薄膜干涉之等厚资料

薄膜干涉之等厚资料
薄膜干涉之等厚资料

---------------------------------------------------------------最新资料推荐------------------------------------------------------

薄膜干涉之等厚资料

二级物理实验【1】、薄膜干涉中等厚干涉的特点和性质 1、薄膜干涉分振幅法--点光源 Q 发出的一束光投射到两种透明媒质的分界面上时,它携带的能量一部分反射回来,一部分透射过去,,这种分割方式称为分振幅法。

最基本的分振幅干涉装置是一块由透明媒质做成的薄膜。

Q 是点光源。

由 Q 点发出的光射在薄膜的上表面时,它被分割为反射和折射两束光,折射光在薄膜的下表面反射后,又经上表面折射,最后回到原来的媒质,在这里与上表面的反射光束交迭,在两光束交迭的区域里每个点上都有一对相干光线在此相交,如相交于 A, B, C, D 各点, A 点在薄膜表面, B 点在薄膜上面空间里, C 点是两平行光线在无穷远处相交, D 点是光线延长线在薄膜下面空间里。

只要 Q 点发出光束足够宽,相干光束的交迭区可以从薄膜表面附近一直延伸到无穷远。

此时,在广阔的区域里到处都有干涉条纹。

观察薄膜产生的干涉条纹,可以用屏幕直接接收,更多的是利用光具组使干涉条纹成像(或用眼睛直接观察)。

由物像等光程性可知:

两束光在 A, B, C, D 各点的光程差与在 A , B , C , D点的光程差是相等的,即参加干涉的两光束经光具组重新相遇时光程差

1 / 10

是不变的,因此,我们在像平面上得到与物平面内相似的干涉图样,利用此方法,我们不仅可以观察薄膜前的实干涉条纹,还可以观察薄膜后的虚干涉条纹。

普遍地讨论薄膜装置整个交迭区内任意平面上的干涉图样是很复杂的问题,但实际中意义最大的是:

① 厚度不均匀薄膜表面的等厚条纹② 厚度均匀薄膜在无穷远产生的等倾条纹 2、等厚干涉一列光波照射到透明薄膜上,从膜的前、后表面分别反射形成两列相干光波,叠加后产生干涉.其中,对楔形薄膜来说,凡是薄膜厚度相等的一些相邻位置,光的干涉效果相同而形成一条同种情况(譬如光振动加强) 的干涉条纹(亮纹) .随着薄膜厚度的逐渐变化,干涉效果出现周期性变化,一般在薄膜上形成明暗交替相间的干涉条纹图样.称为等厚薄膜干涉.由 Q 点发出的光经薄膜的上表面反射一束光,再经下表面反射一束光,这两束光满足相干条件,它们在 P 点相干迭加,形成干涉条纹。

这是双光束干涉问题,要研究干涉条纹的特征,我们必须先计算这两束光在 P 点的光程差,如图:

I2nEISW =图 2-4 薄膜表面干涉场中光程差的计算又因为 A 和 P 两点很近,夹角很小,作为一级近似,可作垂直于,则有(折射定律)所以其中 i 是光在薄膜内的折射角, n 为薄膜的折射率, h 为 P 点薄膜的厚度由极值方程知:

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 当或 k=0, 1, 2,时当 k=0, 1, 2,时我们先不考虑半波损,因有无半波损不改变干涉条纹形状、间距、反衬度等特征。

薄膜表面干涉条纹的形状与照明和观察方式有很大关系。

我们只考虑正入射情形,即入射光与反射光处处与薄膜表面垂直,这时,。

等厚线薄膜上厚度相等各点的轨迹称为它的等厚线。

因为薄膜折射率 n 均匀,△L 只与 h 有关,光强也取决于h,我们说干涉条纹形状为 I=const 的 P 点轨迹,又因为 I=f(h) 所以I=const 的P 点轨迹,也是=const, =k△L 或△L=const 或h==const 的P 点轨迹,即沿等厚线( ) (p) ()QPQABPL=?ACQPQCQA =( ) (p) ()CPABPL=?()iAPniAPnCPsinsin11==()iihnsintan2=iinhcossin22=htgiAP2=() ihnABPcos2( )pinhiinhLcos2cossin122=?( )pkL=?inkhcos2=MII =( )pinhiinhLcos2cossin122=?m II =0=inhL2=?nL2?的强度相等,薄膜表面上的这种沿等厚线分布的干涉条纹称为等厚干涉条纹当△L=k k=0, 1, 2时,当△L=(k+) k=0, 1, 2时所以相邻两个亮纹(或暗纹)上的光程差相差一个波长,对应的厚度相差,为真空中波长可见等厚干涉条纹可以将薄膜厚度分布情况直观的表现出来,它是研究薄膜性质的一种重要手段。

