高灵敏度巢式PCR方法扩增HBV全长基因组

高灵敏度巢式PCR方法扩增HBV全长基因组
高灵敏度巢式PCR方法扩增HBV全长基因组

多重PCR原理: 一般PCR仅应用一对引物,通过PCR扩增产生一个核酸片段,主要用于单一致病因子等的鉴定.多重PCR(multiplex PCR),又称多重引物PCR或复合PCR,它是在同一PCR反应体系里加上二对以上引物,同时扩增出多个核酸片段的PCR反应,其反应原理,反应试剂和操作过程与一般PCR相同. 多重PCR的主要用于多种病原微生物的同时检测或鉴定和病原微生物,某些遗传病及癌基因的分型鉴定。多种病原微生物的同时检测或鉴定,是在同一PCR反应管中同时加上多种病原微生物的特异性引物,进行PCR扩增.可用于同时检测多种病原体或鉴定出是那一型病原体感染,,可系统组合的有:①肝炎病毒的感染,在同一病人或同一供血者体内,有时存在多种肝炎病毒重叠感染,有时是甲乙丙型肝炎病毒重叠;有时可能是甲乙型肝炎病毒重叠;有时是乙丙型肝炎病毒重叠.②肠道致病性细菌的检测,如伤寒,痢疾和霍乱,有时具有较相同的肠道症状,有时痢疾霍乱同存一病人并同时发病.③性病的检测,如梅毒,淋病及艾滋病的诊断.④战伤细菌及生物战剂细菌的检测,如破伤风杆菌,产气荚膜杆菌,炭疽杆菌,鼠疫杆菌等侦检.⑤需特殊培养的无芽胞厌氧菌,如脆弱类杆菌、艰难杆菌的鉴定等. 某些病原微生物,某些遗传病或癌基因,型别较多,或突变或缺失存在多个好发部位,多重PCR可提高其检出率并同时鉴定其型别及突变等可系统应用的有:乙型肝炎病毒的分型;乳头瘤病毒的分型;单纯疱疹病毒的分型;杜氏肌营养不良症的分型及癌基因的检测等. 多重PCR的特点有:①高效性,在同一PCR反应管内同时检出多种病原微生物,或对有多个型别的目的基因进行分型,特别是用一滴血就可检测多种病原体.②系统性,多重PCR很适宜于成组病原体的检测,如肝炎病毒,肠道致病性细菌,性病,无芽胞厌氧菌,战伤感染细菌及细菌战剂的同时侦检.③经济简便性,多种病原体在同一反应管内同时检出,将大大的节省时间,节省试剂,节约经费开支,为临床提供更多更准确的诊断信息. 试验准备: PCR 反应体积为 25μL ,包括:灭菌的超纯水、 PCR 缓冲液 (1x) 、 dNTP 混合物 (200μM each) 、引物 (0.04–0.6μM each); DMSO, 甘油或 BSA (5%); Taq DNA 聚合酶 (1–2 U/25μL) 和基因组DNA 模板 (150ng/25μL) 。先加入水,其它组分可以任意顺序加入,加样在冰上进行,加样完成后反应管直接从冰上转入预热到 94 ℃的循环仪加热模块或水浴中。对于放射性标记的反应,在反应开始前立即在100μL 的反应混合液中加入 1 μCi dNTP。使用 100μL 、 25μL 、

多重比较的字母标记法 本届答辩刘老师反复指出多重比较字母标记法的问题,大部分人都是一头雾水,特查了一下具体标记方法。 ******************* 1)将全部平均数从大到小顺序排列,然后在最大的平均数上标上字母a; 2)将该平均数依次和其以下各平均数相比,凡差异不显著的都标字母a,直至某一个与之相差显著的平均数则标以字母b。 3)再以该标有b的平均数为标准,与上方各个比它大的平均数比,凡不显著的也一律标以字母b;4)再以标有b的最大平均数为标准,与以下各未标记的平均数比,凡不显著的继续标以字母b,直至某一个与之相差显著的平均数则标以字母c; 5)……如此重复下去,直至最小的一个平均数有了标记字母为止。 这样各平均数间,凡有一个标记相同字母的即为差异不显著,凡具不同标记字母的即为差异显著。在实际应用时,一般以大写字母A.B.C…… 表示α=0.01显著水平,以小写字母a.b.c……表示α=0.05显著水平。 胡乱编一个例子,假设差值大于10显著,小等于10不显著,则100与80显著,80与70不显著。100 a 80 b 79 b 78 b 70 bc 60 cd 50 d 30 e 29 e 100标a, 100与80显著80标b,

80与79不显著79标b, 80与78不显著78标b, 80与70不显著70标b, 80与60显著60标c, 60与70不显著70标c, 60与78显著78已经和60不同不标,70与50显著50标d, 50与60不显著60标d, 50与70显著70已经和50不同不标,60与30显著30标e 30与29不显著29标e

