电池参数测试操作指南.

电池参数测试操作指南.
电池参数测试操作指南.

电池参数检测操作指南

概述:不同型号和不同容量的锂电池,其电量曲线不尽相同,其标称的电池容量和实际电池容量也有出入。为了获取正确的电池曲线和电池实际容量,经过一个完整的充电过程,AXP20x通过学习,能准确获知。

所需物品:一条USB线、一个5V/2A适配器、一块USB转I2C小板(下称USB板)、一块AXP20xEVM板、一块需要测试的电池、PC端电池参数检测软件。

USB板驱动安装:

(1),使用USB线连接PC机USB口和USB接口卡。

(2),系统提示找到新的硬件,请照如下图所示执行:

硬件连接及测试步骤:

(1)、准备一块放完电的需测试参数的电池,电池电压此时要低于3.1V

(2)、将5V/2A火牛连接至AXP20x EVM板的ACIN插座,让AXP20x正常工作。如图一所示

图一

(3)、将USB线和USB板连接好,并将USB板插到AXP20x EVM板上,如图二所示:

图二

(4)、将需测试参数的电池连接至AXP20x EVM BAT端,如图三所示

图三

(5)、打开电池参数检测软件,如图四所示:(注:第一次打开软件,系统会提示发现新硬件,需要安装驱动,其步骤参照上述“USB板驱动安装”)

图四

(6)、等充电电流稳定后,点击“calculate RDC”按钮(图五红色圈圈定的按钮),开始检测电池通路电阻:

图五

(7)、大约过了90秒后,会弹出下图六所示对话框,表示电池通路电阻已经正确检测,如下图七红色圈圈定的内容。

图六

图七

(8)、接下来,就可以测试电池参数了,请点击“Fuelguage cal”按钮(图八红色圈),会弹出对话框(图九),单击确定开始测试电池特性参数

图八

图九

(9)、等充电完成后,会弹出测试出的电池特性参数提示框—电池电量曲线

(pmu_bat_para1~ pmu_bat_par16),电池实际容量同时也测试出来(CoulombCounter值),如图十所示:

图十

(10)参数测试完成后,需要将pmu_bat_para1~ pmu_bat_par16替换配置文件

sys_config1.xxx.fex中相应的参数值,将CoulombCounter的值替换配置文件中pmu_battery_cap 的值。

动力电池自动化测试系统总体方案

动力电池自动化测试系统 总体方案 湖北德普电气股份有限公司(、3276513)

第一部分:模组来料OCV检测系统方案一、简述 本系统首先导入模组出厂数据到本地数据库,测试时通过条码扫描枪读取电池包的条码信息,按照预设好的测试方案,通过CAN总线读取BMS的电池OCV信息,并将电池OCV信息与出厂数据进行比对,按照预设的条件进行产品合格判定。并把相关信息记录在数据库中,同时将不合格结果进行标签打印。 二、组成 模组来料OCV检测系统主要由以下设备组成,系统原理框图如图1所示。 1)研华工控机 2)Honeywell条码扫描枪 3)NI PCI CAN通讯卡 4)明纬开关电源 5)NI PCI I/O板卡 6)Zebra标签打印机 7)扫描枪伺服系统 8)附属组件 图1 模组来料OCV检测系统原理框图

三、功能实现技术方案 图2 来料OCV检测系统示意 模组来料OCV检测系统由工控机通过软件进行设备集成。用户登录后,根据权限编写测试流程,测试流程包含扫描枪伺服系统的控制、DBC文件的选择、不合格条件的设定等,并将测试流程与条码进行模糊绑定。 在进行具体测试过程中,当完成线束连接后,可以点击启动按钮,模组来料OCV 检测系统自动按照测试方案驱动扫描枪伺服系统,扫描枪到预设位置后读取相应的条形码填入对应位置。条形码读取完毕后自动从数据库中搜索电池的相应出厂OCV值,并根据DBC文件,自动通过PCI CAN通讯卡读取并解析相应的电池OCV信息,按照预设的判定条件进行结果判定。完成测试后,将不合格的测试结果按照预设格式进行打印。同时出于满足手动调试的需要,所有的操作均可以单步手动操作。 工控机内安装PCI接口的CAN通讯卡、I/O板卡。工控机通过PCI I/O板卡控制的接触器对BMS上电、下电控制。工控机通过PCI CAN通讯卡与BMS进行通讯,完成数据的读取与解析。按照功能划分,软件具备如下功能: 3.1人机界面 提供用户的登入登出、新用户的建立、管理等功能。软件提供了测试流程的编辑、检查、载入等功能。并提供测试方案的启动、停止、暂停、回复等按钮,用于测试流程控制。软件提供了电池条码信息、接触器状态、BMS信息、测试流程的状态等信息。界面大致如下: 图3 模组来料测试系统主界面示意图 3.2测试流程控制 软件能根据预先编制好的测试方案,按照用户的命令启动测试方案,并能按照测试方案自动的执行测试流程,并完成结果判定。