3 / 10

也是检验精密机械或光学零件的重要方法。

【2】测波长的 5-10 种方法 1、分光计测量法利用白纸上频谱图的特性,频谱宽度是与光的频率的自然对数成正比,而光的三原色频带宽相同,然后由频谱宽度,计算得光的频率为400-770Mhz,由 c=f可知光的波长 2、牛顿环测量法牛顿环等厚干涉形成的第 m 级暗环半径为 6、双棱镜干涉测量光波波长利用干涉条纹与狭缝及像板与狭缝之间的关系测量波长。

7、密集光波分复用系统的波长测量。

8、激光功率计(指针式)光功率表。

9、单缝夫琅禾费衍射实验测量波长。

1 0、法布里-珀罗干涉仪测光波波长等等。

kII =21m II =nh20 =?0 【3】牛顿环的历史牛顿在 1 675 年首先观察到的.将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环.圆环分布是中间疏、边缘密,圆心在接触点 O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.牛顿环是典型的等厚薄膜干涉.平凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状.这种由同一厚度薄膜产生同一干涉条纹的干涉称作

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 等厚干涉.牛顿在光学中的一项重要发现就是牛顿环。

这是他在进一步考察胡克研究的肥皂泡薄膜的色彩问题时提出来的。

具体的, 牛顿环实验是这样的:

取来两块玻璃体,一块是14英尺望远镜用的平凸镜,另一块是50英尺左右望远镜用的大型双凸透镜。

在双凸透镜上放上平凸镜,使其平面向下,当把玻璃体互相压紧时,就会在围绕着接触点的周围出现各种颜色,形成色环。

于是这些颜色又在圆环中心相继消失。

在压紧玻璃体时,在别的颜色中心最后现出的颜色,初次出现时看起来像是一个从周边到中心几乎均匀的色环,再压紧玻璃体时,这色环会逐渐变宽,直到新的颜色在其中心现出。

如此继续下去,第三、第四、第五种以及跟着的别种颜色不断在中心现出,并成为包在最内层颜色外面的一组色环,最后一种颜色是黑点。

反之,如果抬起上面的玻璃体,使其离开下面的透镜,色环的直径就会偏小,其周边宽度则增大,直到其颜色陆续到达中心,后来它们的宽度变得相当大,就比以前更容易认出和训别它们的颜色了。

牛顿测量了六个环的半径(在其最亮的部分测量),发现这样一个规律:

5 / 10

亮环半径的平方值是一个由奇数所构成的算术级数,即1、3、5、7、9、11,而暗环半径的平方值是由偶数构成的算术级数,即2、4、6、8、10、12。

例凸透镜与平板玻璃在接触点附近的横断面,水平轴画出了用整数平方根标的距离:

1=12=1 .41 ,3=1.73,4=2,5=2.24 等等。

在这些距离处,牛顿观察到交替出现的光的极大值和极小值。

从图中看到,两玻璃之间的垂直距离是按简单的算术级数,1、2、3、4、5、6增大的。

这样,知道了凸透镜的半径后,就很容易算出暗环和亮环处的空气层厚度,牛顿当时测量的情况是这样的:

用垂直入射的光线得到的第一个暗环的最暗部分的空气层厚度为1 /1 89000 英寸,将这个厚度的一半乘以级数1、3、5、7、9、11,就可以给出所有亮环的最亮部分的空气层厚度,即为1 /1 78000,3/1 78000,5/1 78000,7/1 78000它们的算术平均值 2/1 78000,4/1 78000,6/1 78000等则是暗环最暗部分的空气层厚度。

牛顿还用水代替空气,从而观察到色环的半径将减小。

他不仅观察了白光的干涉条纹,而且还观察了单色光所呈现的明间相间的干涉条纹。

牛顿环装置常用来检验光学元件表面的准确度.如果改变凸透镜和平板玻璃间的压力,能使其间空气薄膜的厚度发生微小变化,

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 条纹就会移动.用此原理可以精密地测定压力或长度的微小变化.按理说,牛顿环乃是光的波动性的最好证明之一,可牛顿却不从实际出发,而是从他所信奉的微粒说出发来解释牛顿环的形成。

他认为光是一束通过窨高速运动的粒子流,因此为了解释牛顿环的出现,他提出了一个一阵容易反射,一阵容易透射的复杂理论。

根据这一理论,他认为;每条光线在通过任何折射面时都要进入某种短暂的状态,这种状态在光线得进过程中每隔一定时间又复原,并在每次复原时倾向于使光线容易透过下一个折射面,在两次复原之间,则容易被下一个折射面的反射。

他还把每次返回和下一次返回之间所经过的距离称为阵发的间隔。

实际上,牛顿在这里所说的阵发的间隔就是波动中所说的波长。

为什么会这样呢?牛顿却含糊地说:

至于这是什么作用或倾向,它就是光线的圆圈运动或振动,还是介质或别的什么东西的圆圈运动或振动,我这里就不去探讨了。

因此,牛顿虽然发现了牛顿环,并做了精确的定量测定,可以说已经走到了光的波动说的边缘,但由于过分偏爱他的微粒说,始终无法正确解释这个现象。

直到19世纪初,英国科学家托马斯杨才用光的波动说完满地解释了牛顿环实验。

7 / 10

【4】小样本学生分布(t 分布)正态分布( normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

正态分布有两个参数,和,决定了正态分布的位置和形态。

为了应用方便,常将一般的正态变量 X 通过 u 变换[] 转化成标准正态变量 u,以使原来各种形态的正态分布都转换为 =0,=1 的标准正态分布( standard normal distribution) , 亦称 u 分布。

根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定 n(本次试验 n=10)抽取若干个样本时,样本均数的分布仍服从正态分布,即 N(,)。

所以,对样本均数的分布进行 u 变换[] ,也可变换为标准正态分布 N (0, 1) 由于在实际工作中,往往是未知的,常用 s 作为的估计值,为了与 u 变换区别,称为 t 变换 t=,统计量 t 值的分布称为 t 分布。

t 分布特征 1.以 0 为中心,左右对称的单峰分布;2. t 分布是一簇曲线,其形态变化与 n(确切地说与自由度)大小有关。

自由度越小, t 分布曲线越低平;自由度越大, t 分布曲线越接近标准正态分布( u 分布)曲线,如图. 对应于每一个自由度,就有一条 t 分布曲线,每条曲线都有其曲线下统计量 t 的分布规律,计算较复杂。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 学生的 t 分布(或也 t 分布),在概率统计,是一个概率分布出现在的问题,估计是指一个通常的分布式人口时,样本大小是小。

它的基础是受欢迎的学生的 T -测试统计的意义之间的差异两个范例手段,为置信区间之间的差额二人口的手段。

学生的 t 分布是一种特殊情况,对一般性的双曲分布。

学生的分布情况出现时(如在几乎所有实际的统计工作)的人口标准偏差是未知的,并要估算,从数据。

教科书问题的处理标准偏差,因为如果它被称为是两类:

( 1 )那些在该样本规模是如此之大的一个可处理的数据为基础估计的差异,就好像它一定的,和( 2 )这些说明数学推理,在其中的问题,估计标准偏差是暂时忽略,因为这不是一点,作者或导师是当时的解释。

t 分布的概述在概率论和统计学中,学生 t-分布( Student’s t-distribution)应用在当对呈正态分布的母群体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生 t 测定的基础。

t 检定改进了 Z 检定( en: Z-test),不论样本数量大或小皆可应用。

在样本数量大(超过 120 等)时,可以应用 Z 检定,但 Z

9 / 10

检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生 t 检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生 t 检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生 t-分布。

标准正态分布和 t 分布区别(一种方法是将两种分布曲线重叠在一张图中) A、标准正态分布的中部较高, t 分布在水平轴上的收敛不像标准正态分布那么快。

B、 t 分布在其均值周围的聚集程度比标准正态分布要差一些。

C、 t 分布的自由度越大,则该 t 分布的曲线就越接近标准正态分布。

(自由度小于 30 后,差异就很难说了;大于 30 时,差异就很小了)。

D、自由度等于 50 时,两种曲线就几乎相同了。

E、当自由度超过 1 00 时,就可以直接使用标准正态分布表来代替了。

实验三 干涉显微镜测量薄膜厚度

实验三干涉显微镜测量薄膜厚度 一、实验目的 1. 掌握干涉显微镜的工作原理及使用方法; 2. 用干涉显微镜测量薄膜厚度。 二、实验说明 2.1 实验原理 把显微镜和光波干涉仪结合起来设计而成的显微镜为干涉显微镜。干涉显微镜的类型很多,常用的干涉显微镜是以迈克耳逊干涉仪为原型,其原理却都是以劈尖干涉为基础的,下图1为劈尖干涉的示意图: 若在两块平面玻璃间垫一细丝,即形成一个空气劈尖(为便于说明问题图中夸大了细丝的直径)。当一束单色光射入时,则在空气劈尖(n=1)上下两表面所引起的反射光线将相互干涉。若这两束光的光程差恰为半波长的奇数倍时,则发生相消干涉而呈现暗色条纹;若光程差为半波长的偶数倍时,发生加强干涉而得到明亮条纹。一定的明暗条纹对应一定的厚度,所以这些干涉条纹也叫等厚条纹。条纹间的距离l ,随劈尖的夹角而变化,越小,l 越大。 在迈克耳逊干涉仪中,只要某一光程差发生变化,就要引起干涉场中条纹移动,光程差每改变半个波长(),则干涉条纹移动一个条纹间距。故待测样品表面若存在局部不平, 结果会导致干涉条纹发生弯曲, 条纹弯曲的程度是样品表面微观凹凸不平程度的反映, 只要测出条纹的弯曲量就可以求出样品表面的凹凸量。根据这一原理, 可借助该仪器来测量镀膜膜层的厚度. 设M 1、M 2是两个不严格垂直的理想平面,则得到等厚干涉直线条纹。若表面M 2上有沟槽,干涉条纹将发生弯曲或断折,如图2所示。沟槽的深度h 由式(4—1)决定。 (4—1) θθ2λe H h ?= 2λ 图 1 劈尖干涉的示意图图2表面沟槽及干涉条纹的形状图3薄膜与其干涉条纹的形状