附件 医疗机构临床基因扩增检验 实验室工作导则 一、临床基因扩增检验实验室的设计 (一)临床基因扩增检验实验室区域设计原则。原则上临床基因扩增检验实验 室应当设臵以下区域:试剂储存和准备区、标本制备区、扩增区、扩增产物分析区。这4个区域在物理空间上必须是完全相互独立的,各区域无论是在空间上还是在使用中,应当始终处于完全的分隔状态,不能有空气的直接相通。根据使用仪器的功能,区域可适当合并。例如使用实时荧光PCR仪,扩增区、扩增产物分析区可合并;采用样本处理、核酸提取及扩增检测为一体的自动化分析仪,则标本制备区、扩增区、扩增产物分析区可合并。各区的功能是: 1.试剂储存和准备区:贮存试剂的制备、试剂的分装和扩增反应混合液的准备,以及离心管、吸头等消耗品的贮存和准备。 2.标本制备区:核酸(RNA、DNA)提取、贮存及其加入至扩增反应管。对于涉及临床样本的操作,应符合生物安全二级实验室防护设备、个人防护和操作规范的要求。 3.扩增区:cDNA合成、DNA扩增及检测。 4.扩增产物分析区:扩增片段的进一步分析测定,如杂交、酶切电泳、变性高 效液相分析、测序等。 (二)临床基因扩增检验实验室的空气流向。临床基因扩增检验实验室的空气 流向可按照试剂储存和准备区→标本制备区→扩增区→扩增产物分析区进行,防止扩增产物顺空气气流进入扩增前的区域。可按照从试剂储存和准备区→标本制备区

→扩增区→扩增产物分析区方向空气压力递减的方式进行。可通过安装排风扇、负压排风装臵或其他可行的方式实现。 (三)工作区域仪器设备配置标准。 1.试剂储存和准备区。 (1)2~8℃和-20℃以下冰箱。 (2)混匀器。 (3)微量加样器(覆盖0.2-1000μl)。 (4)可移动紫外灯(近工作台面)。 (5)消耗品:一次性手套、耐高压处理的离心管和加样器吸头。 (6)专用工作服和工作鞋(套)。 (7)专用办公用品。 2.标本制备区。 (1)2-8℃冰箱、-20℃或-80℃冰箱。 (2)高速离心机。 (3)混匀器。 (4)水浴箱或加热模块。 (5)微量加样器(覆盖0.2-1000μl)。

PCR扩增反应的操作 第一节PCR扩增反应的基本原理 一、聚合酶链式反应(PCR)的基本构成 PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。 PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA 膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。反应时先将上述溶液加热,使模板DNA 在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。 1.模板DNA的变性 模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。故PCR 中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。 2.模板DNA与引物的退火 将反应混合物温度降低至37~65℃时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复合物。退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。 3.引物的延伸 DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40~60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用Y =(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,

第3节多重比较方法

在方差分析中,当零假设被拒绝时我们可以确定至少有两个总体的均值有显著差异。但要进一步检验哪些均值之间有显著差异还需要采用多重比较的方法进行分析 多重比较是对各个总体均值进行的两两比较,例如Fisher最小显著差异(Least Significant Difference,LSD)方法、Tukey的诚实显著差异(HSD)方法或Bonferroni的方法等 本节只介绍最小显著差异方法

可以用“具有共同方差的两正态总体均值是否相等的t检验方法”进行检验为了综合考虑 全部数据的离 散情况,两总 体的共同方差 不同于以前章 节 它不是仅使用 两总体自身的 样本数据得出, 而是由所考虑 因素的全部r 个水平的所有 样本数据给出, 因此检验统计 量有所不同 此共同方差, 由样本的组内 方差MSE来 估计

提出假设 检验统计量 0: =μμi j H : ≠μμa i j H 1 1MSE()?= +i j i j x x t n n

拒绝法则p-值法: 临界值法 如果-值,则拒绝≤αP 0 H a /2t t 0 H 是自由度为n T -k 时,使t 分布的上侧面积为a/2 的t 值。 a /2t

Fisher的LSD 方法 1 2 3 提出假设 :? μμ i j H 统计检验量 /2 11 LSD MSE() =+ α i j t n n 式中 如果> LSD,则拒绝H ? i j x x 拒绝法则 :≠ μμ a i j H 11 MSE() i j i j i j x x t x x n n ? =? + 或

单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。 表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。 图5-1 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。 1)准备分析数据

