硫化天然橡胶动态力学性能研究

硫化天然橡胶动态力学性能研究
硫化天然橡胶动态力学性能研究

7系铝合金的动态力学性能

摘要 材料在复杂的服役环境中可能受到各种不同载荷的作用,对材料在不同加载条件下力学行为的研究是完善材料开发、应用以及进行新材料及结构设计的基础。目前,国内对7005 铝合金的研究尚处于初级阶段,对于这类新型高性能铝合金在动态加载条件下的力学行为研究仍然十分匮乏。另外,作为目前研究材料动态力学行为最为常用的实验设备——分离式霍普金森压杆(SHPB)和分离式霍普金森拉杆(SHTB)。本实验研究热处理之后的七系铝合金的动态力学性能。首先对7005铝合金分别进行固溶,时效,回归,再时效等不同的热处理工艺在动态应变下力学行为和响应,采用分离式Hopkinson 压杆装置对7005 铝合金试件分别进行动态压缩,利用光学显微镜对压缩后试件进行了微观组织观察。最后结论发现试件在固溶时效。回归温度180℃升温10min保温30min 时在应变为0.013 时才到达应力123.6MPa。(应力随应变变化的最快,但是达到的最大应力在所有试验中时最小的)。 关键词动态加载; 分离式霍普金森压杆; 七系铝合金; 微观组织

Abstract Materials will be subjected by various loads in complicated application environment; so,studying the mechanical properties of the materials under different loading conditions is the basis for application and design of the materials. At present, the research on 7005 aluminum alloy is just at the starting stage in China, and the research on the mechanical behaviors of 7005 aluminum alloy under different loading conditions is still very scarce. Meanwhile, the split Hopkinson pressure bar (SHPB) and the split Hopkinson tensile bar (SHTB) are the most commonly used test equipments of dynamic mechanics. The dynamic mechanical properties of the seven-series aluminum alloy after heat treatment were studied. Firstly, 7005 aluminum alloy was subjected to different heat treatment processes, such as solid solution, aging, regression and re-aging, respectively. Under dynamic strain, the 7005 aluminum alloy specimens were dynamically compressed by separate Hopkinson bar, The microstructures were observed after compression. Finally, the specimen in solid solution, and the regression temperature 180 ℃(Warming up for ten minutes Hold for ten minutes)shows that the stress reaches 123.6MPa when the strain is 0.013 . (Stress is the fastest change with strain, but the maximum stress reached is the smallest in all trials). Key words dynamic loading; separate Hopkinson pressure bar; 7××× aluminum alloy; microstructure

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

天然橡胶的性能和用途

天然橡胶的性能和用途 天然橡胶生胶的玻璃化温度为-72℃,胶流温度130℃,开始分解温度200℃,激烈分解温度270℃。当天然橡胶硫化后,其Tg上升,也再不会发生粘流。 天然橡胶的弹性其生胶及交联密度不太高的硫化胶的弹性是高的。例如在0-100℃范围内,回弹性在50-85℃之间,其弹性模量仅为钢的00,伸长率可达1000%,拉伸到350%,后,缩回永久变形仅为15%,天然橡胶的弹性较高,在通用橡胶中仅次于顺丁橡胶。 天然橡胶的强度在弹性材料中,天然橡胶的生胶、混炼胶、硫化胶的强度都比较高。未硫化橡胶的拉伸强度称为格林强度,天然橡胶的格林强度可达 1.4~ 2.5Mpa,适当的格林强度对于橡胶加工成型是必要的。天然橡胶撕裂强度也较高,可达98kN/m,其耐磨性也较好。天然橡胶机械强度高的原因在于它是自补强橡胶,当拉伸时会使大分子链沿应力方向取向形成结晶。天然橡胶的电性能天然橡胶是非极性物质,是一种较好的绝缘材料。当天然橡胶硫化后,因引入极性因素,如硫黄、促进剂等,从而使绝缘性能下降。 天然橡胶的耐介质性能天然橡胶是一种非极性物质,它溶于非极性溶剂和非极性油中。天然橡胶不耐环己烷、汽油、苯等介质,未硫化胶能在上述介质中溶解,硫化橡胶则溶胀。天然橡胶不溶于极性的丙酮、乙醇中,更不溶于水中,耐10%的氢氟酸、20%的盐酸、30%的硫酸、50%的氢氧化钠等。 天然橡胶主要用途天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的轮胎;工业上用的运输带、传动带、各种密封圈;医用的手套、输血管;日常生活中所用的胶鞋、雨衣、暖水袋等都是以橡胶为主要原料制造的,国防上使用的飞机、大炮、坦克,甚至尖端科技领域里的火箭、人造卫星、宇宙飞船、航天飞机等都需要大量的橡胶零部件。轮胎的用量要占天然橡胶使用量的一半以上。

