CD长度与半径长相等,则连接OD,OC,可以得到△ODC是等边三角形,圆心角∠DOC=60°;

③“由角看弧,由弧找角”,由圆周角定理可以得到∠DAE=30°,进而得到DE的长.

你还能想到其他的求解方式吗?简要写出求解思路.

【参考答案】

1.A

2.B

3.A

4.

0x ≤

5.120°

6.40°

7.70°

8.25 6

9.

16) +

10.

3

π

11.90

12.60π

13.4

14.8-2π

15.2:3

16.3≤x<4

17.(1)相切,证明略;(2)

20

3 BD=

?思考小结

1.d,r,圆心O到直线l的距离,圆的半径.

2.略

【试题1】证明略

【试题2

《直线与圆、圆与圆的位置关系》专题 2019年( )月( )日 班级 姓名 1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d ) 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|) (1)圆的切线方程常用结论 ①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. ②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长 弦心距d 、弦长l 的一半1 2l 及圆的半径r 构成一直角三角形,且有r 2=d 2+????12l 2. 1.直线y =x +1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离

2.两圆x2+y2-2y=0与x2+y2-4=0的位置关系是() A.相交B.内切 C.外切D.内含 3.已知直线l:y=k(x+3)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=() A.0 B. 3 C. 3 3或0 D.3或0 4.已知圆的方程为x2+y2=1,则在y轴上截距为2的切线方程为________.5.(2018·全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________. 考点一直线与圆的位置关系 考法(一)直线与圆的位置关系的判断 [典例]直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是() A.相交B.相切 C.相离D.不确定 [解题技法]判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒]上述方法中最常用的是几何法.

1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧. 9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。 直线与圆的位置关系 1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角. 4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线. 6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径. 圆与圆的位置关系 1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦. 3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点. 正多边形基本性质 1.正六边形的中心角为60°. 2.矩形是正多边形. 3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.

1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . ° ° ° ° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . ° ° ° ° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=90 5.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . ° ° ° 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 . ° ° ° ° 9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. .4 C D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . ° ° ° ° 12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 . A. 3cm B. 4 cm C.5 cm D.6 cm 点、直线和圆的位置关系 1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 . A.相离 B.相切 C.相交 D.相交或相离 2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 相离或相交 3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定 4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . 个 个 个 D.不能确定 5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 . A.相切 B.相离 C.相交 D. 不能确定 6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系? D B C A O ? ? C B A O ? B O C A D ? B O C A D ? B O C A D ? C B A O

与圆有关的位置关系 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第2讲与圆有关的位置关系 一、【教学目标】 1. 熟悉点与圆、直线与圆以及圆与圆的位置关系,能够将半径与到圆心的距离与之对应. 2. 了解三角形的内心和外心及内切圆、外接圆、内接三角形、外切三角形的概念. 3. 了解切线相关的概念,掌握切线长及切线长定理. 二、【教学重难点】 1.教学重点:直线与圆的位置关系、圆与圆的位置关系、切线及切线长定理 2.教学难点:灵活应用切线及切线长定理,易错题中对位置关系的全面分析 三、【考点聚焦】 考点一. 点和直线与圆的位置关系 1.点与圆的位置关系 (1).点到圆心的距离(d)、圆的半径(r) 不在同一直线上的三个点确定一个圆.(圆心怎么找) 注意:经过三角形三个顶点可以画一个圆,并且只能画一个. (3).经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形(三角形三条边的垂直平分线的交点).