在数据编辑窗口中输入数据。建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。或者打开已存在的数据文件“DATA5-1.SAV”。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击 “0ne-Way ANOVA”项,系统 打开单因素方差分析设置窗口如图5-2。 图5-2 单因素方差分析窗口 3)设置分析变量 因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图5-3所示的对话框。该对话框用于设置均值的多项式比较。

PCR 扩增的原理和步骤 聚合酶链反应(polymerasechain reaction PCR)技术是20世纪80年代中期发 展起来的一项基因检测即一种体外核酸扩增技术。它具有许多优点:特异性、易重复、高效性等,可以在几个小时完成过去几天或者更长时间完成的实验,因此这项技术在生物医学领域具有划时代的意义。但是,传统PCR技术有它的缺点,它通过电泳对扩增反应的最终产物进行定性分析而不能对起始模板准确定量,同时也无法对扩增反应实时检测且在实验过程中易污染而出现假阳性。人们为了寻找更为灵敏、快速、简便、高特异性的方法进行了许多探索研究,直到1996 年由美国Applied Biosystems公司推出了一种新的定量试验技术—荧光定量PCR(F lurogenic Quantitative Polymerase Chain Reaction,FQ-PCR;real-time quantitati ve PCR,RT-qPCR or qPCR),它是通过荧光染料或荧光标记的特异性探针,标记 跟踪PCR产物进行实时监测反应,利用与之相适应的软件对产物进行分析,计 算待测样品模板的初始浓度,实现了PCR 从定性到定量质的跨越,具有里程碑 意义。目前,此项技术已应用于干细胞研究、肿瘤学和遗传疾病研究、病原体检 测和传染病研究、药物分析、药物基因组学、植物学研究和农业生物科技等多领 域研究中。本文对实时荧光定量PCR 的原理、分类和应用进行阐述。 一、实时荧光定量PCR技术的原理 real-time quantitative PCR 技术是指在 PCR 反应体系中加入荧光基团,通过 荧光信号不断累积而实现实时监测PCR全程,然后通过标准曲线对未知模板进 行定量分析的方法。在荧光定量PCR技术中有2个概念比较重要。(1)荧光域值(t hreshold)的设定: PCR 反应的前 15 个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3~15 个循环的荧光信号标准偏差的10 倍。(2)Ct 值:C 代表Cycle,t 代表 threshold,Ct 值的含义是每个反应管内的荧光信号到达设定的域值 时所经历的循环数。在实时荧光定量PCR中,对全程PCR扩增过程进行实时检测,根据反应时间和荧光信号的变化可以绘制成一条曲线。一般来说,整条曲线可以分3个阶段:荧光背景信号阶段、荧光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号与背景无法区分,无法判断产物量的变化。在平台期,扩增产物已不再呈指数级的增加,所以反应终产物量与起始模板量之间已 经不存在线性关系,通过反应终产物也算不出起始DNA 拷贝数。只有在荧光产

临床基因扩增检验实验室基本设置标准 根据《临床检验扩增检验实验室管理暂行办法》,制定本标准 一、临床基因扩增检验实验室区域设置原则 (一)临床基因扩增检验实验室区域设置原则 1、试剂储存和准备区 2、标本制备区 3、扩增反应混合物配制和扩增区 4、扩增产物分析区 如使用全自动分析仪,区域可适当合并。 (二)各工作区域必须有明确的标记,避免不同工作区域内的设备、物品混用。 (三)进入各工作区域必须严格按照单一方向进行,即试剂储存和准备区—>标本制备区—>扩增反应混合物配制和扩增区—>扩增产物分析区。 (四)不同的工作区域使用不同的工作服(例如不同的颜色)。工作人员离开各工作区域时,不得将工作服带出。 二、工作区域仪器设备配置标准 (一)试剂储存和准备区 1、2-8C和-15C冰箱 2、混匀器 3、微量加样器(覆盖1-1000ul) 4、移动紫外灯(近工作台面)

5、消耗品:一次性手套、一次性吸水纸、耐高压处理的离心管和加样器吸头(带滤心) 6、专用工作服和工作鞋 7、专用办公用品 (二)标本制备区 1、2-8C冰箱、-20C或-80C冰箱 2、高速台式冷冻离心机 3、混允器 4、水浴箱或加热模块 5、微量加样器(覆盖1-1000ul) 6、可移动紫外灯(近工作台面) 7、超净工作台 8、消耗品:一次性手套、一次性吸水纸、耐高压处理的离心管和加样器吸头(带滤心) 9、专用工作服和工作鞋 10、专用办公用品 如需处理大分子DNA,应具有超声波水浴仪。 (三)扩增反应混合物配制和扩增区 1、核酸扩增仪 2、微量加样器(覆盖1-1000ul) 3、可移动紫外灯(近工作台面) 4、消耗品:一次性手套、一次性吸水纸、耐高压处理的离心管

