ANSYS与ABAQUS稳定性分析报告比较

ANSYS与ABAQUS稳定性分析报告比较

实用标准文案

ANSYS与ABAQUS稳定性分析比较(转载-来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性

分析的一部分,觉得还是整理一下吧,也算是对后来者又抛了一块砖。

算例描述:

为了能体现出一般性,我故意找了一个比较大的结构。这是一个单层网壳结构,

最大尺寸在90m左右,杆件长度在 1.13m-3.63m之间,截面形式为箱型截面;

构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软

件单元特征,没有关系)。

在ANSYS软件中分别采用BEAM44、BEAM188和BEAM189进行计算。分析结果见下文。

ANSYS BEAM44分析结果

E1E2E3E4E5 N1 6.10 6.367.117.438.03

N2 6.08 6.347.087.407.99

N3 6.08 6.347.087.407.98

N4 6.08 6.347.087.397.98

备注:表格中N1、N2分别代表每根构件采用1、2个单元;E1、E2代表第1、2阶屈曲荷载因子;

ANSYS BEAM188分析结果

E1E2E3E4E5 N1 6.817.098.158.619.35

N2 6.25 6.527.347.698.34

N3 6.15 6.427.197.538.14

N4 6.12 6.387.147.478.07

N5 6.10 6.367.127.448.04

N6 6.09 6.357.107.438.02

N7 6.09 6.357.107.428.01

N8 6.08 6.347.097.418.00

N9 6.08 6.347.097.417.99 N10 6.08 6.347.097.407.99

ANSYS BEAM189分析结果

E1E2E3E4E5 N1 6.10 6.367.127.448.05

N2 6.07 6.337.087.407.98

N3 6.07 6.337.087.397.98

N4 6.07 6.337.087.397.97

精彩文档

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

abaqus热分析

Abaqus: ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。ABAQUS 包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料,作为通用的模拟工具。 模块: ABAQUS/?ba:kjus/有两个主求解器模块— ABAQUS/Standard 和ABAQUS/Explicit。ABAQUS 还包含一个全面支持求解器的图形用户界面,即人机交互前后处理模块—ABAQUS/CAE。 ABAQUS 对某些特殊问题还提供了专用模块来加以解决。ABAQUS 被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。ABAQUS 不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究。ABAQUS 的系统级分析的特点相对于其他的分析软件来说是独一无二的。由于ABAQUS 优秀的分析能力和模拟复杂系统的可靠性使得ABAQUS 被各国的工业和研究中所广泛的采用。ABAQUS 产品在大量的高科技产品研究中都发挥着巨大的作用。 功能:

静态应力/位移分析:包括线性,材料和几何非线性,以及结构断裂分析等 动态分析粘弹性/粘塑性响应分析:粘塑性材料结构的响应分析热传导分析:传导,辐射和对流的瞬态或稳态分析 质量扩散分析:静水压力造成的质量扩散和渗流分析等 耦合分析:热/力耦合,热/电耦合,压/电耦合,流/力耦合,声/力耦合等 非线性动态应力/位移分析:可以模拟各种随时间变化的大位移、接触分析等 瞬态温度/位移耦合分析:解决力学和热响应及其耦合问题 准静态分析:应用显式积分方法求解静态和冲压等准静态问题 退火成型过程分析:可以对材料退火热处理过程进行模拟 海洋工程结构分析: 对海洋工程的特殊载荷如流载荷、浮力、惯性力等进行模拟 对海洋工程的特殊结构如锚链、管道、电缆等进行模拟 对海洋工程的特殊的连接,如土壤/管柱连接、锚链/海床摩擦、管道/管道相对滑动等进行模拟 水下冲击分析: 对冲击载荷作用下的水下结构进行分析 柔体多体动力学分析:对机构的运动情况进行分析,并和有限元功能结合进行结构和机械的耦合分析,并可以考虑机构运动中的接触和摩擦

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

基于ABAQUS的热应力分析

1.1基于ABAQUS的热应力分析 1.1.1 温度场数据处理 (1)打开INP_Generator.exe,出现如下软件界面: 图1.数据处理软件 (2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图 所示: 图2.路径选择 (3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的 ABAQUS输入文件ABAQUSinputfile.inp。 图3.生成包含连续温度场INP文件