聚合物材料的动态力学性能测试

DMA 测量形状记忆高聚物性能原理及应用 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。 如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ] 式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o的相位角,如图2-61(c)所示。对于复数切变模量 E*=E′+iE″ (2-60)

氯化丁基橡胶阻尼材料动态力学性能的影响因素研究

氯化丁基橡胶阻尼材料动态力学性能的影响因素研究 孙志勇1马卫东1张鲲1孙国华1马丽华1杜文泽2 (1.中国兵器工业集团第五三研究所,济南 250031;2.总装备部装甲兵驻济南地区军事代表室,济南 250031) 摘要利用DMA242热机械分析仪,研究了增粘树脂类型、高耐磨炉黑用量、测试频率等因素对氯化丁基橡胶阻尼材料动态力学性能的影响。结果表明,增粘树脂对材料动态力学性能具有显著的影响,加入3#增粘树脂材料的损耗因子峰值最大,损耗因子峰值温度最高;随着高耐磨炉黑用量增大,材料的损耗因子峰值降低、损耗因子峰值温度升高;随着测试频率由3.33Hz到1.66Hz逐渐减小,材料的损耗因子峰值温度逐渐降低,损耗因子峰值逐渐减小。 关键词氯化丁基橡胶损耗因子增粘树脂高耐磨炉黑测试频率 目前,粘弹性阻尼材料仍以橡胶型基材为主,其中丁基橡胶由于分子链上带有许多侧甲基,弹性滞后较大,有明显的阻尼作用。丁基橡胶经氯化或溴化后,分子极性提高,除了具有与丁基橡胶类似的优良性能外,还具有反应性高、硫化速度快和粘合性能好等特点,因而工程上常用丁基橡胶的改性胶种,即氯化丁基橡胶或溴化丁基橡胶代替丁基橡胶制备阻尼材料。五三所研制的氯化丁基橡胶阻尼材料目前已在风能设备上获得一定规模的应用,提高了风轮叶片的结构阻尼、工作寿命及工作可靠性;此外,该材料还可广泛应用于车辆、舰船的减振降噪,具有良好的应用前景。 当前,对丁基橡胶的研究已相对成熟,对氯化丁基橡胶虽然也进行了一定的研究[1~5],但对其动态力学性能影响因素的系统研究报道较少。 本文主要研究了增粘树脂类型、高耐磨炉黑用量、测试频率等因素对氯化丁基橡胶阻尼材料动态力学性能的影响,并对影响机理进行了分析。 1 实验部分 1.1 原材料 氯化丁基橡胶,美国埃克森公司; 增粘树脂,自制; 高耐磨炉黑,辽宁抚顺化工总厂; 硫化剂等其它助剂均为市售。 1.2 主要仪器设备 开放式炼胶机,XK—250,青岛双星橡塑机械有限公司; 橡胶真空硫化机,THP/V/150/3RT/2/PCD,东毓油压工业股份有限公司;

21聚合物材料的动态力学性能测试

实验15 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 1. 实验目的 (1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。 (2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。 2. 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。 如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ] 式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o 的相位角,如图2-61(c)所示。对于复数切变模量 E*=E′+i E″(2-60) 式中 E′=∣E*∣cosδ E″=∣E*∣sinδ 显然,与应力同位相的切变模量给出样品在最大形变时弹性贮存模量,而有相位差的切变模量代表在形变过程中消耗的能量。在一个完整周期应力作用内,所消耗的能量△W与所贮存能量W之比,即为黏弹性物体的特征量,叫做内耗。它与复数模量的直接关系为

聚合物动态力学性能的测定.