1. 1LSD法最小显著差异法,公式为: 它其实只是t检验的一个简单变形,并未对检验水准做出任何校正,只是在标准误的计算上充分利用了样本信息, 为所有组的均数统一估计出了一个更为稳健的标准误,其中MS误差 是方差分析中计算得来的组内均方,它一般用于计划好的多重比较。由于单次比较的检验水准仍为α,因此可认为LSD法是最灵敏的。 1. 2 Bonferroni法该法又称Bonferroni t检验,由Bonferroni提出。用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。若每次检验水准为α′,共进行m 次比较,当H0 为真时,犯Ⅰ类错误的累积概率α不超过mα′, 既有Bonferroni不等式α≤mα′成立。 α′=αm=αC2k=2αk ( k - 1), t =( …XA - …XB )S… dAB,S… dAB = MS误差1nA+1nB 但是该方法在样本组数较小时效果较好,当比较次数m 较多时,结论偏于保守。 1. 3Sidak法它实际上就是Sidak校正在LSD法上的应用,即通过Sidak校正降低每两次比较的Ⅰ类错误概率,以达到最终整个比较的Ⅰ类错误概率为α的目的。即α′= 1 - (1 -α) 2 / k ( k - 1) ; t =( …XA - …XB )S… dAB,S… dAB = MS误差1nA+1nB。计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。 1. 4Student2Newman2Keuls法( SNK法) q = ( …XA - …XB ) /MS误差21nA+1nB,它实质上是根据预先制定的准则将各组均数分为多个子集, 利用Studentized Range分布来进行假设检验,并根据所要检验的均数的个数调整总的Ⅰ类错误概率不超过α。用student range分布进行所有各组均值间的配对比较。如果各组样本含量相等或者选择了(差异较小的子集)的均值配对比较。在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。 1. 5Dunnett2t检验 t =…Xi - …X0S…d i, S…di =MS误差21n1+1n0, 常用于多个试验组与一个对照组间的比较,根据算得的t值,误差自由度ν误差、试验组数k - 1以及检验水准α查Dunnett2t界值表,作出推断。 1. 6Duncan法(新复极差法)(SSR)指定一系列的“range”值,逐步进行计算比较得出结论。 q′= ( …XA - …XB ) /MS误差21nA+1nB算得q′值后查q′界值表。 1. 7Tukey检验 T = qa ( k,ν)MS误差n,式中qa ( k,ν) 为α水准上, 处理组数为k及误差自由度为ν时,由多重比较q界值表中查得的q临界值(表中组数a即为k) 。当比较的两组中A组的均数…XA 与B组的均数…XB 之差的绝对值大于或等于T值, 即| …XA - …XB | ≥T时,可以认为比较的两组总体均数μA 与μB 有差别;反之,尚不能认为μA 与μB 有差别。该方法要求各组样本含量相同,且一般不会增大Ⅰ型错误的概率。用student range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。 1. 8Scheffe检验 检验统计量为F,计算公式为:F =( …XA - …XB ) 2MS误差1nA+1nB( k - 1)即当| …XA - …XB | ≥ Fα(ν1,ν2)MS误差1nA+1nB( k - 1)时,可以认为在α水准上,比较的两组总体均数μA 与μB 有差别。k为处理组数, Fα(ν1,ν2)为在α水准上,方差分析中的组间自由度为ν1 (ν1 = k - 1) ,误差自由度为ν2 (ν2 =N - k)时,由方差分析用F界值表查得的F临界值。 以上8种多重检验方法由于使用方便,计算简单而被广大科研工作者接受。

为使基因扩增检验技术有效地应用于临床,更好地为疾病的预防、诊断和治疗服务,保证检验质量,特制 定本规范。 一、临床基因扩增检验实验室的规范化设置及其管理 临床基因扩增检验实验室的规范化设置详见《临床基因扩增检验实验室管理暂行办法》(卫医发[2002】10号文)附件《临床基因扩增检验实验室基本设置标准》。为避免污染,必须严格遵循《临床基因扩增检验实验室设置标准》设置临床基因扩增检验实验室。 临床基因扩增检验实验室四个隔开的工作区域中每一区域都须有专用的仪器设备。各区域都必须有明确的标记,以避免设备物品如加样器或试剂等从其各自的区域内移出从而造成不同的工作区域间设备物品发生混淆。进入各个工作区域必须严格遵循单一方向顺序,即只能从试剂贮存和准备区、标本制备区、扩增反应混合物配制和扩增区(简称扩增区)至产物分析区,避免发生交叉污染。在不同的工作区域应使用不同颜色或有明显区别标志的工作服,以便于鉴别。此外,当工作者离开工作区时,不得将各区特定的工作服带出。 清洁方法不当也是污染发生的一个主要原因,因此实验室的清洁应按试剂贮存和准备区至扩增产物分析区的方向进行。不同的实验区域应有其各自的清洁用具以防止交叉污染。 (一)试剂贮存和准备区 下述操作在该区进行:贮存试剂的制备、试剂的分装和主反应混合液的制备。 贮存试剂和用于标本制备的材料应直接运送至试剂贮存和准备区,不能经过产物分析区。在打开含有反应混合液的离心管或试管前,应将其快速离心数秒。试剂