1.1.2 复材工装模板热应力分析 (1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”, 如下图所示。检查是否有名为“PID6”的set,若没有则创建一个名为 “PID*”的set,set为模板整体。(“*”为任意数字或字母) 图4.创建SET (2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。 在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺 层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用 ABAQUS/CAE自身功能完成剩余分析工作。 (a)

(b) (c) 图5.定义材料及铺层 (3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。选择“Tools” 菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。 图6.定义模板局部坐标系 (4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

ABAQUS实例分析论文

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (5) 二、具体步骤 (5) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (22)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生

多体分析实例

第八章多体分析实例 多体分析:由多个刚体或柔体组成,各实体之间具有一定的约束关系和相对运动关系。Abaqus 的多体分析可以模拟系统的运动状况和系统各部分之间的相互作用,得到所关系部位的位移、速度、加速度、力和力矩等。如果是柔体,还可以得到柔体的应力、应变等分析结果。 8.1多体分析的主要方法 Abaqus模拟多体分析的 基本思路: abaqus使用两节点连接单元在系统各部分之间建立连接,并通过定义连接属性来描述各部分之间的相对运动约束关系。 基本步骤: 1.在PART 、ASSEMBLY或INTERACTION功能模块中,定义连接单元和约束所要用到的参 考点和基准坐标系 2.在INTERACTION模块中,设置连接单元、连接属性和约束 3.在STEP模块中,设置单元的历史变量输出;如果模型中出现较大的位移或转动,应将 几何非线性参数NLGEOM设置为ON 4.在LOAD模块中,定义边界条件和载荷,以及连接单元的边界条件和载荷 5.在VISUALIZATION模块中,查看连接单元的历史变量输出、控制连接单元的显示方式。8.1.1连接单元 用来模拟模型中的两个点或一个点和地面之间的运动和力学关系,所涉及到的点称为连接点。 8.1.2连接属性 分类:基本连接属性和组合连接属性 基本连接属性:平移连接属性和旋转连接属性 两个节点上的局部坐标系有如下三种情况: REQUIRED;IGNORED;OPTIONAN 两个连接点之间的相对运动分量:平移运动分量和旋转运动分量;又可以分为受约束的相对

运动分量和可用的相对运动分量。 几种常用的连接属性: JOIN;LINK;SLOT;REVOLVE;HINGE 8.1.3输出单元的分析结果 连接单元的作用:在两个连接点之间施加运动约束,度量两个连接点之间的相对运动、力和力矩 分析结果:运动分析结果和力与力矩的分析结果 8.2实例1:圆盘的旋转过程模拟

abaqus6.12 典型实例解析

(北京) CHINA UNIVERSITY OF PETROLEUM 《工程分析软件应用基础》保险杠撞击刚性墙的实例分析 院系名称:机械与储运工程学院 专业名称:机械工程 学生姓名: 学号: 指导教师: 完成日期2014年5月1日

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

abaqus热分析

ABAQUS 热分析常用概念介绍 热传递通过热传导、对流和热辐射三种方式实现。 热传导是热量重系统的一部分传到另一部分或由一个系统传到另一系统的现象。模型中有两种方式实现,共点网格和接触对。热阻系数=空气热传导率/空气间隙。 对流是液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程,对流是液体和气体中热传递的特有方式,气体的对流现象比液体明显,对流分为自然对流和强迫对流。 辐射是物体因自身的温度而具有向外发射能量的本领。

热传导分析中的基本物理量 ·温度Temperature 单位℃ ·热能Heat energy 单位J ·热率Heat rate power 单位J/t or W ·热流量Heat Flux = Powerper unit area单位J/t/L2 材料参数介绍

1. CONDUCTIVITY 热传导率用于度量热量在材料中流动的难易程度: 单位:W/m/℃ 在热传递分析中,传导率为必需的材料属性。 2. SPECIFIC HEAT 比热用于度量热能在材料中存储的难易程度: 单位:J/Kg/℃ 3. Emissivity辐射率是衡量一个表面有多接近理想黑体的指标 (0~1)。 边界条件与载荷介绍 边界条件与载荷,在热传导分析中,每个自由度的共轭变量为温度-热率(单位时间的能量流)。 1. 预设的温度*BOUNDARY,包括两种,恒定温度和变化的温度,温度的共轭反作用是热率(热能进入一个已经预设温度值的节点的流通率)。