实验7 聚合物动态力学性能的测定 聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA ) 一、二、实验目的 了解动态力学分析的测量原理及仪器结构。了解影响动态力学分析实验结果的因素,正确选择实验条件。掌握动态力学分析的试样制备及测试步骤。掌握动态力学分析在聚合物分析中的应用。 实验原理 聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δ?σσ+=t (7-1) )900(0<<δ应变 t ?εεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。

式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。 图7.1 应力应变和时间的关系 将式(7-1)展开为: δ?σδωσσsin cos cos sin 00t t += (7-3) 即认为应力由两部分组成,一部分)cos sin (δ?σt 与应变同相位,另一部分)sin cos (0δ?σt 与应变相差2/π。根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即 t E t E ?εωεσcos ''sin '00+= (7-4) 此时模量是一个复数,叫复数模量*E 。 '''*iE E E += (7-5) 'E 为实数模量又称储能模量,表示材料在形变过程中由于弹性形变而储存的能量;''E 为虚数模量也称损耗模量,表示在形变过程中以热的方式损耗的能量。 ' ''tan E E =δ (7-6) 式(7-6)中,δtan 为损耗角正切或称损耗因子。 研究材料的动态力学性能就是要精确测量各种因素(包括材料本身的结构参数及外界条件)对动态模量及损耗因子的影响。 聚合物的性质与温度有关,与施加于材料上外力作用的时间有关,还与外力作用的频率有关。当聚合物作为结构材料使用时,主要利用它的弹性、强度,要求在使用温度范围内有较大的贮能模量。聚合物作为减震或隔音材料使用时,则主要利用它们的粘性,要求在一定

塑料橡胶常规力学性能测试实验

第二章塑料橡胶常规力学性能测试实验材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。 高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下: 1、试样制备 ⑴薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。 ⑵软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵氏A)。 ⑶模塑试样:按有关标准或协议模塑。 ⑷硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。 ⑸各向异性的材料应沿纵横方向分别取样。 2、试样外观检查 试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。 3、实验环境 温度:热塑性塑料为25±2℃;

橡胶力学性能测试标准

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型)