2.直线与圆的位置关系 (1) r为圆的半径,d为圆心到直线的距离: 考点二. 切线及切线长定理 3.圆的切线 (1)定义:和圆有唯一公共点的直线叫做圆的切线,这个公共点叫切点. (2)切线的性质定理:圆的切线垂直于经过切点的半径. (3)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线. 推论:①经过圆心且垂直于切线的直线必经过切点,②经过切点且垂直于切线的直线必经过圆心. 4.切线长定理 (1)切线长定义:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长. (2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角. 注意:切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 5.三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆. 三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形. 注意:三角形的内心就是三角形三条内角平分线的交点. 6.三角形外心、内心有关知识比较

课题24.3圆与圆的位置关系 主备人:谭永峰教研组长:盛大森审核人:上课教师: 一、学习目标1.通过生活实例,探究圆和圆的五种位置关系. 2.理解圆和圆的五种位置关系及与之对应的数量关系. 二、学习重点:理解圆和圆的五种位置关系及与之对应的数量关系. 三、学习难点:判断圆与圆的位置关系 .四、学习过程 (一)温故而知新 问题:直线与圆的位关系有几种?分别是? (二)情境导入 在以上几幅图画中,请大家仔细观察,图中的圆与圆之间,有几种位置关系? (三)合作探究 圆和圆的位置关系与数量关系 1.观察下列图形,在下面的横线上填写圆和圆的位置关系.然后阅读课本第100页“思考”,再结合图中标注填写后面表格.可以和同伴一起讨论完成. 两圆的位置关系d与r1和r2之间的关系 外离 外切 相交 内切 内含

思考:如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗? 【反思小结】圆和圆共有五种位置关系,由位置关系可以推出数量关系,由数量关系可以推出位置关系,它们是互逆的.圆和圆相切是指内切或外切,圆和圆相离是指外离或内含. (四):例题讲解 例1如图,⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.以P为圆心作一个圆与⊙O外切,这个圆的半径是多少?以P为圆心做作一个圆与⊙O内切呢? (五):针对训练 1.(2012·上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两圆的关系是( D) A.外离 B.相切 C.相交 D.内含 2.(2012·济南)已知⊙O1和O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2 =5,则⊙O1和⊙O2的位置关系是(B) A.外离B.外切C.相交D.内切 3.(2012·巴中)已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是(D) A.0<d<2 B.1<d<2 C.0<d<3 D.0≤d<2 4.在△ABC中,∠C=90°,AC=3cm,BC=4cm,若⊙A,⊙B的半径分别为1cm,4cm,则 ⊙A,⊙B的位置关系是(A) A.外切 B.内切 C.相交 D.外离 5.(2012·丽水)半径分别为3cm和4cm的两圆相切,这两圆的圆心距为1或7 cm.(六):归纳总结、反思感悟 1.两圆的五种位置关系:,,,,. 2.在五种位置关系下,圆心距和两圆半径的数量关系. (七):更上一层楼 作业《全品》P88

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

专题 圆与圆的位置关系 【阅读与思考】 两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质. 解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有: 1.相交两圆作公共弦或连心线; 2.相切两圆作过切点的公切线或连心线; 3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形. 熟悉以下基本图形和以上基本结论 . 【例题与求解】 【例1】 如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2 . (全国初中数学竞赛试题) 解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长. B 【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B ,

⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A .c a b +=2 B .c a b +=2 C . b a c 1 11+= D . b a c 111+= (天津市竞赛试题) 解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线. 【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ; (2)CB AC PC PB PA ?+=?2. (天津市中考试题) 解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手. P B C D A 【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC . (全俄中学生九年级竞赛试题) 解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角. 【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上

圆的基本性质练习 一、看准了再选 1..如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是() A.110° B.70° C.55° D.125° 2.如图,⊙O的直径CD过弦EF的中点G且EF⊥CD,若∠EOD=40°,则∠DCF等于() A.80° B. 50° C.40° D. 20° 3.直线a上有一点到圆心O的距离等于⊙O的半径,则直线a与⊙O的位置关系是() A、相离B、相切C、相切或相交D、相交 4.在⊙O中,弦AB垂直并且平分一条半径,则劣弧AB的度数等于() A.30° B.120° C.150° D.60° 5.如图,⊙O的半径OA=3,以点A为圆心,OA的长为半径画弧交⊙O于B,C?则BC=(). A.32 B.33 C. 3 2 3 D . 33 2 6..如图所示,∠1,∠2,∠3的大小关系是(). A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O在射线AB上运动(点O?与点A不重合),设OA=x,如果半径为1的圆O与射线AC有公共点,那么x的取值范围是() A.02 8.如图,AB、AC与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是() O C F G D E A P B C O

