数学解题技巧-36、连续数求和的速算

数学解题技巧-36、连续数求和的速算
数学解题技巧-36、连续数求和的速算

36、连续数求和的速算

苦干个连续整数求和的问题,可以分为“连续自然数求和”、“连续奇数求和”与“连续偶数求和”三类。

【连续自然数求和】几个连续的自然数相加,可以把它们的首项和末项相加,把所得的结果除以2以后,再乘以项数,得到的便是这几个连续自然数的和。

例如,13+14+15+16+17+18+19+20+21+22

=(13+22)÷2×10

=17.5×10

=175

如果加数的个数(项数)是奇数(单数),也可以直接用排列在正中间的数(中间项)乘以项数,去求它们的和。例如

=15×9 (中间项)

=135

【连续奇数求和】连续奇数的求和,也可以用上面介绍的“连续自然数求和的速算”方法去速算。例如

3+5+7+ 9+11+13+ 15+17+19

=(3+19)÷2×9

=11×9

=99

=11(中间项)×9(项数)

=99

如果是从1开始的几个连续奇数求和,则可以用这些奇数的个数自乘,便得到这几个连续奇数的和。例如

1+3+5+ 7+9+11=6×6=36(奇数个数是6)

1+3+5+7+9+11+13+15+17+19+21

=11×11

=121。(奇数个数是11)

【连续偶数求和】连续偶数的求和,同样可以用“连续自然数求和的速算”方法速算。例如

8+10+12+14+16+18+20+22+24

=(8+24)÷2×9

=144

如果连续偶数是从2开始的,即求从2开始的连续偶数之和,则可以用这些偶数的个数乘以个数加1之和,就得到这几个连续偶数的和。例如

2+4+6+8+10=5×(5+1)(偶数个数是5)

=30

2+4+6+8+10+12+14+16+18+20+22+24+26

=13×(13+1)(偶数个数是13)

=182

求连续自然数平方和的公式

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212222,而它的通项公式是3 1 2+n ,于是大胆猜想 n n ++++++++ 3213212222=3 1 2+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

自然数平方数列和立方数列求和公式

自然数平方数列和立方数列求和公式怎么推导?即: (1) 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 (2) 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 推导过程如下: 一. 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+... +n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 二. 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 证明如下: (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1)

实用小学巧算和速算方法(有用)

实用小学巧算和速算 方法(有用) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一讲速算与巧算(一) 一、加法中的巧算 1.什么叫“补数” 两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。 如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。 又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100, 在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。 对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。 如: 87655→12345, 46802→53198, 87362→12638,… 下面讲利用“补数”巧算加法,通常称为“凑整法”。 2.互补数先加。 例1巧算下面各题: ①36+87+64②99+136+101 ③ 1361+972+639+28 解:①式=(36+64)+87 =100+87=187

=200+136=336 ③式=(1361+639)+(972+28) =2000+1000=3000 3.拆出补数来先加。 例2 ①188+873 ②548+996 ③9898+203 解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061 ②式=(548-4)+(996+4) =544+1000=1544 ③式=(9898+102)+(203-102) =10000+101=10101 4.竖式运算中互补数先加。 如: 二、减法中的巧算 1.把几个互为“补数”的减数先加起来,再从被减数中减去。例 3① 300-73-27 ② 1000-90-80-20-10