动力电池组及管理系统试验方案

动力电池组及管理系统试验方案 型号规格:非标 用途:用于电动汽车用氢镍电池的综合性能测试,在功率允许范围内,可以完成所有充放电项目的性能测试。 一、购置理由: 动力电池及管理技术已经成为制约电动汽车及混合动力汽车发展的瓶颈之一,动力电池台架通过容量测试试验、效率试验、循环工况试验、电池模型参数识别试验以及电池检测精度和荷电状态估计试验等,能够得到动力电池组的工作特性,确定其合理的工作范围,验证电池管理系统的电池检测精度和能量状态估计的准确性,为电池组装车后有效管理提供试验依据。本着提高效率,减轻工作强度,降低企业成本,便于对动力车辆电池动态应力循环工况测试的角度考虑,该方案拟运用迪卡龙电动车辆测试系统硬件设备EVT-500-500,BTS-600电池测试软件对电动汽车用氢镍电池的综合性能进行测试。 二、技术要求及设备选型情况 1.技术要求 1.1 主要技术指标 1.1.1 充电电流: 充电电流范围: 1.0~100A(尽可能靠上限); 电流分辨率:0.1A, 电流控制与测量精度:0.1A 1.1.2充电电压范围:0~500V(电位器调节,最大调节电压500V) 显示电压分辨率: 0.1V 电压控制测量精度:0.1V(硬件控制0.01V) 1.1.3充电容量:系统在充电过程中对电池的充电容量计算,误差≤±1.5%,测试电池组在不同温度、不同放电率下所能放出的能量。放电倍率一般为C/3、C/2、1C、2C、3C、4C等,其中C为电池组容量,温度根据电池使用环境要求,一般为-25°C、-10°C、0°C、25°C、50°C等。 1.1.4 充电通道及方式:160CH电池组充电通道,每个电池组充电通道,通过提供的专用插头,与电池组连接,独立地对电池组中的最多4枚12V单体电池进行充电。