A .65° B .115° C .65°或115° D .130°或50° 9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等 的角有( )个。 A 、1 B 、2 C 、3 D 、4 10.边长分别为3,4,5的三角形的内切圆半径与外接圆的半径之比为( ). A .1:5 B .2:5 C .3:5 D .4:5 11.如图所示,圆弧形桥拱的跨度AB=12m ,拱高CD=4m ,则拱桥的直径为( ). A .6.5m B .9m C .13m D .15m 二.想好了再规范的写画 12.如图所示,线段AD 过圆心O 交⊙O 于D ,C 两点,∠EOD=78°,AE 交⊙O 于B ,? 且AB=OC ,求∠A 的度数. O E D C B A 13.如图AB 是⊙O 的直径,AC 是弦,OD ⊥AB 于O ,交AC 于D ,OD=2,∠A=30°,求CD 。 14.如图,已知在Rt △ABC 中,AC=12,BC=9,D 是AB 上一点,以O 为圆心,BD 为直径的⊙O 切AC 于E ,求AD 的长。 15.如图所示,AB 是⊙O 的直径,AB=AC , D , E 在⊙O 上,说明BD=DE C E A D O B · B A C D O

教学目标 重点、难点考点及考试要求1、了解圆与圆的五种位置关系; 2、经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并运用相关结论解决问题; 1、位置关系与对应数量关系的运用 2、两圆的位置关系对应数量关系的探索 1、圆与圆的五种位置关系 2、两圆的位置关系与两圆半径、圆心距的数量关系 教学内容 第一课时圆与圆的位置关系知识点梳理 课前检测 1、⊙ O的半径是 6,圆心到直线l的距离为 3,则直线l与⊙ O的位置关系是() A.相交B.相切C.相离D.无法确定 2、如图 1,AB与⊙ O切于点 B, AO=6 ㎝, AB= 4 ㎝,则⊙ O的半径为() A、4 5 ㎝ B、25 ㎝ C、2 13㎝ D、13 ㎝ 3、如图 2,已知⊙ 0 的直径 AB与弦 AC的夹角为 35°,过 C点的切线 PC与 AB的 延长线交于点 P,则么∠ P 等于() A.150B.200C.250D.300 图 1图2图3 4、如图 3,AB与⊙ O切于点 C, OA=OB,若⊙ O的直径为 8cm,AB=10cm,那么 OA的长是() A.41B.40 C. 14 D. 60 5、已知:如图,△ ABC中, AC=BC,以 BC为直径的⊙ O交 AB于点 D,过点 D 作 DE⊥ AC于点 E,交 BC的延长线于点 F. 求证:( 1) AD=BD;(2)DF是⊙ O的切线.

知识梳理 (一)两圆位置关系的定义 注:( 1)找到分类的标准: ①公共点的个数; ②一个圆上的点是在另一个圆的内部还是外部 (2)两圆相切是指两圆外切与内切 (3)两圆同心是内含的一种特殊情况 (二)两圆位置关系与两圆半径、圆心距的数量关系之间的联系:两圆的半径分别为R、r ,圆心距为 d,那么 两圆外离 d > R+r 两圆外切 d =R+r 两圆相交R- r< d < R+ r ( R≥ r ) 两圆内切 d =R-r (R > r ) 两圆内含 d < R-r (R > r ) (三) . 借助数轴进一步理解两圆位置关系与量关系之间的联系