式中,H为干涉条纹曲折量,e 为条纹的间距。若用白光照明,e 是指两根接近黑色的干涉条纹中心间的距离。这时λ取540nm (绿光λ=0.53μm=5300?)。若被测件的部分表面镀有厚度为h 的薄膜,则只要测量出干涉条纹间距e 和因镀膜而引起的干涉条纹位移量H,就可算出该薄膜的厚度。如图3所示。 2.26JA 型干涉显微镜的光学系统及构造 2.2.1 6JA 型干涉显微镜的光学系统 本实验用的是6JA 型干涉显微镜, 其光学系统如图1所示, 属于双光束干涉系统。光源1发出的光经聚光镜2投射到孔径光阑4平面上, 视场光阑5不在照明物镜6的前焦面上, 光经分光板7, 被分成两部分: 一部分反射, 另一部分透射. 被反射的光经物镜8射向标准反射镜M1, 再由M1 反射, 射向目镜14; 而从分光板上透射的光线通过补偿板9、物镜10射向工件表面M2, 再由M2反射, 射向目镜14. 在目镜分划板13上两束光产生干涉. 从目镜中可以观察到干涉条纹. 若样品表面平滑,则干涉条纹是平直的. 图五 6JA 型干涉显微镜构造 11a 5b 5a 105 131113 2 2a 2b 2c 14897a 44a 3 15 8 7 16 1b 1c 图4 6JA 型干涉显微镜光学系统 1-光源 2-聚光镜 3,11,15-反光镜 4-孔径光阑 5-视场光阑 6-照明物镜 7-分光板 8,10-物镜 9-补偿板 12-转向棱镜 13-分划板 14-目镜 16-摄影物镜

椭偏光法测量薄膜的厚度和折射率

椭偏法测薄膜厚度和折射率 摘要 本实验通过椭圆偏振光法测量了氟化镁(MgF2)、氧化锆(ZrO2)及二氧化钛(TiO2)等介质薄膜的厚度和折射率,以及Cu和Al金属薄膜的厚度和消光系数。 关键词 椭圆偏振光法介质薄膜金属薄膜椭偏参数复折射率消光系数 一、引言 椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。 二、实验原理 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1) 图(1-1)

这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ,用r1p、r1s表示光线的p分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。由多光束干涉的复振幅计算可知: 其中Eip和Eis 分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。现将上述Eip、Eis 、Erp、Ers四个量写成一个量G,即: 我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。上述公式的过程量转换可由菲涅耳公式和折射公式给出: G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程: [tgψe iΔ]的实数部分= 的实数部分 [tgψe iΔ]的虚数部分= 的虚数部分 若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:

薄膜干涉之等厚资料

二级物理实验 【1】、薄膜干涉中等厚干涉的特点和性质 1、薄膜干涉 分振幅法--点光源Q 发出的一束光投射到两种透明媒质的分界面上时,它 携带的能量一部分反射回来,一部分透射过去,∝,这种分割方式 称为分振幅法。最基本的分振幅干涉装置是一块由透明媒质做成的薄膜。 Q 是点光源。由Q 点发出的光射在薄膜的上表面时,它被分割为反射和折射两束光,折射光在薄膜的下表面反射后,又经上表面折射,最后回到原来的媒质,在这里与上表面的反射光束交迭,在两光束交迭的区域里每个点上都有一对相干光线在此相交,如相交于A,B,C,D 各点,A 点在薄膜表面,B 点在薄膜上面空间里,C 点是两平行光线在无穷远处相交,D 点是光线延长线在薄膜下面空间里。只要Q 点发出光束足够宽,相干光束的交迭区可以从薄膜表面附近一直延伸到无穷远。此时,在广阔的区域里到处都有干涉条纹。 观察薄膜产生的干涉条纹,可以用屏幕直接接收,更多的是利用光具组使干涉条纹成像(或用眼睛直接观察)。 由物像等光程性可知:两束光在A,B,C,D 各点的光程差与在A ′,B ′,C ′,D ′点的光程差是相等的,即参加干涉的两光束经光具组重新相遇时光程差是不变的,因此,我们在像平面上得到与物平面内相似的干涉图样,利用此方法,我们不仅可以观察薄膜前的“实”干涉条纹,还可以观察薄膜后的“虚”干涉条纹。 普遍地讨论薄膜装置整个交迭区内任意平面上的干涉图样是很复杂的问题,但实际中意义最大的是: ① 厚度不均匀薄膜表面的等厚条纹 ② 厚度均匀薄膜在无穷远产生的等倾条纹 2、等厚干涉 一列光波照射到透明薄膜上,从膜的前、后表面分别反射形成两列相干光波,叠加后产生干涉.其中,对楔形薄膜来说,凡是薄膜厚度相等的一些相邻位置,光的干涉效果相同而形成一条同种情况(譬如光振动加强)的干涉条纹(亮纹).随着薄膜厚度的逐渐变化,干涉效果出现周期性变化,一般在薄膜上形成明暗交替相间的干涉条纹图样.称为等厚薄膜干涉. 由Q 点发出的光经薄膜的上表面反射一束光,再经下表面反射一束光,这两束光满足相干条件,它们在P 点相干迭加,形成干涉条纹。 这是双光束干涉问题,要研究干涉条纹的特征,我们必须先计算这两束光在P 点的光程差,如图: I 2nE IS W