橡胶制品的基本特性

橡胶制品的基本特性 橡胶制品(rubber product)指以天然及合成橡胶为原料生产各种橡胶制品的活动,还包括利用废橡胶再生产的橡胶制品。 橡胶制品基本特性: 1.橡胶制品成型时,经过大压力压制,其因弹性体所俱备之内聚力无法消除,在成型离模时,往往产生极不稳定的收缩(橡胶的收缩率,因胶种不同而有差异),必需经过一段时间后,才能和缓稳定。所以,当一橡胶制品设计之初,不论配方或模具,都需谨慎计算配合,若否,则容易产生制品尺寸不稳定,造成制品品质低落。 2.橡胶属热溶热固性之弹性体,塑料则属于热溶冷固性。橡胶因硫化物种类主体不同,其成型固化的温度范围,亦有相当的差距,甚至可因气候改变,室内温湿度所影响。因此橡胶制成品的生产条件,需随时做适度的调整,若无,则可能产生制品品质的差异。 橡胶制品胶种的分类: 1.通用橡胶:是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。 2.丁苯橡胶:丁苯橡胶是由丁二烯和苯乙烯共聚制得的,是产量最大的通用合成橡胶,有乳聚丁苯橡胶、溶聚丁苯橡胶和热塑性橡胶(SBS)。 3.顺丁橡胶:是丁二烯经溶液聚合制得的,顺丁橡胶具有特别优异的耐寒性、耐磨性和弹性,还具有较好的耐老化性能。顺丁橡胶绝大部分用于生产轮胎,少部分用于制造耐寒制品、缓冲材料以及胶带、胶鞋等。顺丁橡胶的缺点是抗撕裂性能交差,抗湿滑性能不好。 4.异戊橡胶:异戊橡胶是聚异戊二烯橡胶的简称,采用溶液聚合法生产。异戊橡胶与天然橡胶一样,具有良好的弹性和耐磨性,优良的耐热性和较好的化学稳定性。异戊橡胶生胶(未加工前)强度显着低于天然橡胶,但质量均一性、加工性能等优于天然橡胶。异戊橡胶可以代替天然橡胶制造载重轮胎和越野轮胎还可以用于生产各种橡胶制品。 5:乙丙橡胶:乙丙橡胶以乙烯和丙烯为主要原料合成,耐老化、电绝缘性能和耐臭氧性能突出。乙丙橡胶可大量充油和填充碳黑,制品价格较低,乙丙橡胶化学稳定性好,耐磨性、弹性、耐油性和丁苯橡胶接近。乙丙橡胶的用途十分广泛,可以作为轮胎胎侧、胶条和内胎以及汽车的零部件,还可作电线、电缆包皮及高压、超高压绝缘材料。还可制造胶鞋、卫生用品等浅色制品。 6.氯丁橡胶:它是以氯丁二烯为主要原料,通过均聚或少量其它单体共聚而成的。如抗张强度高,耐热、耐光、耐老化性能优良,耐油性能均优于天然橡胶、丁苯橡胶、顺丁橡胶。具有较强的耐燃性和优异的抗延燃性,其化学稳定性较高,耐水性良好。氯丁橡胶的缺点是电绝缘性能,耐寒性能较差,生胶在贮存时不稳定。氯丁橡胶用途广泛,如用来制作运输皮带和传动带,电线、电缆的包皮材料,制橡胶加工工艺问答

各类橡胶的优缺点

1.天然橡胶 NR (Natural Rubber) 由橡胶树采集胶乳制成,是异戊二烯的聚合物。具有很好的耐磨性、很高的弹性、扯断强度及伸长率。在空气中易老化,遇热变黏,在矿物油或汽油中易膨胀和溶解,耐碱但不耐强酸。·是制作胶带、胶管、胶鞋的原料,并适用于制作减震零件、在汽车刹车油、乙醇等带氢氧根的液体中使用的制品。 2.丁苯胶 S B R (Styrene Butadiene Copolyme) 丁二烯与苯乙烯之共聚合物,与天然胶比较,质量均匀,异物少,但机械强度则较弱,可与天然胶掺合使用。 优点: ·低成本的非抗油性材质 ·良好的抗水性,硬度 70 以下具良好弹力 ·高硬度时具较差的压缩歪 ·可使用大部份中性的化学物质及干性、滋性的有机酮 缺点: ·不建议使用强酸、臭氧、油类、油酯和脂肪及大部份的碳氢化合物之中。·广用于轮胎业、鞋业、?布业及输送带行业等。 3.丁基橡胶 IIR (Butyl Rubber) 为异丁烯与少量 isoprenes 聚合而成,保有少量不饱合基供加硫用,因甲基的立体障碍分子的运动比其它聚合物少,故气体透过性较少,对热、日光、臭氧之抵抗性大,电器绝缘性佳;对极性溶剂如醇、酮、酯等抵抗大,一般使用温度范围为 -54~110 ℃。 优点: ·对大部份一般气体具不渗透性 ·对阳光及臭氧具良好的抵抗性 ·可暴露于动物或植物油或是可氧化的化学物中 缺点: ·不建义与石油溶剂,胶煤油和芳氢同时使用。·用于制作耐化学药品、真空设备的橡胶零件。 4.氢化丁睛胶HNBR (Hydrogenate Nitrile) 氢化丁睛胶为丁睛胶中经由氢化后去除部份双链,经氢化后其耐温性、耐候性比一般丁睛橡胶提高很多,耐油性与一般丁睛胶相近。一般使用温度范围为 -25~150 ℃。 优点: ·较丁睛胶拥有较佳的抗磨性 ·具极佳的抗蚀、抗张、抗撕和压缩歪的特性 ·在臭氧、阳光及其它的大气状况下具良好的抵抗性 ·一般来说适用于洗衣或洗碗的清洗剂中 缺点: ·不建议使用于醇类,酯类或是芳香族的溶液之中。·空调制冷业,广泛用于环保冷媒 R134a 系统中的密封件。 ·汽车发动机系统密封件。