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

20XX 年中考试题专题之 23-圆与圆的位置关系试题及答案 一.选择 1. (20XX 年泸州)已知⊙ O 1与⊙ O 2的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆 的位 置关系为 A .外离 B .外切 C .相交 D .内切 2. (20XX 年滨州 )已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结 论正确的是( ) A . 0 d 1 B . d5 C . 0 d 1或 d 5 D . 0≤ d 1或 d 5 3.( 20XX 年台州市 ) 大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置 系为( ) A .外离 B .外切 C. 相交 D .内含 4.( 2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6( 20XX 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 7.( 20XX 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C . 4 D . 3 8. .(20XX 年益阳市)已知⊙ O 1和⊙ O 2的半径分别为 1和 4,如果两圆的位置关系为相交, 那 么圆心距 O 1O 2 的取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 A . B . C . D . 10.. (2009肇庆) 10.若⊙O 1与⊙O 2相切,且 O 1O 2 5 , ⊙ O 1的半径 r 1 2,则⊙O 2的 半径 r 2 是( ) B . 5 9. ( 20XX 年宜宾)若两圆的半径分别是 A. 内切 B. 相交 C.外切 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关 D. 外离 C . 7 系是

8错误!未指定书签。?如图,方格纸中4个小正方形的边长均为 1, 则图中阴影部分三个小 扇形的面积和为 (结果保留n ) 中考数学 圆的基本性质和计算经典练习题 一、填空题 1错误!未指定书签。?如图,在O O 中,已知 OAC 20 ° , OA // CD ,则 AOD ? 圆心,C 是AB 上一点,0C 丄AB ,垂足为D , AB 300m, CD 50m,则这段弯路 的半径是 m 3错误!未指定书签。?如图,AB 为O O 的直径,点 C , D 在O O 上, BAC 50°,则 ADC 4错误!未指定书签。?如图所示,边长为1的小正方形构成的网格中,半径为 1的O O 的圆 心O 在格点上,则/ AED 的正切值等于 5错误!未指定书签。. 若O 为ABC 的外 心 D C, I ■ ■ BOC 60 ,则 BAC 6错误!未指定书签。? 使吨AB, PC 切 C 如图,AB 为半圆 半圆O 于点C, O 的直径,延长AB 到点P, 点D 是 A C 上和点C 不重 合 的一点,贝y D 的度数为 7错误!未指定书签。 .如图, 在 Rt A ABC 中, BAC 90o , BC 6,点D 为BC 中点, 将厶ABD 绕点 A 按逆时针方向旋转120° 得到△ ABD ,则点 D 在旋转过程中所经过 的路程为 ?(结果保留 ) 晶,点O 是这段弧的 第1题 2错误!未指定书签。

9错误!未指定书签。?矩形ABCD 勺边 AB=8, AD=6,现将矩形 ABCD 放在直线l 上且沿着I 向右作无滑动地翻滚,当它翻滚至类似开始 的 位置 A 1 B 1 C 1 D 1时(如图所示),则顶点A 所经过的路线长是 __________ . 二、选择题 10错误!未指定书签。?如图,O O 内切于 △ ABC ,切点分别为D , E , F .已 知 B 50° , C 60° ,连结 C,则AB 的长为 O 的位置关系是 为了在“六一”儿童节联欢晚会上表演节目, 她打算剪去部分扇形纸片后, 利用剩下的 纸片制作成一个底面半径为 10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片 的圆心角为( ). A 9° B 、18° C 63° D 72 三、解答题 第10题 第11题 12题 第13题 11错误!未指定书签。 .如图,两个同心圆的半径分别为 3cm 和 5cm, 弦AB 与小圆相切于点 40cm Ax -A 1 1 x V 1 OE, OF , DE , DF ,那么 EDF 等于 ( ) A. 40° B. 55° C. 65 D. 70° A. 4cm .5cm C. 6cm .8cm 12错误!未指定书签。 ?如图,在直角坐标系中,O O 的半径为 1,则直线 A.相离 E.相交 C.相切 D. 以上三种情形都有 可能 13错误!未指定书签。 ?现有30%圆周的一个扇形彩纸片,该扇形的半径为 40cm 小红同学