2. 预设热流量(热率),*CFLUX,节点的集中热流量;*DFLUX,施加在面或体上的分布热流量,*DSFLUX施加在面上的分布热流量。 3. 预设边界层条件最常见的一种边界条件为一个自由表明被紧临的流体加热或降温,关键字*CFILM,施加在节点上;*FILM二维中施加在单元边上,三维中施加在单元面上;*SFILM二维中施加在单元边上;边界层系数h是ABAQUS的一个输入参数,量纲:J/L2*T*θ。 4. 辐射条件*CRADIATE,施加在节点上;*RADIATE,施加在单元上;*SRADIATE,施加在面上,定义辐射边界条件,需要定义 Stefan-Boltzmann常数和绝对零度。 5. 自然边界条件(默认)

ABAQUS线性静力学分析实例

线性静力学分析实例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 一 悬臂梁的线性静力学分析 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises 应力、位移分布。 材料性质:弹性模量32e E =,泊松比3.0=ν 均布载荷:Mpa p 6.0= 图1-1 悬臂梁受均布载荷图

启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上修 改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。 图1 计算对象 第一部分:反应谱法 几点说明: 本例建模过程使用CAE; 添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为:

(1)打开ABAQUS/CAE,点击create model database。 (2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3) Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density: 7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.

石亦平ABAQUS有限元分析实例详解之读后小结 (Part 3)

第五章接触分析实例 [46] (pp126) 非线性问题分为三种类型: (1)材料非线性,即材料的应力应变关系为非线性,如弹塑性问题。 (2)几何非线性,即位移的大小对结构的响应发生影响,包括大位移、大转动、初始应力、几何港性化和突然翻转(snap through)等问题。 (3)边界条件非线性,即边界条件在分析过程中发生变化,如接触问题。 [47] (pp128) 解析刚体截面的图形中只能包含线段、小于180o的弧和抛物线。 [48] (pp129) 对于解析性刚体部件,不需要为其划分网格和设置单元类型,也不需在Property功能 模块中为其指定材料和截面属性。 [49] (pp129) 在接触分析中,如果在第一个分析步就把全部载荷施加到模型上,有可能分析无法收敛。 建议先定义一个只有很小载荷的分析步,让接触关系平稳地建立起来,然后在下一个分析步中再施加真实的载荷。 [50] (pp132) 在后处理中,CPRESS和COPEN都显示在从面上。 [51] (pp133) 如果法线方向错误,接触分析就无法得到正确的结果。因此当接触分析出现收敛问题时, 可以查看接触面的法线方向是否正确。 [52] (pp136) 在ABAQUS/Standard中可以通过定义接触面或接触单元来模拟接触问题。接触面分为 三类:(a)由单元构成的柔体接触面或刚体接触面;(b)由节点构成的接触面;(c)解析刚体接触面。 在ABAQUS/Explicit提供两种算法来模拟接触问题。(a)通用接触算法;(b)接触对算法。提示:目前的6.8版本中,ABAQUS/Standard也具有通用接触算法。 [53] (pp136)在ABAQUS/Standard模拟接触过程中,接触方向总是主面的法线方向,从面上的节点不 会穿越主面,但主面上的节点可以穿越从面。定义主面和从面的一般规则为: (1)选取刚度大的面作为主面。这里的“刚度”指材料特性和结构刚度。解析面或由刚性单元构成的面必须作为主面,从面则必须是柔体上的面(可以是施加了刚性约束的柔体)。 (2)若两接触面刚度相似,则选取粗糙网格的面作为主面。 (3)如果能使两接触面的网格节点位置一一对应,则能使结果更精确。 (4)主面必须是连续的,由节点构成的面不能作为主面。如果是有限滑移,主面在发生接触的部位必须是光滑的,即不能有尖角。 (5)若主面在发生接触的部位存在尖锐的凹角或凸角,应该在此尖角处把主面分为两部分来分别定义,即定义为两个面。对于有单元构成的主面,ABAQUS会自动进行平滑处理。 (6)若是有限滑移,则在整个分析过程中,都尽量不要让从面节点落到主面之外(尤其不要落在主面的背面),否则容易出现收敛问题。 (7)一对接触面的法线方向应该相反。一般来说,对于三维柔性实体,ABAQUS会自动选择正确的法线方向,而在使用梁单元、壳单元、膜单元、绗架单元或刚体单元来定义接触面时,用户往往需要自己制订法线方向,就容易出现错误。 [54] (pp138) 小滑移也可用于几何非线性问题,并考虑主面的大转动和大变形,更新接触力的传递路 径。小滑移有两种算法:点对面和面对面。后者的应力计算结果精度较高,并且可以考虑板壳