动力电池组测试平台设计

动力电池组测试平台设计 1 前言 作为电动汽车的能量存储部件,电池的功率密度、储电能力、安全性等不仅决定着电动车的行驶里程和行驶速度,更关系到电动车的使用寿命及市场前景。目前,电池在实际使用中普遍存在的问题是电荷量不足,一次充电行驶里程难以满足实用要求。 另外,用可测得的电池参数对电池荷电状态( SOC,S tate- O f- Charge)作出准确、可靠的估计,也一直是电动汽车和电池研究人员关注并投入大量精力的研究课题。因此有必要建立动力电池测试平台测试平台,利用该平台对电池相关参数进行全面、精确的测量,实现电池性能试验,工况模拟和算法研究,确定最合理的充放电充放电方式及更为精确的SOC 估算方法,从而合理的分配和使用电池有限的能量,尽可能延长电池的使用寿命,进一步降低电动汽车的整车成本。与以往的电池测试系统相比,该测试平台可全面监测电池相关参数,并加入充放电能量的计量,可从能量的角度对电池的性能进行描述,从能量状态( SOE,Sta te- O f- Energy)的角度对电池的使用效率进行分析。系统硬件电路具有电池过电压、欠电压保护及均衡功能,可对单体电池进行监视和保护,减小电池间的不一致性。在充放电设备与上位机之间建立通信,控制充电机按照编程指令改变控制策略和输出电流,检验充放电电流大小、方式和环境条件对电池的电荷量及使用寿命的影响。 2 测试平台结构 测试平台的结构,以单片机为核心的电池数据采集系统数据采集系统直接对电池组电池组的单体电压、总电压、温度、电流、充放电容量、充放电能量等信息进行精确测量,并通过RS232总线将数据发送到上位机。由微型计算机构成的上位机监控系统,实时显示并记录接收到的测试数据,对数据进行分析,监控测试系统工作状态。另外可根据具体的实验要求,控制充放电设备按照编程指令输出电流,模拟电池在某些特定条件下的使用情况。充放电设备实现电池组的充放电,完成电池和电网之间能量的双向流动,与监控PC 机通过CAN 通信,可接收监控PC机的编程控制指令。文中主要完成数据采集系统、上位机监控系统的设计并实现各部分之间的实时通讯。 图1 平台结构图 3 系统硬件设计 数据采集系统硬件结构,主要包括以下几个模块:微控制器、电源模块、电流及安时检测模块、瓦时检测模块、电压检测模块以及通信接口电路。 图2 硬件结构图 微控制器采用的是MC9S12DT128B 芯片,该芯片具有串行接口、CAN 控制器等丰富的外围资源,只需加入电平转换电路即可实现与上位机之间的232通信。本设计使用数字温度传感器DS18B20来实现温度检测,它支持1- w ire总线协议,可利用单片机的一个端口来读取多个检测点的数字化温度信息,扩展方便。 电压检测采用bq76PL536 芯片,它同时检测3到6节电池,测量的单只电池的电压范围为1~ 5V。 该芯片由所测电池直接供电,供电电压范围为5. 5~ 30V。为了保证芯片在所测电池少于3 节时仍能正常工作,电路中外接9V 的直流电源。在电池总电压小于9V 时,采用外部供电。该芯片具有电池过电压,欠电压保护功能,电压阈值及检测延迟时间这些保护参数可通过程序写入。当某节电池的实际情况超过设定的安全阈值范围时,芯片中电池故障寄存器相应字节置位,从而通知充电机动作,防止电池过充或过放。在芯片外围,有MOS管与电阻构

动力电池系统技术规范

密级:项目内部 动力电池系统技术规范项目代号: 文件编号: 编写:时间: 校核:时间: 批准:时间: 天津易鼎丰动力科技有限公司 1.文件范围 本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。 2.术语定义和及产品执行标准 .术语定义 电动汽车(electricvehicle,EV):指以车载能源为动力,由电动机驱动的汽车; 电芯(cell):一个单一的电化学电池最小的功能单元; 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元; 电池组(batterypack):由一个或多个模组连接组成的单一机械总成; 电池管理系统(batterymanagementsystem,BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则; 动力电池系统(batterysystem):动力电池系统是指由动力电池组、电池箱体、电池管理系

统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电; 整车控制器(vehiclecontrollerunit):检测控制电动汽车系统电路的控制器; 高电压(HighVoltage,HV):特指电动汽车200VDC以上高压系统; 低电压(LowVoltage,LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统; 荷电状态(state-of-charge,SOC):电池放电后剩余容量与全荷电容量的百分比; 寿命初始(BeginningOfLife,BOL):指动力电池系统刚交付使用的状态; 寿命终止(EndOfLife,EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值 功率低于初始峰值功率的85%时,视为寿命终止; 电磁兼容性(Electro-MagneticCompatibility,EMC):在同一电子环境中,两种或多种电子 设备能互不干扰进行正常工作的能力; 高低压互锁(HighVoltageInter-Lock,HVIL):特指低压断电时,通过低压信号控制能够 同时将高压回路切断; CAN(ControllerAreaNetwork):控制器局域网; DFMEA(FailureModeandEffectsAnalysis):设计故障模式及失效分析; MTBF(MeanTimeBetweenFailure):平均无故障时间; 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体 电压达到规定电压值,以恒定电压充电至电流小于(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah; 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高 单体电压达到规定电压值,以恒定电压充电至电流小于时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到; 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分 别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。 额定电压:额定能量除以额定容量,标定为额定电压; 峰值功率:本项目峰值功率标定为XXkW。 产品执行标准 表1.产品执行标准 备注:未经特殊说明,本规范中涉及到的术语定义、检测方法、判断标准等都以上述标准为准。