等厚干涉实验报告

一、实验目得: 1、、观察牛顿环与劈尖得干涉现象。 2、了解形成等厚干涉现象得条件极其特点。 3、用干涉法测量透镜得曲率半径以及测量物体得微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大得平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜与玻璃之间存在一层从中心向外厚度递增得空气膜, 经空气膜与玻璃之间得上下界面反射得两束光存在光程差, 它们在平凸透镜得凸面(底面)相遇后将发生干涉, 干涉图样就是以接触点为中心得一组明暗相间、内疏外密得同心圆, 称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处得空气薄膜厚度相等, 故称为等厚干涉。牛顿环实验装置得光路图如下图所示: 设射入单色光得波长为λ,在距接触点r k处将产生第k级牛顿环, 此处对应得空气膜厚度为d k, 则空气膜上下两界面依次反射得两束光线得光程差为 式中,n为空气得折射率(一般取1), λ/2就是光从光疏介质(空气)射到光密介质(玻璃)得交界面上反射时产生得半波损失。 根据干涉条件,当光程差为波长得整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上得两束反射光得光程差存在两种情况: 由上页图可得干涉环半径r k, 膜得厚度dk与平凸透镜得曲率半径R之间得关系。由于dk远小于R, 故可以将其平方项忽略而得到。结合以上得两种情况公式,得到: K=1,2,3,…、, 明环 K=0,1,2,…、, 暗环

, 由以上公式课件, r k与d k成二次幂得关系,故牛顿环之间并不就是等距得, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。 而在实际中由于压力形变等原因, 凸透镜与平板玻璃得接触不就是一个理想得点而就是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环得级数与半径无法准确测量。而使用差值法消去附加得光程差,用测量暗环得直径来代替半径,都可以减少以上类型得误差出现。由上可得: 式中,D m、D n分别就是第m级与第n级得暗环直径, 由上式即可计算出曲率半径R。由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定得问题。 凸透镜得曲率半径也可以由作图法得出。测得多组不同得Dm与m, 根据公式,可知只要作图求出斜率, 代入已知得单色光波长, 即可求出凸透镜得曲率半径R。 2.劈尖 将两块光学平玻璃叠合在一起, 并在其另一端插入待测得薄片或细丝(尽可能使其与玻璃得搭接线平行),则在两块玻璃之间形成以空气劈尖, 如下图所示: 当单色光垂直射入时, 在空气薄膜上下两界面反射得两束光发生干涉; 由于空气劈尖厚度相等之处就是平行于两玻璃交线得平行直线, 因此干涉条纹就是一组明暗相间得等距平行条纹, 属于等厚干涉。干涉条件如下: 可知,第k级暗条纹对应得空气劈尖厚度为 由干涉条件可知,当k=0时d0=0,对应玻璃板得搭接处, 为零级暗条纹。若在待测薄物体出出现得就是第N级暗条纹,可知待测薄片得厚度(或细丝得直径)为 实际操作中由于N值较大且干涉条纹细密, 不利于N值得准确测量。可先测出n条干涉条纹得距离l, 在 k=0, 1, 2,…

用迈克尔逊干涉仪测量薄膜厚度

用迈克尔逊干涉仪测量薄膜厚度 (楚雄师范学院 物电系 苏进高 20071041136) 【摘要】 随着社会经济的不断发展,有机薄膜作为一种功能材料,其应用越来越广泛,相应地薄膜的生产规模也不断扩大。在薄膜的生产过程中,厚度作为薄膜的一个重要指标,对生产生活有着很大的影响,本文采用迈克尔干涉仪测量薄膜的厚度,其原理简单,操作方便,精确度高。 【关键词】 迈克尔干涉仪;薄膜折射率,薄膜厚度, Use Michelson interferometer by measuring film thickness (The Department of Electronic Information Science and Technology of ChuXiong Normal University) Abstract: With the development of social economy, the application of organic thin films is more and more prevalent as a sort of functionality material. Accordingly, the scope of the production of the organic thin films is enlarged. thickness is one of the quality for the thin films has been a significant process in the production of the organic thin films. Production has a great impact on life, Michael interferometer using thin-film thickness measurement, the principle of a simple, convenient operation, high accuracy. 引言 塑料薄膜因为有很好的不透水性,价钱便宜、轻巧等优点,因此在生产生活中有着十分广泛的运用,而厚度作为薄膜的一个重要指标,起着非常重要的作用。下面我们介绍如何用迈克尔逊干涉仪来测量薄膜的厚度,这种方法原理简单,操作方便,精确度高 测量装置及原理 E 测量装置如图所示,其中1M 、2M 是两块互相垂直的平面反射镜,1G 为分光板,2G 是补