24.2与圆有关的位置关系知识点 24.2.1 点和圆的位置关系 (1)设⊙O的半径为r,点P到圆心的距离OP=d,则有: 点P在⊙O内则d<r 点P在⊙O上则d=r 点P在⊙O外则d>r (2)不在同一条直线上的三个点确定一个圆 a、经过三角形三个顶点可以画一个圆,并且只能画一个. b、经过三角形三个顶点的圆叫做三角形的外接圆 c、三角形外接圆的圆心叫做这个三角形的外心。 d、这个三角形叫做这个圆的内接三角形。 e、三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三 个顶点的距离相等。 f、锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外. (3)反证法:先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法. 反证法常用于解决用直接证法不易证明或不能证明的命题,主要有: a、命题的结论是否定型的; b、命题的结论是无限型的; c、命题的结论是“至多”或“至少”型的.

24.2.2 直线和圆的位置关系 (1)直线与圆相离 <=> d>r 直线与圆相切 <=> d=r 直线与圆相交 <=> d

圆与圆的位置关系教案 【教学目标】 1.能根据给定圆的方程,判断圆与圆的位置关系. 2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想. 3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯. 【教学重难点】 教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系. 【教学过程】 ㈠复习导入、展示目标 问题:如何利用代数与几何方法判别直线与圆的位置关系? 前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系. ㈡检查预习、交流展示 1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢? ㈢合作探究、精讲精练 探究一:用圆的方程怎样判断圆与圆之间的位置关系? 例1.已知圆 C 1:01322 2 =++++y x y x ,圆C 2 : 02342 2 =++++y x y x ,是 判断圆C 1 与圆C 2 的位置关系. 解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一) 圆C 1 的方程配方,得4 923)1(2 2 = +?? ? ??++y x . 圆心的坐标是??? ??- -23,1,半径长2 3 1 =r . 圆C 2 的方程配方,得4 1723)2(2 2 = +? ? ? ??++y x .

圆心的坐标是?? ? ??--23,2,半径长 2 172= r . 连心线的距离为1, 217321+= +r r ,2 3 1721-=-r r . 因为 2 17 312317+<<-, 所以两圆相交. (法二) 方程 01322 2 =++++y x y x 与02342 2 =++++ y x y x 相减,得 2 1 = x 把2 1= x 代入01322 2=++++y x y x ,得 011242 =++y y 因为根的判别式016144>-=?,所以方程011242 =++y y 有两个实数根,因此两 圆相交. 点评:巩固用方程判断圆与圆位置关系的两种方法. 变式2 2 2 2 (1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系 解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距 5.d == 因为 12d r r =+,所以两圆外切. ㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高 判断两圆的位置关系的方法: (1)由两圆的方程组成的方程组有几组实数解确定; (2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系. 【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;

圆与直线的基本性质 一、定义 [例1]在ABC Rt?中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么? (1)r=2cm; (2)r=2.4cm; (3)r=3cm。 [例2]在ABC ?中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离? [变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】 A.相切B.相离C.相离或相切 D.相切或相交 二、性质 例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】 A. 30B. 45 C. 60D.67.5 例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】 A.80° B.110° C.120° D.140° 变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=°. 例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.

变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N. (1)求证:OM=AN; (2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD. (1)求证:BD平分∠ABH; (2)如果AB=12,BC=8,求圆心O到BC的距离. 三、切线的判定定理: 例1:如图,AB是⊙O的直径,AC和BD是它的两条 切线,CO平分∠ACD.(1)求证:CD是⊙O的切线; (2)若AC=2,BC=3,求AB的长.