连续自然数的立方和

连续自然数立方和的公式 “图形法“ 早在公元100年前后,毕达哥拉斯学派的继承人尼科马霍斯,在他的著作《算术入门》中就曾经用非 常简单的方法推导过这个公式。 奇数列1,3,5,7,9,11,13,…有一个性质,很容易验证: 请你自上而下仔细观察这一系列等式的左端: 第1个等式左端,结束于第1个奇数; 第2个等式左端,结束于第3个奇数; 第3个等式左端,结束于第6个奇数; 第4个等式左端,结束于第10个奇数; 第5个等式左端,结束于第15个奇数; …… 结果发现,这些奇数的序数1,3,6,10,15,…原来是“三角形数”,它的每一项等于从1开始的连 续自然数的和。第1项是1,第2项是1+2=3,第3项是1+2+3=6,第4项是1+2+3+4=10,第5 项是1+2+3+4+5=15,……第n项是1+2+3+…+n=n(n+1)/2。即,第n个等式左端,结束于第n(n +1)/2个奇数。 然后,对上面这一系列等式的左右两端,分别求和: 右端是连续自然数的立方和13+23+33+…+n3。 左端是连续奇数的和。我们知道,求连续奇数的和,求到第几个奇数,就等于第几个奇数的平方。现在,求到第n(n+1)/2个奇数,当然等于[n(n+1)/2]2。 这样就得到求连续自然数立方和的公式: 这种方法思路清晰论证简单。尼科马霍斯之所以能够想到这个方法,显然跟毕达哥拉斯学派对图形数的 宠爱有关。图形数是自然数的形象化,自然数是众数之源,自然数真是一个取之不尽用之不竭的宝藏。

“列表法” 这里再介绍一种列表法,同样可以推出这个公式,并且更简单,更好理解。 第一步:列一个表,在第一行填入一个因数1、2、3、4、5,在第一列填入另一个因数1、2、3、4、5。 第二步:在右下方的空格里分别填入对应的两个因数的积。 显然,所有乘积的和等于 这5块依次是:

最新自然数幂次方和公式

1 2 自然数幂次方和的另一组公式 3 摘要:一般的自然数幂次方和公式是用n 的p+1次方的多项式表示,考虑到任 4 一多项式均可用k n C 表示,本文给出了自然数幂次方和用k n C 表示的方法,并且给 5 出了相应的系数完整表达式。这比多项式表达方便得多,因为多项式表达的系数 6 至今仍是递推公式表达。 7 8 9 由笔者的文章(注【1】)知,自然数幂次方和可以用关于n 的多项式表达,而 10 每一个多项式均可用k n C 表示的,因此可猜想自然数幂次方和也可以用k n C 表达出 11 来。 12 假设自然数幂次方和可以写成以下形式 13 ∑∑=++===p k k n k n k p n C A k S 1 111 。。。。。。(1) 14 那么同理可应有: 15 ∑∑=++--=-==p k k n k n k p n C A k S 1 11)1(1 1 1 16 那么: 17 ∑∑=+=++--=-=p k k n k p k k n k n n p C A C A S S n 1 1 1 11 1 18

[ ]∑∑==+++=-=p k k n k p k k n k n k p C A C C A n 1 1 111 19 20 ∑== p k k n k p C A n 1 21 因为对于充分大的自然数n 均使得上述式子成立,所以上式对应的应该是一个22 关于n 的p 次多项式,其中: 23 )1).....(1(k n n n C k n -+-= 24 这仅仅是一个多项式的写法,与排列组合无关, n 可为任意的数。 25 分别令n=1,2,3, 。。。。p-1时就有: 26 01 1 1 1 +=+ ==∑∑∑∑=+===t k k t k p t k k t k t k k t k p k k t k p C A C A C A C A t 27 ∑==t k k t k p C A t 1 )1...3,2,1(-=p t 。。。。。。。。 28 (2) 29 ∑-=-=1 1t k k t k p t C A t A )1...3,2,1(-=p t 。。。。。。。。 30 (3) 31 这是一个递推的数列,其中A 1=1 , 很显然,通过它可以求出所有的系数t A ,32 仿照笔者的文章(注【1】)可证明,由(3)式求出的系数t A ,使得公式(1)33 成立,即自然数幂次方和的公式由(1)(3)给出了。 34 其中(3)式是递推公式,那么能不能直接写出系数A t 的表达式呢,下35 面给出这个结论。 36

常用的巧算和速算方法

常用的巧算和速算方法 【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为 所以,1+2+3+4+……+99+100 =101×100÷2 =5050。 又如,计算“3+5+7+………+97+99=?”,可以计算为 所以,3+5+7+……+97+99=(99+3)×49÷2= 2499。 这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题: “今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?” 题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了30天。问她一共织了多少布? 张丘建在《算经》上给出的解法是: “并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。 这一解法,用现代的算式表达,就是