薄膜干涉

§10.5 薄膜干涉 薄膜干涉:如阳光照射下的肥皂膜,水面上的油膜,蜻蜓、蝉等昆虫的翅膀上呈现的彩色花纹,车床车削下来的钢铁碎屑上呈现的蓝色光谱等。 薄膜干涉的特点:厚度不均匀的薄膜表面上的等厚干涉和厚度均匀薄膜在无穷远出形成的等倾干涉。 一、薄膜干涉 当一束光射到两种介质的界面时,将被分成两束,一束为反射光,另一束为折射光,从能量守恒的角度来看,反射光和折射光的振幅都要小于入射光的振幅,这相当于振幅被“分割”了。 两光线 a , b 在焦平面上P 点相交时的光程差 Δ取决于n 1, n 2, n 3的性质。 1. 劈形膜 光程差: 上表面反射的反射光1光密到光疏,有半波 损失;下表面反射的反射光2光疏到光密,没有半波损失(若是介质膜放在空气中,则上表面没有半波损失,下表面有半波损失)。 光程差 或者 讨论: 1 在劈形膜棱边处e=0, 因而形成暗纹。 2 相邻两条明纹(或暗纹)在劈形膜表面的距离。 1 n n <干涉条件为 ,1,2, k k λ=明纹 暗纹 22 Δne λ =+ = 2λ ? =(21),0,1,2k k λ +=,1,2, k k λ=暗纹 明纹ne = (21),0,1, 4 k k λ + =2,1,2, 4 k k λ =暗纹 明纹

3、干涉条纹的移动 动 应用:1)用劈形膜干涉测量薄片厚度 见上图 在牛顿环中,θ逐渐增大,故条纹中 心疏,边缘密。 另由暗环半径公式 r 1 : r 2 : r 3 = 1: (2)1/2 : (3)1/2 k ? ? r k ? , 条纹间距? 3)中间条纹级次低 思考: (1) 如果平凸透镜上移,条纹怎样移动 平晶 r ?=22e λ =+=2 e λ?=e L θ?=

薄膜厚度检测原理及系统

薄膜厚度检测原理及系统 摘要:本文对目前常用的薄膜厚度光学测量方法进行了深入的研究和讨论,总结并归纳了每一种测量方法的优缺点、以及使用条件。基于原子力显微镜的薄膜厚度检测系统,该系统得到薄膜厚度,能够精确测量各种不同性质的薄膜的厚度。关键词:薄膜厚度;测量;原子力显微镜 Abstract: In this paper, the advantage and disadvantage, usable condition of many usually used optical measurement methods of thin film thickness which are analyzed and discussed in detail ,are been summarized. A measuring system of film thickness based on atomic force microscope has been developed, based on this system could measure the thickness of various films. Key words:film thickness ; measurement; AFM 1引言 随着科技的发展以及精密仪器等技术的迅速发展,薄膜技术的应用变得更为广泛,不仅在光学领域,也被广泛地应用于微电子技术、通讯、宇航工程等各种不同的领域。薄膜的厚度很大程度上决定了薄膜的力学性能,电磁性能,光电性能和光学性能,薄膜厚度又是薄膜设计和工艺制造的关键参数之一,为了制备出合乎要求的薄膜也离不开高精度的薄膜厚度检测,因此薄膜厚度的测量一直是人们密切关注和不断研究改进的课题。 在众多类检测方法当中,由于光学检测方法具有非接触性、高灵敏度性、高精度性、快速、准确、不损伤薄膜等优点,成为目前被应用最广泛的方法。在对薄膜厚度检测的理论中,按照测量方法所依据的光学原理进行分类,可分为干涉、衍射、透射、反射、偏振等方法,也可根据光源分为激光测量和白光测量[1]。目前,光谱法、椭圆偏振法和干涉法是人们讨论最多和应用最广泛的测量方法。随着光学薄膜的材料和制备技术的不断提高,传统的薄膜厚度的测量方法己经不能