原材料必须贮存在本区内,并在本区内制备成所需的贮存试剂。当贮存试剂溶液经检查可用后,应将其分装贮存备用,避免由于经常打开反应管吸液而造成污染。 含反应混合液的离心管或试管在冰冻前都应快速离心数秒。大多数用于扩增 的试剂都应冰冻贮存。为避免因单次反应取液而频繁的冻融主贮存试剂,应分装冰冻贮存试剂溶液。贮存试剂的分装体积根据通常在实验室内一次测定所需的扩增反应数来决定。 主反应混合液的组成成份尤其是聚合酶的适用性和稳定性通过预试验来检查,评价结果必须有书面报告。对于“热启动”技术(在第一个高温变性步骤后加入酶),聚合酶也可不包含在主反应混合液中。 在整个本区的实验操作过程中,操作者必须戴手套,并经常更换。此外,操作中使用一次性帽子也是一个有效地防止污染的措施。 严禁用嘴吸取液体,加样器和吸头等必须经高压处理。 工作结束后必须立即对工作区进行清洁。本工作区的实验台表面应可耐受诸 如次氯酸钠的化学物质的消毒清洁作用。实验台表面的紫外照射应方便有效。由于紫外照射的距离和能量对去污染的效果非常关键,因此可使用可移动紫外灯(254nm 波长),在工作完成后调至实验台上60~90em 内照射。由于扩增产物仅几 百bp,对紫外线损伤不敏感,因此紫外照射扩增片段必须延长照射时间,最好 是照射过夜。实验室及其设备的使用必须有日常记录。 (二)标本制备区 下述操作在该区进行:临床标本的保存,核酸(RNA、DNA)提取、贮存及其加入 至扩增反应管和测定RNA时eDNA的合成。

PCR扩增的原理和步骤 聚合酶链反应(polymerasechain reaction PCR)技术是20世纪80年代中期发展起来的一项基因检测即一种体外核酸扩增技术。它具有许多优点:特异性、易重复、高效性等,可以在几个小时完成过去几天或者更长时间完成的实验,因此这项技术在生物医学领域具有划时代的意义。但是,传统PCR技术有它的缺点,它通过电泳对扩增反应的最终产物进行定性分析而不能对起始模板准确定量,同时也无法对扩增反应实时检测且在实验过程中易污染而出现假阳性。人们为了寻找更为灵敏、快速、简便、高特异性的方法进行了许多探索研究,直到1996年由美国Applied Biosystems公司推出了一种新的定量试验技术—荧光定量PCR(F lurogenic Quantitative Polymerase Chain Reaction,FQ-PCR;real-time quantitati ve PCR,RT-qPCR or qPCR),它是通过荧光染料或荧光标记的特异性探针,标记跟踪PCR产物进行实时监测反应,利用与之相适应的软件对产物进行分析,计算待测样品模板的初始浓度,实现了PCR从定性到定量质的跨越,具有里程碑意义。目前,此项技术已应用于干细胞研究、肿瘤学和遗传疾病研究、病原体检测和传染病研究、药物分析、药物基因组学、植物学研究和农业生物科技等多领域研究中。本文对实时荧光定量PCR的原理、分类和应用进行阐述。 一、实时荧光定量PCR技术的原理 real-time quantitative PCR技术是指在PCR反应体系中加入荧光基团,通过荧光信号不断累积而实现实时监测PCR全程,然后通过标准曲线对未知模板进行定量分析的方法。在荧光定量PCR技术中有2个概念比较重要。(1)荧光域值(t hreshold)的设定:PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3~15个循环的荧光信号标准偏差的10倍。(2)Ct值:C代表Cycle,t代表threshold,Ct值的含义是每个反应管内的荧光信号到达设定的域值时所经历的循环数。在实时荧光定量PCR中,对全程PCR扩增过程进行实时检测,根据反应时间和荧光信号的变化可以绘制成一条曲线。一般来说,整条曲线可以分3个阶段:荧光背景信号阶段、荧光信号指数扩增阶段和平台期。在荧光背景信号阶段,扩增的荧光信号与背景无法区分,无法判断产物量的变化。在平台期,扩增产物已不再呈指数级的增加,所以反应终产物量与起始模板量之间已经不存在线性关系,通过反应终产物也算不出起始DNA拷贝数。只有在荧光产生进入指数期,PCR产物量的对数值与起始模板量之间存在线性关系,所以在P CR反应处于指数期的某一点上来检测PCR产物的量,由此来推断模板最初的含