1匹=4丈,1丈=10尺, 90尺=9丈=2匹1丈。(答略) 张丘建这一解法的思路,据推测为: 如果把这妇女从第一天直到第30天所织的布都加起来,算式就是 5+…………+1 在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。 若把这个式子反过来,则算式便是 1+………………+5 此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。 假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子: 所以,加得的结果是6×30=180(尺) 但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇女30天织的布是 180÷2=90(尺) 可见,这种解法的确是简单、巧妙和饶有趣味的。

小学奥数 数列求和 巧妙求和 含答案

第16讲巧妙求和 一、知识要点 某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。 在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。 二、精讲精练 【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。这本书共有多少页? 【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。要求这本书共多少页也就是求出这列数的和。这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解: (30+60)×11÷2=495(页) 想一想:如果把“第11天”改为“最后一天”该怎样解答? 练习1: 1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。这批零件共有多少个? 2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。最后一天读了50页恰好读完,这本书共有多少页? 3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词? 【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次? 【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。 练习2: 1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次? 2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了? 3.有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?

自然数幂求和公式的存在与规律探讨

本科毕业论文 自然数幂求和公式的存在与规律探讨 SUM FORMULA OF POWER OF NATURAL NUMBER'S EXISTENCE AND REGULARITY 学院(部):理学院 专业班级:08-2数学与应用数学 学生姓名:张兴刚 指导教师:范自强 2012年6 月1 日

自然数幂求和公式的存在与规律探讨 摘要 自然数幂求和是一个古老的数学问题,本文从线性空间入手,提出关于多项式的自然线性空间的概念,利用了线性空间的简单性质,证明了任意正整数的自然数幂求和公式的存在和简单规律;归纳出自然数幂求和公式中一条精彩的结论,系数定理,一劳永逸的解决并揭示了自然数幂求和问题的内涵;本文亦从线性空间的角度,提出自由空间概念,为自然数幂求和问题带来了一种新的视角。 关键字:自然数幂求和、自然线性空间、多项式、系数定理、自由线性空间

Sum formula of power of natural number 's existence and regularity Abstract Natural number power sum is an ancient mathematical problems, this article from the linear space sets out, put forward on polynomial natural linear space, linear space of the simple nature, it is proved that for any positive integer sum formula of power of natural number exists, and the simple rule; summarize sum formula of power of natural number in a wonderful conclusion coefficient theorem, put things right once and for all solutions and reveals the natural number power sum problem connotation; this paper also from linear spatial angle, put forward the concept of free space, is a natural number power sum problem brought a new perspective. Keywords: natural number power sum, natural linear space, polynomial coefficient theorem, free linear space

常用巧算和速算的方法

常用的巧算和速算的方法 1、顺逆相加 1+ 2 + 3+ 4+ 5+……+100 +100+99+ 98+ 97+ 96+……+1 101+ 101+101+101+101+……+101 101×100÷2 =5050 举一反三 3+5+7+……+97+99= 2、分组计算 4.75-9.64+8.25-1.36=_____. 3.17-2.74+ 4.7+ 5.29-0.26+ 6.3=_____ 3、乘法分配律与结合律 (5.25+0.125+5.75)?8=_____. 34.5?8.23-34.5+2.77?34.5= 19.98?37-199.8?1.9+1998?0.82=_____. 常用的整十整百整千 :_________________________________________________ 4、由小推大 计算“100×100”的方阵的和 1 2 3 4 5 6 (100) 2 3 4 5 6 7 (101) 3 4 5 6 7 8 (102) 4 5 6 7 8 9 (103) 5 6 7 8 9 10 (104) 6 7 8 9 10 11 (105) ……………………… 100 101 102 103 104 105 (199) 先化大为小 计算“5?5”的方阵 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7