用迈克尔逊干涉仪测量单层薄膜的厚度和折射率

用迈克尔逊干涉仪测量单层薄膜的厚度和折射率 实验的改进 于海峰 蒋晓冬 韩厚年 (淮阴工学院 淮安 223003) 摘要:迈克尔逊干涉实验是大学物理实验中的一个重要实验,本文对迈克尔逊干涉仪测定薄膜的厚度和折射率实验的传统方法进行了改进,我们对原测量仪器稍做调整,提高了条纹视见度,减少了测量误差,提高了测量精度。 关键词:迈克尔逊干涉仪;光程;薄膜厚度;折射率;等厚干涉;白光干涉 引言 目前测量薄膜厚度和折射率的方法有多种,例如椭偏法、准波导法等等[1][2]。其中在实验室中最常用、最简单方便的方法是利用迈克尔逊干涉方法来进行测量。 迈克尔逊干涉仪是一种典型的分振幅双光束干涉装置,可用于观察光的干涉现象,测定单色光的波长,测定光源的相干长度。附加适当装置后,可以扩大实验范围,其中,用来测量薄膜的厚度和折射率就是其扩展实验之一。 问题提出 用迈克尔逊干涉仪测薄膜的厚度和折射率, 是利用在光程差约等于零时观测白光的彩色等厚干涉条纹。其做法是先调出白光条纹,然后将薄膜放在分光板2G 与反射镜2M 之间(薄膜与光线垂直),或薄 膜贴在2M 镜上,再调出零光程差的彩色干涉条纹,反射镜移动距离d 与薄透明体厚度l 、透明体折射率n 、空气折射率0n 有关系式: 0()d l n n =- 但是,利用上述测量单层薄膜的折射率和厚度[3][4] 的过程中存在着诸多的缺陷,首先要看到较好的等厚干涉条纹,要求单层薄膜本身较平整,以往简单的插入薄膜并不能保证薄膜的平整性,而把薄膜贴在2M 镜上,膜与镜之间也容易产生气泡,影响测量的精确性。再者要求白光等厚干涉条纹的可观测性较强,便于测量。本实验介绍了用迈克尔逊干涉仪方便,简单、清晰的观测等厚干涉条纹,进而用来测量单层薄膜厚度和折射率的方法。 实验原理 用迈克尔逊干涉仪测单层薄膜的厚度和折射率的实验装置如图1

大学物理等厚干涉

§5-4 薄膜干涉 一、薄膜干涉的分类 薄膜干涉是分振幅干涉! 日常见到的薄膜干涉例子: 肥皂泡, 雨天地上的油膜, 昆虫翅膀上的彩色 …… 膜为何要薄?——光的相干长度所限 考察反射光: 1、2两束相干光的光程差为: ()212 n AC CB n AD λ ?+-+ = 根据几何关系 cos e AC CB γ == , 2t a n A B e γ = , s i n 2t a n s i A D A B i e i γ== 31

得 22c o s 2 en λ γ?=+ 22 λ = (自己推导) 讨论: (1)? 与 e ,i 有关 当 e 一定时,?与 i 有关,同一条纹的入射角相同 等倾干涉 当 i 一定时,?与 e 有关,同一条纹对应着厚度相同的地方 等厚干涉 (2)2 λ ?=?+透 反 (理解:能量守恒) 反射光与透射光的干涉情况相反! 薄膜的折射率为2n ,上下两边介质的折射率分别为1n 和 3n 当123n n n <>时,反射光:A 有,C 无 有 透射光:C 无,B 无 无 (3)半波损失分析 123n n n << :A 有,C 有 123n n n >> :A 无,C 无 123n n n <> :A 有,C 无 123n n n >< :A 无,C 有 二、劈尖干涉 1、劈尖干涉 劈尖:夹角很小的两个平面所构成的薄膜。 例如: 反射光无半波损失 反射光有半波损失

用平行单色光垂直照射: 由于θ很小,可简化为右图的形式 考虑从厚度为e 的A 点入射的一条光线,反射光1和2叠加。注意这种情况下从下表面反射的光线有半波损失。 上下表面反射的两相干光的光程差为: 22 2n e λ ?=+ (半波损失具体情况具体分析) 222n e k λλ +?== (1,2,k = ) 明 ()222212 n e k λλ ?==++ (0,1,2,k = ) 暗 关注第k 级亮纹 22 2n e k λ λ=+ 该级亮纹对应着劈尖上厚度相同的地方! 劈尖上厚度相同的地方,对应着一条明或暗的条纹 ——等厚干涉条纹 2、条纹形状 等厚的地方是平行于棱边的直线 ? 直条纹! θ:451010-- r a d θ 2 n e 1 n 3 n 21 =31 n n =

等倾干涉与等厚干涉的比较

目录 本科生毕业论文诚信声明 (1) 等厚干涉与等倾干涉的比较 (2) 中文摘要 (2) 英文摘要 (2) 1. 引言 (2) 2 等厚干涉和等倾干涉 (2) 2.1等厚干涉 (2) 2.2等倾干涉 (3) 3.干涉条纹之比较 (4) 3.1 牛顿环干涉条纹的半径和间距 (4) 3.2等倾干涉条纹的半径和间距 (4) 3.3 两种干涉条纹形状的比较 (5) 4 .干涉条纹移动规律之比较 (5) 参考文献 (5) 致谢 (6)