电池性能及测试

锂电池性能与测试 1. 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 2. 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 3. 电池的可靠性项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 4. 电池的安全性测试项目有哪些? 1. 内部短路测试 2. 持续充电测试 3. 过充电 4. 大电流充电 5. 强迫放电 6. 坠落测试 7. 从高处坠落测试 8. 穿透实验 9. 平面压碎实验 10. 切割实验 11. 低气压内搁置测试 12. 热虐实验 13. 浸水实验 14. 灼烧实验 15. 高压实验 16. 烘烤实验 17. 电子炉实验 5. 什么是电池的额定容量? 指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20+ 5。c环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示而对于锂离子电池,则规定在常温,恒流(1C)恒压(4.2V)控制的充电条件下,充电3 h再以0.2C放电至2.75V时,所放出的电量为其额定容量电池容量,电池容量的单位有Ah,mAh(1Ah=1000mAh). 6. 什么是电池的放电残余容量? 对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量 7. 什么是电池的标称电压;开路电压;中点电压;终止电压? 电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。 开路电压指在外电路断开时,电池两个极端间的电位差; 终点电压指电池放电实验中,规定的结束放电的截止电压; 中点电压指放到50%容量时,电池的电压主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标 8. 电池常见的充电方式有哪几种? 镍镉和镍氢电池的充电方式: 1. 恒流充电:整个充电过程个中充电电流为一定值,这种方法最常见。 2. 恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小。

电动汽车动力电池剩余电量在线测量

182 电动汽车动力电池剩余电量在线测量 程艳青 高明煜 徐 杰 徐洪峰 (杭州电子科技大学电子信息学院,浙江 杭州 310018) 摘要:为了精确可靠估算以蓄电池为动力的电动汽车所用电池的剩余电量,在讨论目前一些蓄电池剩余电量估算方法的基础上,以聚合物锂离子电池组为研究对象,将电池荷电状态作为系统的状态,建立了单变量的锂电池组的状态空间模型,采用了开路电压法和卡尔曼滤波递推算法相结合的方法。经试验这种方法能够获得蓄电池组精确和可靠的荷电状态预测值。 关键字:聚合物锂离子电池组;卡尔曼滤波;电动汽车;荷电状态 中图分类号:TM91 文献标识码:A The Estimation of the State of Charge of Storage Battery Based on the Kalman Filtering Theory for Electric Vehicle Cheng Yanqing Gao Mingyu Xu Jie Xu Hongfeng (School of Electronics Information, Hang Zhou Dianzi University, Hangzhou Zhejiang 310018, China) Abstract: To estimate residual capacity of traction battery in electric vehicle accurately and reliably, the paper chooses a lithium-ion polymer battery pack as a research object, takes the SOC (State of charge) as the state of the system, and builds the battery's state space model with single state, and then develops a method combining open circuit voltage method and Kalman filtering recursive algorithm method, based on some methods of residual capacity estimation of battery often used at present. The experiments proved that accurate and reliable battery SOC estimation of battery could be obtained by adopting the new method. Keywords: Lithium-Ion Polymer Battery ; Kalman Filter; Electric Vehicle; State-of-charge 蓄电池是各类电动汽车中最常用的储能元件, 其剩余电量的精确测量在电动汽车的发展中一直是一个非常关键的问题[1],因为只有对电池剩余电量进行精确测量才能使驾驶员及时掌握正确的信息,预测自己的后续行驶里程,并及时进行充电。蓄电池荷电状态SOC(State of charge)描述蓄电池的剩余电量,其大小直接反映了电池所处的状态,是电池使用过程中最重要的参数之一。 1 SOC 定义 蓄电池的荷电状态SOC 被用来反映电池的剩余容量情况,这是目前国内外比较统一的认识,其数值上定义为为蓄电池所剩电量占电池总容量的比值: m n m Q ]/ )I ( Q - Q [ = SOC (1) 国家自然科学基金项目,60871088 dt I t = ) I ( Q n n ∫ (2) 式中: Q m 为蓄电池最大放电容量,指的是在室温条件下,电池从完全充电后开始工作一直到电池完全放电为止,其所能放出的最大安时数值,表示为标准放电电流和放电时间的乘积;Q ( I n ) 为标准放电电流 I n 下 t 时间蓄电池释放的电量。 公式1还可以表示为: m n Q )/I ( Q - 1 = SOC (3) 式中:SOC=1表示电池为充满电状态,SOC=0则表示电池已处于全放电状态。 由于电池所放出的电量受自放电率、充放电倍率、电池温度、电池充放电循环次数等影响,表示电池容量状态的SOC也必然与这些因素有关。在放电电流变化的情况下,上述定义就会出现不适应性,得到矛盾的结果,因此实际使用中要对SOC 的定义进行调整,不同电动汽车对SOC 定义的使用形式不一致,最常用的定义为:

电动汽车BMS(电池管理系统)EMC测试标准(试行版)

北京汽车新能源汽车有限公司企业标准 电动汽车BMS(电池管理系统)EMC 测试标准(试行版) 2012-06-21发布2012-06-XX实施北京汽车新能源汽车有限公司发布

前言 (1) 1. 范围 (2) 2. 参考标准 (2) 3. 简写、缩写、定义及符号 (2) 4. 通用要求 (4) 4.1基本要求 (4) 4.2功能划分 (4) 4.3测试严酷等级分类 (4) 4.4 发射测试仪器参数设置 (5) 4.5 EMC测试计划 (5) 4.5.1 样品数量 (5) 4.5.2 运行条件 (5) 4.5.3 测试顺序 (5) 4.6 具体测试内容 (6) 5. 传导发射测试:CE 01 (6) 5.1传导发射限值要求 (6) 5.2测试系统 (7) 5.2.1电压测量方法 (7) 5.2.2电流探头测量方法 (8) 5.3数据报告 (8) 6. 辐射发射测试:RE 01 (9) 6.1测试方法选择 (9) 6.2辐射发射限值要求 (9) 6.3数据报告 (9) 7. 辐射抗扰度测试-大电流注入(BCI)法:RI 01 (9) 7.1干扰信号等级 (9) 7.2测试系统 (10) 7.3大电流注入功能等级要求 (11) 7.4数据报告 (12) 8.辐射抗扰度测试-暗室法:RI 02 (12) 8.1测试过程 (12) 8.2暗室法测试等级要求 (12)

9. 电源线瞬态传导抗扰度测试:CI 01 (13) 9.1一般规定 (13) 9.2电源线瞬态传导抗扰性试验布置 (13) 9.3试验脉冲 (14) 9.3.1试验脉冲P1 (14) 9.3.2试验脉冲P2a (14) 9.3.3试验脉冲P2b (15) 9.3.4试验脉冲P3 (16) 9.3.5试验脉冲P4 (17) 9.4电源线瞬态传导抗扰度功能等级要求 (18) 9.5数据报告 (19) 10. 信号线瞬态传导抗扰度测试:CI 02 (19) 10.1一般规定 (19) 10.2测试布置 (21) 10.3信号线瞬态传导抗扰度功能等级要求 (21) 10.4数据报告 (22) 11. 静电放电抗扰度测试:CI 03 (22) 11.1一般规定 (22) 11.2静电放电方式 (22) 11.2.1直接接触放电 (22) 11.2.2空气放电 (22) 11.3为包装、搬运而规定的静电放电敏感度分类试验(不通电进行) (23) 11.3.1试验布置 (23) 11.3.2试验方法 (23) 11.3.3试验等级 (24) 11.3.4性能评价 (24) 11.4静电放电台架试验(通电进行) (24) 11.4.1试验布置 (24) 11.4.2试验方法 (25) 11.4.3试验等级 (26)