abaqus热分析

ABAQUS作为最常用的求解器,具有强大的仿真功能和热分析求解能力。ABAQUS 不仅可以用于热传导分析,还可以用于温度场和其他领域的耦合分析 1.传热 2.耦合温度位移 3.耦合热电分析 4.耦合热电结构分析 ①导热分析 对于热分析,准确定义材料和元素尤为重要。ABAQUS为此分析提供了一个单位(dc3d8)。在材料定义方面,ABAQUS提供电导率,比热,密度等。此外,对于某些特殊效果,可以使用以下材料属性:内部发热(仅ABAQUS /标准)和用户定义的本构响应(ABAQUS)/标准)。此外,ABAQUS提供了电导率,比热,密度,弹性模量(Ex),泊松比等的定义。 根据热分析的类型,ABAQUS提供稳态分析,瞬态分析和非线性分析。

ABAQUS提供各种形式的温度指定,热通量指定,对流边界条件设置,对周围环境的辐射的定义以及自然边界条件和初始条件的设置。 对于热分析中的接触问题,ABAQUS提供了一种热“接触”方式,它通过界面传热,热相互作用,间隙传热和间隙辐射来模拟接触位置的传热。 ②热耦合分析 热应力耦合分析是热分析必不可少的部分。ABAQUS提供了两种方法进行热应力耦合分析,顺序耦合分析和完全耦合分析。顺序耦合分析是先进行热传导分析,然后使用热传导分析的结果进行热应力分析。假定温度会导致热应力,但是应力对温度没有响应。完整的耦合分析考虑了两者之间的相互反应。在热耦合分析中,ABAQUS为不同类型的热耦合分析提供了特殊的耦合元素,并且热传导分析前面的材料,载荷和边界的定义适用于耦合分析。 ③ABAUQS胎面制动的热分析 使用ABAQUS耦合温度位移分析步骤执行完全耦合热分析。

abaqus612典型实例分析

1、应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2、问题描述 该案例选取的几何模型就是通过导入已有的*、IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其就是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源与时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠与刚性墙之间的接触采用接触对算法来定义。 1、横梁(rail) 2、平板(plane) 3、保险杠(bumper) 4、刚性墙(wall) 图2、1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7、83×10-9,弹性模量为2、07×105,泊松比为0、28; 保险杠、平板以及横梁的材料密度为7、83×10-9, 弹性模量为2、07×105,泊松比为0、28,塑形应力-应变数据如表2、1所示。 表2、1 应力-应变数据表 应力21 90 438 505 527 应变0、0000 0、0309 0、0409 0、0500 0、1510 0、3010 0、7010 0、9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6、12,各详细截图及分析以该版本为准。3、1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation、cae。 (2)通过导入已有的*、IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm、igs文件,弹出【Create Part From IGS File】对话框如图3、1所示,根据图3、1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以瞧到在模型树中显示了导入的部件bumper_asm。 图3、1 Create Part From IGS File对话框

石亦平ABAQUS有限元分析实例详解之读后小结 (Part 4)

石亦平《ABAQUS有限元分析实例详解》之读后小结 第九章动态分析实例 [95] (pp280) ABAQUS包括两大类方法: 振型叠加法(modal superposition procedure):用于求解线性动态问题; 直接解法(direct-solution dynamic analysis procedure):主要用于求解非线性动态问题。 提示:ABAQUS的所有单元均可用于动态分析,选取单元的一般原则与静力分析相同。但在模拟冲击和爆炸载荷时,应选用一阶单元,因为它们具有集中质量公式,模拟应力波的效果优于 二次单元所采用的一致质量公式。 [96] (pp281) 振型叠加法的基础是结构的各阶特征模态(eigenmode),因此在建模时要首先定义一个 频率提取分析步(frequency extraction),从而得到结构的振型(mode shape)和固有频率(natural frequency),然后才能定义振型叠加法的各种分析步。振型叠加法包括4种分析类型: (1)瞬时模态动态分析(transient modal dynamic analysis)计算线性问题在时域(time domain)上的动态响应。用此分析要满足如下5个基本条件: (a) 系统是线性的(线性材料特性,无接触行为,不考虑几何非线性)。 (b) 响应只受相对较少的频率支配。当在响应中频率的成分增加时(例如打击和碰撞问题),振 型叠加法的效率将会降低。 (c) 载荷的主要频率应该在所提取的频率范围之内,以确保对载荷的描述足够精确。 (d) 特征模态应该能精确地描述任何突然加载所产生的初始加速度。 (e) 系统的阻尼不能过大。 (2)基于模态的稳态动态分析(mode-based steady-state dynamic analysis)在用户指定频率内的谐波激励下,计算引起结构响应的振幅和相位,得到的结果是在频域(frequency domain)上的。其典型分析对象包括发动机的零部件和建筑物中的旋转机械等。 (3)反应谱分析(response spectrum analysis)当结构的固定点处发生动态运动时,计算其峰值响应(位移、应力等),得到的结果是在频域上的。其典型应用是计算在发生地震时建筑物 的峰值响应。 (4)随机响应分析(random response analysis)当结构随机连续的激励时,计算其动态响应,