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题) 知识梳理 浙江省诸暨市学勉中学(311811)郭天平 圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。 一、有关圆的基础知识要点归纳 1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径. 2. 圆的标准方程 ① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()022 2 >=-+-r r b y a x , 其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为 2 2 2 r y x =+; ② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。 3. 圆的一般方程 ①圆的一般方程:展开圆的标准方程,整理得, 02 2 =++++F Ey Dx y x ( ) 042 2>-+F E D ; ② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项 ③ 二元二次方程02 2=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件是 0≠=C A 且0=B ; 二元二次方程02 2=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是0 ≠=C A 且0=B 且0422>-+AF E D 4. 圆的参数方程 圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程. ① 圆心在原点,半径为r 的圆的参数方程是:θθ θ(sin cos ?? ?==r y r x 为参数); ② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ (sin cos ? ??+=+=r b y r a x 为参数); 5. 确定圆方程的条件 圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。如已知条件中涉及圆心与半径有关等条件,一般设圆的标准方程,即列出r b a ,,的方程组,求出r b a ,,的值,也可根据圆的特点直接求出圆心()b a ,,半径r 。当圆心位置不能确定时,往往选择圆的一般方程形式,由已知条件列出F E D ,,的三个方程,显然前者解的是三元二次方程组,后者解的是三元一次方程组,在运算上显然设一般式比标准式要简单。 6. 点与圆的位置关系 设圆()()2 2 2 :r b y a x C =-+-,点()00,y x M 到圆心的距离为d ,则有:

1、(2017黄冈)已知:如图,在⊙O 中,0 ,70OA BC AOB ⊥∠=,则A D C ∠的度数为( ) A . 30° B . 35° C. 45° D .70° 解:∵OA ⊥BC ∴⌒BC =⌒AC ∵∠AOB=70° ∴∠ADC=∠AOB=35° 故选:B . 2、(2017毕节)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD=30°,则∠BAD 为( ) A .30° B .50° C .60° D .70° 解:连接BD , ∵∠ACD=30°, ∴∠ABD=30°, ∵AB 为直径, ∴∠ADB=90°, ∴∠BAD=90°﹣∠ABD=60°. 故选C .

3、如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为⌒ABO 上一点(不与O 、A 两点重合),则cosC 的值为( ) A .43 B .53 C .34 D .54 如图,连接AB , ∵∠AOB=90°,∴AB 为圆的直径, 由圆周角定理,得∠C=∠ABO , 在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, 5 4 . 故选D . 4、(2016南宁)如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为( ) A .140° B.70° C.60° D.40° 解:∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE=40°, ∴∠DOE=180°﹣40°=140°, ∴∠P=∠DOE=70°.故选B .

1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d r ?相离. (2)代数法:――→判别式Δ=b 2-4ac ????? >0?相交;=0?相切;<0?相离. 2.圆与圆的位置关系 设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0). 【知识拓展】 1.圆的切线方程常用结论 (1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2. (2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论 (1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. (2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )

1 / 3 圆的基本性质 〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是 最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 典型例题 1.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( ) (A)16cm 或6cm, (B)3cm 或8cm (C)3cm (D )8cm 2.P ∠与⊙O 交于A ,B ,C ,D 四点,AQ ,CQ 为圆的两条弦,弧BQ 的度数为,42? 弧QD 的度数为,38?求__________=∠+∠Q P 3.如图,⊙O 中直径AB 垂直于弦CD ,若AB=10,CD=6,则BE 的长为________[1] 4.如图,正方形CDEF 的边CD 在半圆O 的直径上,正方形的过长为1,AC=a, BC=b, 在 5)4(;1)3(;5)2(;1)1(22=+==+=-b a ab b a b a ,各式中成立的个数为_______[3] 5。如图,四过形内接于⊙O, AD 为直径, 若?=∠60CBE , 则圆心角=∠AOC ________]120[? 6.BC 为半圆O 的直径, A 、D 为半圆上的两点, AB=3, BC=2, 则∠ D=___________ ]150[?

相关文档
最新文档