4 5 6 7 8 5 6 7 8 9 对角线上五个5之和为25 ,五个斜行每个斜行数之和都为25,所以“5?5”方阵和为25×5=125 即 5?5×5=53=125 所以,“100×100”的方阵和为1003=1000 000 5、凑整方法 计算13.5?9.9+6.5?10.1=_____. 1.5×105= 104× 2.5= 2.5×32×12.5= 举一反三 计算 25×12 = 125×72 = 17×32-17×22= 3200÷4÷25 = 6、整体思想 计算 32.14+64.28?0.5378?0.25+0.5378?64.28?0.75-8?64.28?0.125?0.5378. 原式=32.14+64.28?0.5378?(0.25+0.75-8?0.125) =32.14+64.28?0.5378?0 =32.14 举一反三 (1) 计算 (2+3.15+5.87)×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87) 的值 7、拆数加减 12 +16 + 112 +120 + 1 30 + 142 + 156 + 172 + 1 90 = 11×2 + 1 2×3 + 13×4 + 1 4×5 + 1 5×6 + 1 6×7 + 17×8 + 18×9+ 19×10 =(1-1 2)+(1 2?1 3)+(13?14)+(1 4?1 5)+(1 5?1 6)+(1 6?1 7)+(1 7?1 8)+ (1 8?1 9)+(1 9?1 10)

常用的一些求和公式

下面是常用的一些求和公式:

a1, a1+d, a1+2d, a1+3d, .... (d为常数) 称为公差为d的等差数列.与等差数列相应的级数称为等差级数,又称算术级数. 通项公式 前n项和 等差中项 a1, a1q, a1q2, a1q3....,(q为常数) 称为公比为q的等比数列.与等比数列相应的级数称为等比级数,又称几何级数. 通项公式 前n项和 等比中项

无穷递减等比级数的和 更多地了解数列与级数:等差数列与等差级数(算术级数) 等比数列 等比数列的通项公式 等比数列求和公式 (1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

推导自然数立方和公式两种方法

推导213)1(21??????+=∑=n n k n k 的两种方法 通化市第一中学校 刘天云 邮编 134001 方法一:拆项累加相消求和 已知:)12)(1(6 112++= ∑=n n n k n k 而)]2)(1()1()3)(2)(1([4 1)2)(1(++--+++=++k k k k k k k k k k k 则:∑=+++= ++n k n n n n k k k 1 )3)(2)(1(41)]2)(1([ 所以:∑∑∑∑====--++=n k n k n k n k k k k k k k 1 1121323)]2)(1([ )1(2 12)12)(1(613)3)(2)(1(41+?-++?-+++=n n n n n n n n n 2)1(21?? ????+=n n 另外:∑=+++= ++n k n n n n k k k 1)3)(2)(1(4 1)]2)(1([还可以作如下证明: )2)(1(432321++++??+??n n n )(6323433++++=n C C C )3)(2)(1(4 1643+++==+n n n n C n 方法二:构造群数列推导 构造奇数列,并按第n 群中含有个奇数的方式分群,即 1 / 3,5 / 7,9,11 / 13,15,17,19 / …… 我们用两种方法研究前n 群的所有数的和. 1、第n 群最末一个数是数列的第)1(2 1+n n 项,而且该项为 11)1(2 122)1(21 -+=-+?=+n n n n a n n

那么,第n 群最初一个数是数列的第1)1(2 1+-n n 项,而且该项为 111)1(21221)1(21 +-=-?? ????+-?=+-n n n n a n n 所以,第n 群的n 个数的和为:322)]1()1[(2 1n n n n n n =-+++-. 则前n 群的所有数的和可记作∑=n k k 13. 2、前n 群所有数的和为该奇数列的前)1(21+n n 项的和,即2 )1(21??????+n n 因此:2 13)1(21??????+=∑=n n k n k

数学常用巧算速算法

校本课程数学计算方法 第一讲生活中几十乘以几十巧算方法 (2) 第二讲常用巧算速算中的思维与方法(1) (4) 第三讲常用巧算速算中的思维与方法(2) (6) 第四讲常用巧算速算中的思维与方法(3) (8) 第五讲常用巧算速算中的思维与方法(4) (10) 第六讲常用巧算速算中的思维与方法(5) (14) 第七讲常用巧算速算中的思维与方法(6) (16) 第八讲小数的速算与巧算1――凑整 (18) 第九讲乘法速算1 (19) 第十讲乘法速算2 (21) 第^一讲乘法速算3 (22) 第十二讲乘法速算4 (23) 第十三讲乘法速算5 (24) 第十四讲乘法速算6 (25) 第十五讲乘法速算7 (27) 第十六讲乘法速算8 (29) 注:《速算技巧》 (33)