Abaqus分析操作实例

ABAQUS分析操作实例 ABAQUS分析操作实例 —For连接器行业 Author:Dream fly Date: 2009-03-04

操作流程介绍

ABAQUS分析操作实例1.创建部件 z ABAQUS CAD功能有限,对于复杂的几何模型一般都由其它CAD软件创建。 1.1 导入端子模型 z在主菜单选择File?Import?Part,在弹出的对话框中选择模型保存路径和格式类型。 部件导入对话框 导入的端子模型 1.2 创建解析刚性面 z创建一解析刚性面以便对端子施加位移约束。 z在Module列表中选择Part模块,点击左侧工具区中的(Create Part),弹出Create Part 对话框,Type选择analytical rigid,把界面尺寸适当减小,点击Continue。 z在绘图环境中绘制一直线( ) ,然后点击三次中键确认,输入拉伸深度为1,完成解析刚性面创建。 z在主菜单选择Tools?Reference point,创建一参考点来约束刚性面。

ABAQUS 分析操作实例 2.1 创建材料 z 在Module 列表中选择Property 模块,点击左侧工具区中的 (Create Material),弹出Edit Material 对话框,输入材料名称:C5210R-SH ,点击Mechanical ?Elasticity ? Elastic ,在数据表中设置材料Young’s Modulus 为110000,Poisson’s Ratio 为0.3,然后点击Mechanical ?Plasticity ?Plastic 输入两组材料塑性数据(710,0),(764,0.18),点击OK 。 2.1 创建截面属性 z 点击左侧工具区中的(Create Section),点击Continue ,在弹出的Edit Section 对话框中,保持默认参数不变,点击OK 。 通过拉伸创建的刚性面 2.创建材料和截面属性 创建部件对话框

abaqus典型例子

ABAQUS 输入文件的格式
ABAQUS 的输入文件(.inp 文件)包含若干可选的数据块,这些数据块以一个关键字 开头,如*PLASTIC。如果需要的话,数据行将跟在关键字行的后面。所有的输入行长度限 制在 256 字符以内,变量名限制在 80 字符以内,且必须以字母开始。所有的注释行以**开 始,可以放在任意的位置。 关 键 字 行 以 * 开 始 , 后 面 接 关 键 字 , 必 要 的 时 候 可 加 参 数 , 如 : *MATERIAL, NAME=name,这里,MATERIAL 是关键字,NAME 是参数,name 是你给定的参数值。 数据行用来为给定的选项定义批量数据,如单元的定义: *ELEMENT, TYPE=b21 关键字行 560, 101, 102 564, 102, 103 数据行 572, 103, 104 · 节点号(相对于梁 b21 单元) · 单元号 每个数据块要么属于模型数据,要么属于历程数据,模型数据必然置于历程数据之前。 而在模型数据和历程数据内部,数据块的顺序和位置是任意的,除了一些特例,如: *HEADING 必 须 置 于 输 入 文 件 的 第 一 行 , *ELASTIC 、 *DENSITY 和 *PLASTIC 是 *MATERIAL 的子选项,则他们必须直接跟在*MATERIAL 后等。 下面我们以悬臂梁模型为例介绍其输入文件的各个部分。
边界条件
节点号
单元号
点载荷
输入文件:
——模型数据 *HEADING CANTILEVER BEAM EXAMPLE UNITS IN MM, N, MPa *NODE 1, 0.0, 0.0 .
标题选项块
节点选项块