橡胶力学性能测试标准

橡胶力学性能测试标准公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法

天然橡胶综述

天然橡胶概述 摘要:本文介绍了天然橡胶的物理和化学性能、配合体系、改性和产品实例等 关键词:天然橡胶配合改性产品 橡胶按其来源,分为天然橡胶和合成橡胶两大类。天然橡胶取之于橡胶树,起源较早。合成橡胶系人工合成,发展较晚,随着石油化工的兴起,获得了大量廉价原料之后,才迅速发展起来。本文主要介绍天然橡胶的一些性质、配方、改性、产品等。【1】 1.天然橡胶的来源 自然界合橡胶成分的植物有400种之多,大部分生长在热带地方。目前产胶量最多、质量最好的为人工种植的三叶橡胶树。一般所说的天然橡胶,就是指这种橡胶树所产的胶。除此之外还有:硬性天然橡胶、马来树胶及杜仲。硬性天然橡胶和三叶橡胶树所产的胶为同分异构体(前者为反式聚异戊二烯橡脱后者为顺式聚异戊二烯橡胶)。它的热塑性、电绝线性、耐水性较添适用于海底电缆包层、耐酸制品及电工材料等方面。杜仲的经济价值表现在:播种两年后即可开始割脱以后每年均可采集叶子和果实提取,随树龄增长,还可以从树皮、根皮提耿生胶产量增加。因此,杜仲在我国的种植和发展也是有前途的。其他合橡胶植物如木薯橡胶树、印度榕橡胶树、丝橡胶树、银叶橡胶菊和橡胶草等,由于其本身经济技术指标较低,加工困难逐渐趋向淘汰。 2.天然橡胶的品种和制法 天然胶乳除直接用于胶乳工业外,绝大部分还是经凝固、压片制造天然生胶(或

称干胶),以便于运输,提供工厂使用。天然橡胶按贫制造方法不同,可分为若干种,将其列为下表: 上述的各种橡胶常用者主要为烟片和皱片(白皱片、褐皱片)。 3.天然橡胶的组成

】 天然橡胶由橡胶烃和非橡胶物质组成。以烟片胶为例,其化学组成如下表所示。 通过对橡胶烃的热分解研究,确定橡胶烃是以异戊二烯为单体的高聚物。这种聚合物具有直链状的分子结构。而非橡胶成分包括水分、灰分、蛋白质类及丙酮抽出物等,含量很少且不固定,随树种、环境、树龄、采胶季节和加工条件而变化。但其对橡胶的加共及制品质量都有一定影响。 天然橡胶的化学式 (1)水分生胶含水量,因制造时干燥的程度、贮存时的温度与湿度、非橡胶成分的吸水性,而有所不同。含水过多易使生胶发霉。1%以下的少量水可在加工过程中除去,对橡胶性能影响不大。 (2)水溶物生胶水溶物的含量完全取决于制造方法。水溶物多半是一些胶液物质(白质树皮醇和葡萄糖贰等)和酸分,其对胶料的可塑性及吸水性影响较大。