校本课程数学计算方法第一讲生活中几十乘以几十巧算方法 1?十几乘十几: 口诀:头乘头,尾加尾,尾乘尾。 例:12X14=? 解:1 1=1 2+ 4 = 6 2 X4 = 8 12X14=168 注:个位相乘,不够两位数要用0占位。 2.头相同,尾互补(尾相加等于10): 口诀:一个头加1后,头乘头,尾乘尾。 例:23X27=? 解:2+1=3 2X3 = 6 3X7 = 21 23>27=621 注:个位相乘,不够两位数要用0占位。 3.第一个乘数互补,另一个乘数数字相同: 口诀:一个头加1后,头乘头,尾乘尾。 例:37用4=? 解:3+1=4 4^=16 7^=28 37X44=1628

注:个位相乘,不够两位数要用0占位 4.几十一乘几十一: 口诀:头乘头,头加头,尾乘尾 例:21X41 = ? 解:2 >4=8 2+4=6 1 X1=1 21>41=861 5.11乘任意数: 口诀:首尾不动下落,中间之和下拉 例:11 >23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分别在首尾 11>3125=254375 注:和满十要进一。 6.十几乘任意数: 口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字, 加下一位数,再向下落。 例:13X326=? 解:13个位是3 3X3+2=11 3X2+6=12 3X6=18 13 X326=4238

VB 第4课 连续自然数求和

第4课连续自然数求和 在运用VB6.0进行程序设计时,经常会发现某一段代码是需要反复执行的,我们把用以实现此种需求的程序结构称为循环结构。在VB6.0中提供的循环结构有两种,一种是For…Next循环;另一种是Do…Loop循环。本节课中,我们将依托一个“连续自然数求和”小程序来引出For...Next循环,并针对其进行简单讨论。 编写意图 流程控制语句是VB6.0程序设计中极其重要的一环,可以说理解并掌握了VB6.0编程中流程控制语句的使用方法,就相当于打开了一扇通往计算机程序设计世界的大门。流程控制语句的学习其实更是一种逻辑思维模式的学习,是一种较为复杂的因果判定思想的形成过程,这种思想在所有的编程语言中也都是通用的。 初中四年级的学生经过多年的学习生活,已经具备了较好的逻辑思维能力和自学能力,所以,本节课我们设计了制作“连续自然数求和”小程序这样一个学习任务,通过这个任务的完成,引出流程控制语句中的For...Next循环结构,同时学习了列表框控件属性的修改方法。 内容分析 课文中出示的“连续自然数求和”小程序共主要涉及到了:修改控件属性、For...Next 循环结构以及简单循环程序的编写、卸载当前窗体四个知识点,其中隐含当前窗体,本节侧重修改控件属性的方法和循环程序的编写这两个知识点地学习。 教学目标 1.知识与技能 ◆理解For...Next循环结构的作用,掌握其语法形式和使用其进行简单循环程序的编写地方法,进而初步形成程序设计中循环程序的概念; ◆列表框控件的属性设置方法。 2.过程与方法 ◆通过学生自读教材和上机对比操作演练,结合前面学习过的控件属性知识,使其能够自行发现并总结出控件属性的修改方法; ◆通过学生自读教材,使学生在对“连续自然数求和”小程序进行分析的过程中理解并掌握For...Next循环结构及运用For...Next语句进行循环程序设计地方法。 3.情感态度与价值观 ◆使学生因自行探究并总结出了控件属性的修改方法而感受探究成功的快乐的同时,进一步增强其自学能力、树立自信心、克服其对计算机编程的恐惧心理; ◆使学生通过对连续自然数进行传统的累加运算与应用循环程序设计“连续自然数求和”程序的对比中认识到计算机程序设计在生活中的作用和意义。

