《数字信号处理》第三版课后习题答案

《数字信号处理》第三版课后习题答案
《数字信号处理》第三版课后习题答案

数字信号处理课后答案

1.2 教材第一章习题解答

1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。 解:

()(4)2(2)(1)2()(1)2(2)4(3)

0.5(4)2(6)

x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-

2. 给定信号:25,41()6,040,n n x n n +-≤≤-??

=≤≤???

其它

(1)画出()x n 序列的波形,标上各序列的值;

(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。 解:

(1)x(n)的波形如题2解图(一)所示。 (2)

()3(4)(3)(2)3(1)6()

6(1)6(2)6(3)6(4)

x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-

(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。 (1)3()cos()7

8x n A n π

π=-,A 是常数;

(2)1

()8

()j n x n e π-=。

解:

(1)3214

,

73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w w

π

π==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。 (1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()n

m y n x m ==∑。

解:

(1)令:输入为0()x n n -,输出为

'000'

0000()()2(1)3(2)

()()2(1)3(2)()

y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=

故该系统是时不变系统。

12121212()[()()]

()()2((1)(1))3((2)(2))

y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+-

1111[()]()2(1)3(2)T ax n ax n ax n ax n =+-+- 2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+-

1212[()()][()][()]T ax n bx n aT x n bT x n +=+

故该系统是线性系统。

(3)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。

令输入为1()x n n -,输出为'10()()y n x n n n =--,因为

'110()()()y n n x n n n y n -=--=

故延时器是一个时不变系统。又因为

12102012[()()]()()[()][()]T ax n bx n ax n n bx n n aT x n bT x n +=-+-=+

故延时器是线性系统。

(5) 2()()y n x n = 令:输入为0()x n n -,输出为'20()()y n x n n =-,因为

2'00()()()y n n x n n y n -=-=

故系统是时不变系统。又因为

212121222

12[()()](()()) [()][()] ()()

T ax n bx n ax n bx n aT x n bT x n ax n bx n +=+≠+=+

因此系统是非线性系统。

(7) 0()()n

m y n x m ==∑

令:输入为0()x n n -,输出为'

00

()()n

m y n x m n ==-∑,因为

0'

00

()()()n n m y n n x m y n -=-=

≠∑

故该系统是时变系统。又因为

1212120

[()()](()())[()][()]n

m T ax n bx n ax m bx m aT x n bT x n =+=+=+∑

故系统是线性系统。

6. 给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。

(1)1

1

()()N k y n x n k N

-==

-∑;

(3)0

()()n n k n n y n x k +=-=

(5)()()x n y n e =。 解:

(1)只要1N ≥,该系统就是因果系统,因为输出只与n 时刻的和n 时刻以前的输入有关。如果()x n M ≤,则()y n M ≤,因此系统是稳定系统。

(3)如果()x n M ≤,0

0()()21n n k n n y n x k n M +=-≤

≤+∑

,因此系统是稳定的。

系统是非因果的,因为输出还和x(n)的将来值有关.

(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果()x n M ≤,则()()()x n x n M y n e e e =≤≤,因此系统是稳定的。 7. 设线性时不变系统的单位脉冲响应()h n 和输入序列()x n 如题7图所示,要求画出输出输出()y n 的波形。 解:

解法(1):采用图解法

()()()()()m y n x n h n x m h n m ∞

==*=-∑

图解法的过程如题7解图所示。

解法(2):采用解析法。按照题7图写出x(n)和h(n)的表达式:

()(2)(1)2(3)

1

()2()(1)(2)

2

x n n n n h n n n n δδδδδδ=-++-+-=+-+- 因为

()*()()

()*()()

x n n x n x n A n k Ax n k δδ=-=-

所以 1

()()*[2()(1)(2)]

2

1

2()(1)(2)

2

y n x n n n n x n x n x n δδδ=+-+-=+-+-

将x(n)的表达式代入上式,得到

()2(2)(1)0.5()2(1)(2)