CNAS-GL42 基因扩增领域检测实验室认可指南Guidance on the Accreditation in gene amplification Testing Laboratory 中国合格评定国家认可委员会

前言 本文件是对CNAS-CL62:2016《实验室认可准则在基因扩增领域检测实验室的应用说明》的解释和说明,并不增加其他的要求。 本文件为首次发布。

基因扩增领域检测实验室认可指南 1 适用范围 本指南旨在促进基因扩增领域检测实验室对认可技术的理解与执行。适用于申请认可的基因扩增检测实验室建立质量管理体系,已经认可的基因扩增检测实验室规范其质量和技术活动,也可供CNAS评审员在基因扩增检测实验室认可评审过程中参考使用。 2 引用文件 GB/T 6682 《分析实验室用水规格和试验方法》 GB/T 20001.4 《标准编写规则第4部分:试验方法标准》 4 管理要求 4.1 组织 4.1.2实验室有责任和义务保护本国的物种信息资源和基因资源,包括动物、植物和微生物等物种资源。 4.1.5 c)适用时,实验室应在保护客户的机密信息和所有权的政策和程序中体现医学伦理,在采集、接受样本及结果报告期间均应充分保护客户隐私。 4.4要求、标书和合同的评审 4.4.3 评审的内容应包括被实验室分包出去的任何工作,如基因测序工作等。4.4.5当核酸提取或基因扩增无法完时,应向客户做出说明。 注:测试样品过度加工、测试核酸样品含量不足或降解等原因,可能导致基因扩增无法进行。 4.6 服务和供应品的采购 4.6.2 分析过程所有实验仅用不含DNA酶和RNA酶的分析纯或生化试剂,所用的水应符合GB 6682一级水的要求。适用时,自制试剂使用前应高压灭菌,不宜高压灭菌的试剂应使用超滤设备(孔径0.22μm)除菌。 4.13 记录的控制 4.13.2 适用时,基因扩增检测中应包括以下技术记录信息:

四、多重比较 F值显著或极显著,否定了无效假设H O,表明试验的总变异主要来源于处理间的变异,试验中各处理平均数间存在显著或极显著差异,但并不意味着每两个处理平均数间的差异都 显著或极显著,也不能具体说明哪些处理平均数间有显著或极显著差异,哪些差异不显著。 因而,有必要进行两两处理平均数间的比较,以具体判断两两处理平均数间的差异显著性。 统计上把多个平均数两两间的相互比较称为多重比较(multiple

comparisons )。 多重比较的方法甚多,常用的有最小显著差数法(LSD 法)和最小显著极差法(LSR 法),现分别介绍如下。 (一)最小显著差数法 (LSD 法,least significant difference ) 此法的基本作法是:在F 检验显著的前提下,先计算出显著水平为α的最小显著差数α LSD ,然后将任意两个处理平均 数的差数的绝对值. . j i x x -与其比较。若 . .j i x x ->LSD a 时,则.i x 与.j x 在α水平 上差异显著;反之,则在α水平上差异不显著。最小显著差数由(6-17)式计算。 ..)(j i e x x df a a S t LSD -=

(6-17) 式中:) (e df t α为在F 检验中误差自由 度下,显著水平为α的临界t 值, . .j i x x S -为均数差异标准误,由(6-18) 式算得。 n MS S e x x j i /2. .=- (6-18)其中e MS 为F 检验中的误差均方,n 为各处理的重复数。 当显著水平α=0.05和0.01时,从t 值表中查出) (05.0e df t 和) (01.0e df t ,代入(6-17) 式得: . ...)(01.001 .0)(05.005.0j i e j i e x x df x x df S t LSD S t LSD --== (6-19) 利用LSD 法进行多重比较时,可按

P C R各步骤的目的 Prepared on 22 November 2020

PCR各步骤的目的 (一)预变性: 破坏DNA中可能存在的较难破坏的二级结构。使DNA充分变性,减少DNA复杂结构对扩增的影响,以利于引物更好的和模板结合,特别是对于基因组来源的DNA模板,最好不要吝啬这个步骤。此外,在一些使用热启动Taq酶的反应中,还可激活Taq酶,从而使PCR反应得以顺利进行。 (二)变性--退火--延伸循环: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。 (三)用PCR仪扩增时,(变性.退火,延伸)循环完成后,继续72度延伸了10分钟的原因: 1.延伸时间取决于待扩增DNA片段的长度。(当然是在反应体系一定的条件下)例如,使用taq DNA聚合酶,72度时的碱基掺入率为35-100bp/s,因此延伸速率为1kb/min。 2.根据延伸速率推得,扩增1kb以内的dna片段1min即可,而3-4kb则需要3-4min,依次照推。通常在最后一轮要适当的将延伸时间延长至4-10min,这样做是使pcr反应完全以提高扩增产量。 3.继续72度延伸了10分钟除了可以使pcr反应完全以提高扩增产量外,还有一个作用是:在用普通taq酶进行PCR扩增时在产物末端加A尾的作用,可以直接用于TA克隆的进行。