动力电池系统DV测试浅析

动力电池系统DV测试浅析 DV(Design Verification)设计验证,目的是验证产品设计是否符合规定要求而进行的测试活动。另一个经常提到的概念,PV(Production Validation)生产确认,目的是确认制造状态是否符合规定要求。DV和PV通常是一组平行的测试计划,且DV测试内容包括了大部分的PV测试。总得来讲,一份好的DV或PV 测试活动,需要以法规要求为基准、以功能需求为驱动、以真实使用场景为背景并配合适当的测试技巧来进行。本文主要围绕DV进行简要阐述。 一.动力电池系统DV测试概述 1.1 对于开发流程与样品状态的对应关系 注1:手工样件与工装件的主要区别在于结构件是否通过工装模具加工得到(开模件);半工装件与工装件在于动力电池系统是否由正式的生产线组装。 注2:因为国内各公司对零部件的开发流程定义不同,这里提供的仅是笔者遇到的某个案例。 1.2 对于测试活动与对应的开发流程对应 A sample:对于零部件供应商来说,需要进行功能测试,比如BMS的采样精度,控制策略,SOC算法等等的验证。也有供应商会利用A样的产品进行DV的摸底试验。另外,整车厂还会使用交付的A样件动力电池系统进行基本的实车装配以及通讯联调,简单启动等测试。 B sample:对于零部件供应商来说,需要进行DV测试、设计整改等等。另外,整车厂还会使用交付的B 样件动力电池系统进行实车标定、匹配、路测等。 C sample:在经过B阶段的设计整改后,电池包的基本结构、工装夹具均已定型。此时,随着生产线的建立,C样件动力电池系统出现并适用于PV测试。 1.3 责成划分 A sample:一般由公司(SW)TE主导进行,工作内容偏研发方向,如精度验证、控制策略及算法调试等,需要熟悉动力电池系统及软硬件设计的人员充分介入。 B sample:主要由公司TE主导进行,工作内容大多为型式试验。技能需求上不仅需要对BMS软硬件设计上有一定的理解,还得扩展到其它如电芯特性、材料力学等。 C sample: 一般则由公司的QE主导进行,测试项目一般是DV内容的子集。 1.4 测试依据

锂离子电池最新各种性能测试

锂离子电池最新各种性能测试 1 20℃放电性能测试 首先要进行预循环处理,在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V(GB/T18287-2000规定)后,搁置0.5h~1h,再以0.2CA电流放电到终止电压2. 75V(GB/T18287-2000规定)。在20℃放电性能之前进行预循环处理,能有效激活电池的内部组织结构,给以下各项试验做准备。 在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V后,改为恒压充电,直到充电电流小于或等于0.01CA,最长充电时间不大于8h,停止充电,这时,我们可以清晰的看到电脑仪器上显示出的充电示意图形。在充电过程中,一定要注意时间和充电电流的问题,充电电流达到或等于0.01CA即可,时间不易太长,一般都不超过8h。时间过长会造成过度充电,将会对锂离子电池中过多的锂离子硬塞进负极碳结构里去,这样其中一些锂离子再也无法释放出来,严重的会造成电池的损坏,会影响后面的试验数据结果。电池充电结束后,搁置0.5~1h在20±5℃的温度条件下,以0.2CA电流放电到终止电压2.75V,时间应不低于5小时。 上述充放电重复循环5次,当有一次循环符合GB/T18287-2000中4.2.1的规定放电到终止电压2.75V,时间应不低于5小时。该试验即可停止,有些电池在第一个循环放电时间和终止电压没有达到标准要求,这不意味着电池不合格,是因为电池中的一些聚合物质没被充分地激活,待到第二个循环后被激活,可能就会达到标准要求。 2 锂离子电池的高温性能试验(温度55±2℃) 高温性能试验是测试电池在高温的环境条件下的工作状态,由于在高温的条件下锂离子电池中的物质会发生很大变化,主要测试它的放电时间和安全性。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池放入55±2℃的高温箱中恒温2h,然后以1CA电流放电至终止电压,放电时间应符合标准4.3条规定,时间不小于51分钟,电池外观应无变形和爆炸现象,如有爆炸现象立即切断电源,把测试线从测试仪表上取下。此试验要严格控制好箱体温度,注意温度不易太高。 3 恒定湿热性能试验(温度40℃,相对湿度90%~95%,时间48h) 恒定湿热性能试验是测试电池在温度相对偏高,湿度较大的野外环境下的工作状态,电池按GB /T18287-2000中5.3.2.2条规定充电结束后,将电池放入40±2℃,相对湿度90%~95%的恒温恒湿箱中搁置48h后,将电池取出在环境温度20±5℃的条件下搁置2h,目测电池外观,应符合标准4.7.1的规定,再以1CA电流放电至终止电压,放电时间应符合标准4.7.1的规定不低于36mi n,电池外观应无明显变形、锈蚀、冒烟或爆炸。 4 振动试验 振动试验是测试电池在不平稳的有振幅的特殊条件下的工作状态。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池直接安装或通过夹具安装在振动台的台面上,按下面的振动频