4.5(3)2(4)(5)

y n n n n n n n n n δδδδδδδδ=-+-+-+-+-+-+-+-

8. 设线性时不变系统的单位取样响应()h n 和输入()x n 分别有以下三种情况,分别求出输出()y n 。 (1)45()(),()()h n R n x n R n ==; (2)4()2(),()()(2)h n R n x n n n δδ==--; (3)5()0.5(),()n n h n u n x R n ==。 解:

(1) 4

5

()()*()()()m y n x n h n R m R n m ∞

=-∞

==

-∑

先确定求和域,由4()R m 和5()R n m -确定对于m 的非零区间如下:

03,4m n m n ≤≤-≤≤

根据非零区间,将n 分成四种情况求解: ①0,()0n y n <=

②0

03,()11n

m n y n n =≤≤==+∑

③3

4

47,()18m n n y n n =-≤≤==-∑

④7,()0n y n <= 最后结果为

0, 0,7()1, 038, 47n n y n n n n n <>??

=+≤≤??-≤≤?

y(n)的波形如题8解图(一)所示。 (2)

444()2()*[()(2)]2()2(2) 2[()(1)(4)(5)]

y n R n n n R n R n n n n n δδδδδδ=--=--=+-----

y(n)的波形如题8解图(二)所示. (3)

55()()*() ()0.5

()0.5

()0.5()

n m

n

m m m y n x n h n R m u n m R m u n m ∞

--=-∞=-∞

==

-=-∑

y(n)对于m 的非零区间为04,m m n ≤≤≤。 ①0,()0n y n <= ②111

10.504,()0.50.5

0.5(10.5)0.520.510.5

n n

n

m

n n n n m n y n ------=-≤≤===--=--∑ ③5410

10.55,()0.5

0.5

0.5310.510.5

n m

n n m n y n ---=-≤===?-∑ 最后写成统一表达式:

5()(20.5)()310.5(5)n n y n R n u n =-+?-

11. 设系统由下面差分方程描述:

11

()(1)()(1)22

y n y n x n x n =

-++-; 设系统是因果的,利用递推法求系统的单位取样响应。 解:

令:()()x n n δ=

11

()(1)()(1)22

h n h n n n δδ=

-++- 2

11

0,(0)(1)(0)(1)12211

1,(1)(0)(1)(0)1

2211

2,(2)(1)2211

3,(3)(2)()22n h h n h h n h h n h h δδδδ==

-++-===++====

=== 归纳起来,结果为

11

()()(1)()2

n h n u n n δ-=-+

12. 有一连续信号()cos(2),a x t ft π?=+式中,20,2

f Hz π

?==

(1)求出()a x t 的周期。

(2)用采样间隔0.02T s =对()a x t 进行采样,试写出采样信号()a x t 的表达式。

(3)画出对应()a x t 的时域离散信号(序列) ()x n 的波形,并求出()x n 的周期。

————第二章———— 教材第二章习题解答

1. 设()jw X e 和()jw Y e 分别是()x n 和()y n 的傅里叶变换,试求下面序列

的傅里叶变换: (1)0()x n n -; (2)()x n -; (3)()()x n y n ; (4)(2)x n 。 解:

(1)00

[()]()jwn

n FT x n n x n n e

-=-∞

-=

-∑

令''00,n n n n n n =-=+,则

'

00()'0[()]()()jw n n jwn jw n FT x n n x n e e X e ∞

-+-=-∞

-=

=∑

(2)*

*

**[()]()[()]()jwn

jwn jw n n FT x n x n e

x n e X e -∞

-=-∞=-∞

=

==∑∑

(3)[()]()jwn

n FT x n x n e

-=-∞

-=-∑

令'n n =-,则

'

''

[()]()()jwn jw n FT x n x n e

X e ∞

-=-∞

-=

=∑

(4) [()*()]()()jw jw FT x n y n X e Y e = 证明: ()*()()()m x n y n x m y n m ∞

=-∞

=

-∑

[()*()][()()]jwn

n m FT x n y n x m y n m e

-=-∞=-∞

=

-∑∑

令k=n-m ,则

相关主题
相关文档
最新文档