聚氨酯泡沫材料动态力学性能

1007-9629(2012)03-0356-05 高应变率下聚氨酯泡沫材料动态力学性能研究 范俊奇1'2,董宏晓2,高永红1'2,楼梦麟1 1.同济大学土木工程防灾国家重点实验室,上海200092;2.总参工程兵科研三所,河南洛阳471023 摘要:在静力试验的基础上,利用INSTRON-1185型万能材料试验机在快速加载条件下对不同应变速度的聚氨酯泡沫材料动载抗压性能进行了较系统的试验,完整给出了聚氨酯泡沫材料在高应变速率下的动态应力应变曲线,定性研究了聚氨酯泡沫材料的动态力学行为,探讨了该材料性能与加载速率的关系,得到了考虑应变率效应的材料动态本构关系,最终给出了便于工程应用的材料静态和动态力学参数之间的关系. 聚氨酯泡沫材料;高应变率;动态力学性能;吸能特性 TB535+.1A10. 3969/j. issn. 1007-9629. 2012.03. 012 Study on Dynamic Mechanical Properties of  Polyurethane Foam Materials under High Strain Rate  FAN Jun-qi DONG Hong-xiao GAO Yong-hong LOU Meng-lin  2010-12-192011-03-14 范俊奇(1975-),男,河南洛阳人,同济大学博士生.E-mail: lyfjq@163.com  万方数据

6.67X 10 2 0.346 6.85 1.33× 10-1 0.376 5.57万方数据

与静屈服应力的关系 amic yield stress and static yield stress万方数据

不同温度下橡胶的动态力学性能及本构模型研究

第22卷 第1期2007年2月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.22 No.1 Feb.2007 文章编号:100124888(2007)0120001206 不同温度下橡胶的动态力学性能及本构模型研究3 王宝珍1,胡时胜1,周相荣2 (1.中国科学技术大学中国科学院材料力学行为和设计重点实验室,安徽合肥230026; 2.中国船舶重工集团上海船舶设备研究所,上海200031) 摘要:利用带有温度调控装置的SHPB(Split Hop kinson Pressure Bar)试验装置和岛津材料试验机,测定了CR橡胶在不同温度(-20℃~50℃),不同应变率(5×10-3/s~3×103/s)条件下的应力应变曲线。结果表明:CR橡胶的力学性能具有温度敏感性和应变率敏感性,两者有一定的等效性,且在动态条件下,-20℃时的应力应变曲线表现出向“玻璃态”转变的特性。本文在以前研究者提出的率相关本构模型的基础上进行了改进,同时考虑了温度效应的影响,提出了一个能描述CR橡胶在不同温度和应变率下的一维压缩力学行为的本构模型,该模型和试验数据有很好的一致性,为数值模拟提供了重要的依据。 关键词:橡胶;SH PB;温度效应;应变率效应;玻璃化转变温度 中图分类号:O347;TQ33.7+3 文献标识码:A 0 引言 橡胶属于一种高聚物材料,具有高弹性、低阻抗、粘弹性等力学性能,在汽车、船舶、电子、建筑及机械工业等行业中常用作冲击吸能和抗震材料,具有重要的社会价值和经济价值。但橡胶材料的力学性能会受到环境温度和应变率的影响,且两者还存在一定的等效关系。不仅如此,随着温度和应变率的变化,橡胶材料还可呈现出三种不同的力学形态,即:粘流态、橡胶态和玻璃态。一旦力学状态发生改变,其良好的力学性能也无法体现,使用价值就会受到很大的影响。因此研究橡胶在不同温度、不同应变率下的力学性能具有十分重要的意义。 橡胶材料在变温、低应变率时力学性能已经有了大量的研究。近来,SH PB技术的广泛应用,橡胶材料高应变率下力学性能及本构模型的研究也受到很大的关注,卢芳云[1]、Bo Song[2]等在室温下对橡胶材料做了大量的动态力学试验,解决了橡胶由于低阻抗材料,透射信号弱,应力很难达到均匀性等试验问题,但橡胶材料高应变率下非室温的试验数据还很缺乏。 V.P.W.Shim,L.M.Yang等[3]提出了一个描述橡胶粘超弹性的本构模型,Bo Song[4]等将应变能函数和描述粘弹性的松弛函数相联系,提出了一个率相关的材料模型,描述EDPM橡胶受压和受拉时的应力应变行为。发现常温下理论与试验的结果都符合得很好,但没有考虑温度的影响。 本文采用改进的带温控箱的SHPB装置(图1)对橡胶在不同环境温度下的动态力学性能进行试验研究。并对Bo Song的模型进行改进,用来描述CR橡胶在不同温度不同应变率下的力学性能。 1 试验方案 由于橡胶材料低阻抗、低波速的特点,传统的Hop kinson技术不能获得有效可用的结果。针对这3收稿日期:2006212228;修订日期:2007202207 通讯作者:胡时胜(1945-),男,教授。主要研究领域:材料动态力学性能。E2mail:sshu@https://www.360docs.net/doc/e8658936.html,