SPSS——单因素方差分析 单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。 表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数

图1-2 单因素方差分析窗口 3)设置分析变量 因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图1-3所示的对话框。该对话框用于设置均值的多项式比较。 图1-3 “Contrasts”对话框 定义多项式的步骤为: 均值的多项式比较是包括两个或更多个均值的比较。例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1. 1倍与第二组的均值相等。单因素方差分析的“0ne-Way ANOVA”过程允许进行

高达5次的均值多项式比较。多项式的系数需要由读者自己根据研究的需要输入。具体的操作步骤如下: ①选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。 ②单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。 ③为多项式指定各组均值的系数。方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。依次输入各组均值的系数,在方形显示框中形成—列数值。因素变量分为几组,输入几个系数,多出的无意义。如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。 可以同时建立多个多项式。一个多项式的一组系数输入结束,激话“N ext”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。 如果认为输入的几组系数中有错误,可以分别单击“Previous”或“Next”按钮前后翻找出错的一组数据。单击出错的系数,该系数显示在编辑框中,可以在此进行修改,修改后单击“Change”按钮在系数显示框中出现正确的系数值。当在系数显示框中选中一个系数时,同时激话“Remove”按钮,单击该按钮将选中的系数清除。 ④单击“Previous”或“Next”按钮显示输入的各组系数检查无误后,按“Con tinue”按钮确认输入的系数并返回到主对话框。要取消刚刚的输入,单击“Ca ncel”按钮;需要查看系统的帮助信息,单击“Help”按钮。 本例子不做多项式比较的选择,选择缺省值。 5)设置多重比较 在主对话框里单击“Post Hoc”按钮,将打开如图5-4所示的多重比较对话框。该对话框用于设置多重比较和配对比较。方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组;配对比较可找出和其它组均值有差异的组,并输出显著性水平为0.95的均值比较矩阵,在矩阵中用星号表示有差异的组。

PCR扩增反应 一、实验原理 PCR:是一种选择性扩增DNA或RNA的方法,其基本原理是依据体内细胞分裂中的DNA半保留复制机理,以及在体外dNTP分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以促使双链DNA变成单链DNA;单链DNA与人工合成的引物退火,以及在dNTP存在下,耐高温的DNA聚合酶使引物沿单链模板延伸成为双链DNA。 PCR反应分3步:①变性:通过加热使DNA 双螺旋的氢键断裂,双链解离形成单链DNA;②退火:当温度突然降低时,由于模板分子结构较引物要复杂得多,而且反应体系中引物DNA量大大多于模板DNA,使引物和其互补的模板在局部形成杂交链,而模板DNA 双链之间互补的机会较少。③延伸:在DNA聚合酶和4 种dNTP底物及Mg2+存在的条件下,5'→3'的聚合酶催化以引物为起始点的DNA链延伸反应,以上3步为一个循环,每一循环的产物可以作为下一个循环的模板,数小时之后,介于两个引物之间的特异性DNA片段得到了大量复制,数量可达2×106~7拷贝。 变性 退火 延伸 图反应历程

二、实验材料 1·模板:细菌DNA 2·TsgDNA聚合酶3·dNTP混合液 4·10倍浓度PCR缓冲液5·2.5mmol/LMgCl2 6·RAPD引物:S14 S15 S18 S66 S74 S88 S97 S103 S110 S115 7·提取细菌DNA的相关试剂 三、操作步骤 1.细菌染色体DNA的提取(见上一组) 3·反应程序: 将RAPD反应试剂加入EP管中 轻混后用100ul石蜡油覆盖于反应混合液之上,防止样品在反复加热-冷却的过程中蒸发,盖好盖子 打开PCR反应仪输入以下反应数据 ●94 摄氏度预变性5min ●94摄氏度变性40s ●40摄氏度退火40s ●72摄氏度延伸1min 将EP管放入仪器开始扩增,循环35次;72摄氏度延伸10min 仪器为Model MyGene 25 Plus 三、注意事项 1、PCR反应体系中DNA样品及各种试剂的用量都极少,必须严格注意吸样量的准确性 及全部放入反应体系中。 2、为避免污染凡是用在PCR反应中的Tip尖、离心管、蒸馏水都要灭菌;吸每种试剂 时都要换新的灭菌Tip尖。 3、加试剂时先加消毒三蒸水,最后加DNA模板和Taq DNA聚合酶。 4、置PCR仪进行PCR反应前,PCR管要盖紧,否则使液体蒸发影响PCR反应。 5.引物条件首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定二聚 体或发夹结构,再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。