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电池性能测试仪标准

名 称 电池性能测试仪内校标准 编号 **** 页次 1/1 一、适用范围:本公司所使用之电池性能测试仪。 二、管理权责:品保部 三、作业程序 3-1依《量检具仪器校验一览表》上所使用的外校合格,且在有效期内的三用表,并找出《量 检具仪器设备校验履历表》及要求使用单位提出受检之设备。 3-2备妥清洁用布,内校记录表。 3-3充放电电压校验。 3-3-1按正确操作方法开启电池测试系统,使其处正常工作状态。 3-3-2将三用表功能开关调至电压档,并选择合括之量程,用红、黑两测试棒分别接触 于被测电池的两极,即可读出此时电压的实际值。 3-3-3将三用表所测出的电压实际值与电池性能测试仪所示电压值相比较,若二者于允 许误差范围内,视为合格,反之,则视为不合格。 3-4充放电电流校验 3-4-1将三用表功能开关调至电流档,并选择合适之量程,把三用表串联于被测电池与 测试仪之间,即可读出此时电流的实际值。 3-4-2将三用表所测出的电流实际值与测试仪所示的电流值相比较,若二者于允许误差 范围内,视为合格,反之,则视为不合格。 3-5测试仪须无灰尘,无明显锈斑,显示无缺笔。 3-6依检验结果进行判定后鉴章呈部门主管核准。 3-7部门主管核准时,对于判定不合格者,须做出“报废”、“暂停使用”等之决定并鉴章。 3-8依3-6、3-7之判定后予以标示,标示方法依《检测设备校准作业办法》实施。 3-9校正温度原则为20±3℃之环境,其它相关规定依《检测设备校准作业办法》。 3-10依3-8做出标示后,记录于《量检具仪器设备履历表》中。 3-11校验合格后,测试仪校验周期为四个月。 四、附表:仪器设备内校记录表

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

电池管理系统bms的测试

电池管理系统b m s的测 试 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

如何仿真电池特性进行电池管理系统(BMS)的测试?——之一 不间断电源(UPS)、混合动力电动汽车(HEV)、绿色能源系统(太阳能、风能等)以及各种大功率电池供电系统,都离不开可再生的电能储蓄和释放单元,也就是我们通常说的可充电电池。以锂电池为例,电池必须配合相应的充放电管理系统(BMS)才能保证正常的工作特性和安全,如何仿真电池的特性以进行BMS性能的评估,往往变得非常的困难和复杂。特别是这些系统的功率往往在上百瓦甚至上千瓦,在进行研发和生产过程中的测试时,就需要有更大功率的电源和负载,为BMS提供功率输入,并且吸收它们释放出来的能量。对于测试工程师来说,这是一项极其艰巨的挑战。 最常用的方法,是使用单独的电源供电,再使用负载吸收被测件释放的能量。但是这种方法存在很大的缺陷。主要问题是,这种方法无法实现电源和负载功能的连续转换,与系统实际工作条件大相径庭;而且,必须在系统中使用大功率的开关、继电器等,系统非常复杂,可靠性和可重复性往往无法达到要求。因此,只有将电源输出和功率吸收的功能完全集成到单一仪器或系统中,而且可以实现源与负载功能的无缝转换,才能克服这些缺陷。 接下来我给大家分析和比较三种电池管理系统BMS测试电池仿真的方案! 方案一、使用直流电源和电子负的方法,电源或负载单独工作 工程师往往使用单独的直流电源提供所需的功率,配合电子负载吸收被测件的输出功率,用于其双向再生能源系统和器件的测试。单独而言,直流电源可连续地输出功率,而电子负载可以连续地吸收,并且都有出色的直流精度、稳定性和快速的动态响应,无论被测件是什么。在测试过程中,这种性能是必