胶力学性能与测试

胶力学性能与测试|橡胶力学与测试|橡胶力学与测试 一、生胶性能 未经加工的原料橡胶俗称生胶,其实生胶也并非100%纯净的,如天然胶中含有的非橡胶烃(约5%)包括树脂酸蛋白质等物质,在SR中同样添加了防老剂及未耗尽的合成助剂,如:分子量控制剂,终止剂及分散剂等。不过大体上讲,生胶与胶料相比更能代表橡胶固有的特性,包括如下: 1、分子量。指橡胶大分子的分子量的平均值,应该把橡胶看成不同分子量聚合物的体系,既有高分子量级份,也混杂一些低分子量级份,这是不可避免的,所以只能以平均分子量的概念来描述。根据不同测试方法又分粘均分子量、散均分子量及重均分子量。比较常用的是粘均分子量,因为比较容易测,采用不同粘度来表征不同分子量,更为直观(分子量越大,粘度越高)。 分子量与生胶性能之间有着直接和密切的关系,一般而言分子量越大,则生胶的强度越高,力学性能越好,但是随着分子量的增大,加工时的流动性变差。 2、分子量分布。橡胶实际上是不同比例的大小分子量不同的分子链的混合物,如果把不同的分子量按出现的频率来排列,则可得到分子量分布曲线。 NR的分子量分布特点: 中等分子量占统治地位,高分子量及低分子量级各占少数,其中高的部分有利于力学性而低的部分则有利于加工,因此兼顾了性能和加工。 SR的分子量分布特点: 分子量分布很窄,局限在很小的范围,因为缺少低分子量部分所以加工性不及NR,但性能均匀性好。原因是合成橡胶的分子量由人为地加以控制,所以模式单纯,难以做到大、中、小兼顾。 3、凝胶含量。一般只发生在SR。当聚合过程中,因结构控制不同,形成太多的支链结构,结果这一部分就出现凝胶,用溶剂无法溶解故称凝胶。炼胶时助剂难以进入,影响性能。 4、侧挂基团。橡胶单体上的不同基团给橡胶带来不同的特性。如:-COOH (羧基):能赋予良好的粘性;-CL:具有极性及电负性;苯基:体积庞大可以阻拦射线,故具抗射线性良好。 5、极性。与基团有密切相关,凡是带有腈基(-CN)羟基(-OH)和羧基(-COOH)等基团的橡胶都有较强的极性,称为极性橡胶。他们与金属有良好的结合性,另外极性接近的橡胶,彼此容易掺和。 二、硫化胶性能 如果说生胶和未硫化胶的性能主要为加工生产服务,那么硫化胶性能主要为客户和实际应用服务。硫化胶性能可以概括分为俩大类即力学性能及抗环境性能,前者都是衡量橡胶在受力情况下的性能,主要有拉伸强度、定伸强度、扯断伸长率、拉伸永久变形(均在拉力机上进行)、硬度、回弹性、压缩永久变形、抗撕裂强度、粘和强度等。后者是测量橡胶在外界环境下的性能变化,包括热老化性能、抗臭氧性能、阻燃性能、抗霉性能等。 先将常用的硫化胶测定项目简述如下– 1、拉伸强度。用拉动机对橡胶试片进行拉伸,测定断裂时的强度以Mpa表示,是衡量橡胶力学性能的最主要最基本项目,其值越大,表明强度越大,一般在10~30Mpa。 2、定伸强度。试样拉伸到一定长度时,单位面积所需的力。可以反映橡胶的交联程度。其值越高,表明橡胶越坚韧,单位MPa 3、扯断伸长率。试样拉断时,伸长部分与原长的百分比,用以表示橡胶在伸长时的应变能力的极限,以%表示。

相关文档
最新文档