(完整版)常用的巧算和速算方法

小学数学速算与巧算方法例解【转】 速算与巧算 在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19)

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

数列的求和问题(规律总结)

数列的求和问题 知识点一:数列的前项和的相关公式 1.任意数列的第项与前项和之间的关系式: 2.等差数列的前项和公式: (为常数) 当d≠0时,S n是关于n的二次式且常数项为0; 当d=0时(a1≠0),S n=na1是关于n的正比例式. 3.等比数列的前项和公式: 当时,,, 当时,或 知识点二:求数列的前项和的几种常用方法 1.公式法: 如果一个数列是等差或者等比数列,求其前项和可直接利用等差数列或等比数列的前项和公式求和; 2.分组转化法: 把数列的每一项拆分成两项或者多项,或者把数列的项重新组合,或者把整个数列分成两部分等等,使其转化成等差数列或者等比数列等可求和的数列分别进行求和。例如对通项公式为a n=2n+3n的数列求和。 3.倒序相加法: 如果一个数列,与首末两项等距的两项之和等于首末两项之和,可以采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和.例如等差数列前项和公式的推导。对 通项公式为的数列求和。

4.错位相减法: 如果一个数列的通项是由一个非常数列的等差数列与等比数列的对应 项乘积组成的,求和的时候可以采用错位相减法.即错位相减法适用于通项为 (其中是公差d≠0的等差数列,是公比q≠1的等比数列)(也称为“差比数列”) 的数列求前项和.例如对通项公式为的数列求和。 一般步骤: ,则 所以有 注意: ①错位相减法是基于方程思想和数列规律的一种方法。一般都是把前项和的两边都乘以等比数列的公 比q后,再错位相减求出其前项和; ②在使用错位相减法求和时一定要注意讨论等比数列中其公比q是否有可能等于1,若q=1,错位相减法 会不成立. 5.裂项相消法: 把数列的通项拆成两项之差,然后把数列的每一项都按照这种方法拆成两项的差,以达到在求和的时候隔项正负相抵消的目的,使前n项的和变成只剩下若干少数项的和的方法. 例如对通项公式为的数列求和。 常见的拆项公式: ①; ②若为等差数列,且公差d不为0,首项也不为0,则; ③若的通项的分子为非零常数,分母为非常数列的等差数列的两项积的形式时, 则. ④;.

斯特林数和自然数前m项n次方的求和公式

斯特林数和自然数前m 项n 次方的求和公式 将 n 个元素,分成 k 个非空子集,不同的分配方法种数,称为斯特林数(Stirling Number ),记为),(k n S ,n k ≤≤1。 例如,将4个物体d c b a ,,,分成3个非空子集,有下列6种方法: )}(),(),,{(d c b a ,)}(),(),,{(d b c a ,)}(),(),,{(c b d a , )}(),(),,{(d a c b ,)}(),(),,{(c a d b ,)}(),(),,{(b a d c 。 所以,6)3,4(=S 。 斯特林数),(k n S 的值列表如下: 容易看出,有 1),()1,(==n n S n S ,12)2,(1 -=-n n S ,2 )1,(2 = =-C n n S n 。定理1 当 n k ≤≤2 时,有 ),()1,(),1(k n kS k n S k n S +-=+ 。 证 把1+n 个元素分成k 个非空子集,有),1(k n S +种不同分法。 把1+n 个元素分成k 个非空子集,也可以这样考虑:或者将第1+n 个元素单独作为1个子集,其余n 个元素分成1-k 个非空子集,这种情况下有)1,(-k n S 种不同做法;或者先将前n 个元素分成k 个非空子集,有),(k n S 种分法,再将第1+n 个元素插入这k 个子集,有k 种选择,这种情况下有k ),(k n S 种不同做法。所以共有),()1,(k n kS k n S +-种分法。 两种考虑,结果应该是一样的,因此有 ),()1,(),1(k n kS k n S k n S +-=+ 。 如果规定当1时,0),(=k n S ,则公式 ),()1,(),1(k n kS k n S k n S +-=+对 任何正整数n 和任何整数k 都成立。