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力蓄电池包和系统测 试规程 电动汽车用锂离子动力电池包和系统测试规程 1范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008电工电子产品环境试验第2部分:试验方法试验Db交变湿热(12h+ 12h循环)(IEC 60068-2- 30:2005,IDT )

GB/T 2423.43-2008电工电子产品环境试验第2 部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006电工电子产品环境试验第2 部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001电动汽车安全要求第1部分: 车载储能装置(ISO/DIS 6469-1:2000,EQV ) GB/T 18384.3-2001电动汽车安全要求第3部分: 人员触电防护(ISO/DIS 6469-3:2000,EQV ) GB/T 19596-2004 电动汽车术语 (ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 1: Gen eral,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 3: Mecha ni cal loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条

电池性能测试

性能测试 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 手机电池块有哪些电性能指标怎么测量? 电池块的主要电性能指标: (1)容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAh是意味着电池以1600mA放电可以持续放电一小时。 (2)寿命 该指标反映电池块反复充放电循环次数。 (3)内阻 电池块的内阻越小越好,但不能是零。 (4)充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 (5)放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB 板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 (6)短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并做出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 电池的可靠性测试项目有哪些? (1)循环寿命 (2)不同倍率放电特性

(3)不同温度放电特性 (4)充电特性 (5)自放电特性 (6)不同温度自放电特性(7)存贮特性 (8)过放电特性 (9)不同温度内阻特性(10)高温测试 (11)温度循环测试 (12)跌落测试 (13)振动测试 (14)容量分布测试 (15)内阻分布测试 (16)静态放电测试ESD 电池的安全性测试项目有哪些? (1)内部短路测试 (2)持续充电测试 (3)过充电 (4)大电流充电 (5)强迫放电 (6)坠落测试 (7)从高处坠落测试 (8)穿透实验 (9)平面压碎实验 (10)切割实验 (11)低气压内搁置测试(12)热虐实验 (13)浸水实验 (14)灼烧实验

动力电池系统测试平台

动力电池系统测试平台 动力电池系统测试平台主要包括动力电池充放电性能测试设备、频域-阻抗特性测试设备、环境模拟设备以及连接装置等。 2.1.1 充放电性能测试设备 充放电性能测试设备通过加载特定的测试程序或车用工况,可以获得动力电池的电压、功率、容量、能量、内阻/阻抗、温度以及这些量的衍生和计算表达,从而考察所测试动力电池是否满足电动汽车对动力电池系统的要求。从1987年美国Arbin公司推出第一台计算机控制的动力电池测试系统以来,动力电池充放电设备从手动分选测试到自动化、数字化测试,各方面都有了飞速发展。该领域的国外知名公司除美国Arbin外,还有美国MACCOR 公司、日本日置株式会社、德国迪卡龙公司等企业。我国主要的生产企业有武汉蓝电电子有限公司、深圳新威尔电子有限公司、宁波拜特以及哈尔滨子木科技有限公司等。根据市场反应,进口设备因为发展较早,设备进行了持续更新和改进,测试精度、测试系统稳定性和售后较国产设

备优势明显,而且测试范围和功能较为广泛,但设备价格昂贵。 本书数据全部来源于北京理工大学AESA测试平台,主要使用了Arbin-BT2000动力电池单体和系统测试设备,包括三台单体测试设备和两台系统测试设备。 Arbin-BT2000实物图及工作界面如图2-1和图2-2所示,设备参数和特征见表2-1和表2-2。 另一方面,合适的电池夹具也是保证动力电池性能测试顺利进行的重要因素。考虑到部分动力电池在充放电过程中会积累过多的副反应产物(尤其是气体),这会引起动力电池的膨胀和鼓包等现象,进而影响到动力电池的电性能和安全。所以在进行测试前,需要给动力电池安装特定的夹具。图2-3所示为某方形动力电池的夹具。此外,由于圆柱形动力电池难以直接与充放电设备连接,也需用特制夹具对其进行固定。图2-4所示为某圆柱形动力电池的夹具。

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

相关文档
最新文档