多个均值之间的多重比较 在完成方差分微得知某因素对观测结果的影响显著时,仅表明该因素的各水平下的均数之间的差别总体上是显著的,并不知道任何2个均数之间的差别是否显著(此时,即使在多数场合下,可认为均数的最大值与最小值之间的差别显著,但却不知p值的大小)。当实际工作者希望进一步知道更为详细的情况时,就需要在多个均数之间进行多重比较。然而,根据所控制误差的类型和大小不同,便产生了许许多多的多重比较法。 设某因素有10个水平,若采用通常的t检验进行多重比较,共需比较的次数为∶C210=45次,即使每次比较时都把α控制在0.05水平上(即令CER=0.05),但此时EER=1-(1-0.05)45=0.90,这表明作完45次多重比较后,所犯Ⅰ型错误的总概率可达到0.90,事实上,选用t检验进行多重比较,仅仅控制了CER,却大大地增大了EER! 1.两两比较 (1)仅控制CER(比较误差率)的方法 ①T法(即成组比较的t检验法,但误差的均方不是由所比较的2组数据、而是由全部数据算得的)注意∶用此法所作比较的次数越多,其EER(试验误差率)就越大。 ②LSD法:也叫最小显著差数法,只用于2组例数相等的场合LSD的值被称为Fisher的最小显著差.注意∶用此法所作比较的次数越多,其EER(试验误差率)就越大。 ③DUNCAN法 (2)控制MEER(最大试验误差率)的方法 ①BON法(即Bonferroni t检验法) 它令CER=ε=α/C,这里C为比较的总次数,当因素有K个水平时,则C=K(K-1)/2,下同。 ②SIDAK法(根据Sidak的不等式进行校正的t检验法) ③SCHEFFE法 它是由Scheffe于1953和1959年提出的另一种控制MEER的法, Scheffe检验的结果与先作的方差分析的结果是相容的,即若ANOVA的结果是显著,用此法至少能发现一次比较的结果是显著的,反之,若ANOVA的结果为不显著,用此法也找不出任何2个均数之间有显著差别来(然而,大部分多重比较法则可能会发现有显著差别的对比组)。 如果比较的次数明显地大于均数的个数时,Scheffe法的检验功效可能高于BON法和SIDAK法。对于两两比较,一般来说,Sidak t法的检验功效高。 ④TUKEY法(也称为Tukey或Tukey-Kramer法) Tukey(1952,1953)以学生化极差为理论根据,提出了专门用于两两比较的检验(有时也称为诚实(或最大)显著差检验)。当各组样本含量相等时,此检验控制MEER;当样本含量不等时,Tukey(1953)和Kramer(1956)分别独立地提出修正的方法。对Tukey-Kramer 法控制MEER没有一般的证明,但Dunnett(1980)用蒙特卡洛法研究发现此法非常好。此法的检验功效高于BON法、SIDSAK法或SCHEFFE法。 ⑤GT2法或SMM法 它是有Hochberg(1974)推导尝且与Tukey法像似的一种方法,它用学生化最大模数取代学生化极差,并运用Sidak(1976)的未校正的t不等式。在样本含量相等时,已证明此法把MEER控制在不超过α的水平上。一般认为,此法的检验功效低于Tukey-Kramer法,并且,在样本含量相等时,此法的检验功效总低于Tukey检验。若式(2.5.5)成立,则宣称所比较的

pcr扩增的原理和步骤 一、基本原理:PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。 在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA 聚合酶、dNTP就可以完成特定基因的体外复制。 二、PCR由变性--退火--延伸三个基本反应步骤构成: 1、模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备。 2、模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合。 3、引物的延伸:DNA模板--引物结合物在72℃、DNA聚合酶(如TaqDNA 聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。

重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 扩展: 在实践中,聚合酶链式反应(PCR)可以因各种原因而失败,部分原因是由于其对于污染的敏感性,导致扩增错误的DNA产物。正因为如此,人们已经开发了一些技术和步骤来优化聚合酶链式反应条件。将聚合酶链式反应前的混合物与潜在DNA污染物分开的实验室方案和流程解决了外源DNA的污染问题。 这通常包括从用于分析的区域分理出聚合酶链式反应的设定区域或者说聚合酶链式反应产物的纯化,一次性塑料制品的使用,及对反应装置之间的工作台面彻底清洁。引物的设计技术在改善聚合酶链式反应产物产率和避免杂产物的形成是很重要的。

相关文档
最新文档