小学数学解题方法:连续自然数求和的解题技巧

小学数学解题方法:连续自然数求和 一、解题方法归纳: 1.连续自然数求和的方法:头尾两数相加的和×加数的个数÷2 2.连续自然数逢单时求和的方法:中间的加数×加数的个数。 二、范例解析 例1 比一比,看谁算得快。 1+2+3+4+5+6+7+8+9 = ? 解法1 4个10加上5等于45。 解法2 5个9等于45。 解法3 得到9个10,即90,它是和数的2倍,即90÷2 = 45。 说明解法1是利用“凑整”技巧进行简算; 解法2是利用“0”的神奇性配对进行速算; 解法3是常说的高斯求和法速算。 你听说过数学家高斯小时候的故事吗?有一次老师出了一道数学题: “求1+2+3+4+……+100的和”。老师的话音刚落,高斯就举手说:等于5050。 高斯是怎样算的?他将这100个数倒过来,每相对两数的和等于101,共有100个101,将101乘以100后再除以2,结果等于5050。 我们由此得到启发,一组连续自然数相加时,可用下面的公式求和。 头尾两数相加的和×加数的个数÷2 例2 计算下面两题。 ⑴4+5+6+7+8+9+10+11+12+13 = ? ⑵21+22+23+24+25+26+27+28 =? 解⑴4+5+6+7+8+9+10+11+12+13

=(4+13)×10÷2 = 17×10÷2 = 170÷2 = 85 ⑵21+22+23+24+25+26+27+28 =(21+28)×8÷2 = 49×8÷2 = 392÷2 = 196 说明只要的连续自然数求和,不一定要从1开始,均可用此法计算。 例3 求和:53+54+55+56+57+58+59 解法1 53+54+55+56+57+58+59 =(53+59)×7÷2 = 112×7÷2 = 784÷2 = 392 解法2 53+54+55+56+57+58+59 = 56×7 = 392 说明如果相加的连续自然数的个数逢单时,也可用下式计算和: 中间的加数×加数的个数。 例4 求和。 ⑴1+3+5+7+9+11+13+15+17 ⑵24+26+8+30+32 解⑴1+3+5+7+9+11+13+15+17 = 9×9 = 81

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

各种速算巧算技巧总结

各种速算巧算技巧总结(部分) ——187老师 1、头同尾合十: 适用条件:两位数乘两位数,首数相同,尾数相加得十。 例题实战:(2008年,迎春杯,初赛) 53×57-47×43=[(5×5+5)×100+3×7]-[(4×4+4)×100+7×3]=1000 运算说明:首数相乘,再加上一次相同的首数,得到一个一位数或者两位数,作为数1。 个位数字和个位数字相乘,得到一个一位数或者两位数,作为数2。 最后把数1和数2按顺序拼在一起即是结果。 2、尾同头合十: 适用条件:两位数乘两位数,尾数相同,首数相加得十。 例题实战: 28×88=[(2×8+8)×100]+8×8=2464 运算说明:首数相乘,再加上一次相同的尾数,得到一个一位数或者两位数,作为数1。 个位数字和个位数字相乘,得到一个一位数或者两位数,作为数2。 最后把数1和数2按顺序拼在一起即是结果。 3、规律三: 3×4=12 33×34=1122 333×334=111222 3333×3334=11112222 33333×33334=1111122222 333333×333334=111111222222 …… 运算说明:全是数字3的乘数里有几个3,结果里就有几个1和2,1在前,2在后。4、零一数: 101×12=1212 1001×12=12012 10001×12=120012 1001×123=123123 10001×123=1230123 100001×123=12300123 …… 运算说明:使零一数外的乘数的末位数字和零一数的1对其,该乘数的其他数字按次往前排,没有数字对齐的零直接写到结果里即可。 5、11与一个数相乘: 78×11=858 25×11=275 39×11=429 123×11=1353 274×11=3014 ……

相关文档
最新文档