本科生毕业论文诚信声明 本人郑重声明:所呈交的本科毕业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二0一年月日

等厚干涉与等倾干涉的比较 刘xx,付文羽 (陇东学院电气工程学院,甘肃庆阳 74500)摘要:对牛顿环等厚干涉和薄膜等倾干涉条纹形成原理, 干涉条纹的半径、间距、干涉级次等进行比较和分析, 揭示两种相似条纹的本质区别。 关键词:等厚干涉等倾干涉条纹半径条纹间距干涉级次 Thickness Interference And Isoclinic Interference LIU xx, FU Wen-yu (Electrical Engineering College,Longdong University,Qingyang 74500,Gansu) Abstract:Of Newton ring thickness interference and film isoclinic interference fringe formation principle, the radius of the interference fringes,spacing,interference levels compare and analysis,reveals the essential difference between two similar stripe. Key Words: Isopach interference Isoclinic interference Stripe radius Fringe spacing Interference levels 1 引言 在光学教学中,关于等倾干涉和等厚干涉学生理解起来往往比较困难,有时显得似是而非,容易望文生义从字面上认为“等厚干涉”是指薄膜厚度是等厚的干涉这一错误结论,从而把等倾干涉和等厚干涉混淆起来,笔者通过几年的教学,总结出了等倾干涉和等厚干涉的异同点,以便学习。 2 等厚干涉和等倾干涉 等倾干涉和等厚干涉是薄膜干涉的两种典型形式。薄膜干涉是由薄膜上、下表面反射(或折射)光束相遇而产生的一种干涉现象。 簿膜干涉分两种:一种称做等厚干涉,这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹。薄膜厚度相同的地方形成同一级干涉条纹, 故称等厚干涉。牛顿环和楔形平板干涉都属等厚干涉。另一种称做等倾干涉。当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经薄膜上、下表面反射(或折射)后相遇形成同一级干涉条纹,不同的干涉明纹或暗纹对应不同的

用薄膜测厚仪测量薄膜厚度及折射率

材料物理实验报告 实验时间 年 月 日 [实验名称] 用薄膜测厚仪测量薄膜厚度及折射率 [实验目的] 1、了解测量薄膜厚度及折射率的方法,熟悉测厚仪工作的基本原理。 2、通过本实验了解薄膜表面反射光和薄膜与基底界面的反射光相干形成反射谱原理。 3、借助光学常数,对薄膜材料的光学性能进行分析。 [实验仪器] 测厚仪、已制备好薄膜数片、参考反射板(硅片) [实验原理] SGC-10薄膜测厚仪,适用于介质,半导体,薄金属,薄膜滤波器和液晶等薄膜和涂层的厚度测量。该薄膜测厚仪采用new-span 公司先进的薄膜测厚技术,基于白光干涉的原理来测定薄膜的厚度和光学常数(折射率n ,消光系数k )。它通过分析薄膜表面的反射光和薄膜与基底界面的反射光相干形成的反射谱,用相应的软件来拟合运算,得到单层或多层膜系各层的厚度d ,折射率n ,消光系数k 。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1) 图(1-1) 这里我们用2δ表示相邻两分波的相位差,其中 δ=2πdn2cos φ2/λ ,用r1p 、 r1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r2p 、r2s 表示光线的p 分、s 分量在界面2、3间的反射系数。 由多光束干涉的复振幅计算可知: 姓名: 范丽晶 班级:应用物理071 学号: 07411200126 成绩:

其中Eip和Eis 分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。现将上述Eip、Eis 、Erp、Ers四个量写成一个量G,即: 我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。上述公式的过程量转换可由菲涅耳公式和折射公式给出: G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程: [tgψe iΔ]的实数部分= 的实数部分 [tgψe iΔ]的虚数部分= 的虚数部分 若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:

白光等厚干涉位置的确定

图 3-16-1 迈克尔逊干涉仪光路图 白光的等厚干涉位置的确定实验方案 一.实验题目 白光等厚干涉位置的确定 二.实验目的 1)了解迈克尔逊干涉仪的光学结构及干涉原理, 2)学习其调节和使用方法; 3)习一种测定光波波长的方法,加深对等厚干涉的理解。 三.实验仪器 迈克尔逊干涉仪、白炽灯,透镜 四.实验原理 1.干涉仪的光学结构 迈克尔逊干涉仪的光路和结构如图3-16-1与3-16-2所示。M 1、M 2是一对精密磨光的平面反射镜,M 1的位置是固定的,M 2可沿导轨 前后移动。G 1、G 2是厚度和折射率都完全相同的一对平 行玻璃板,与M 1、M 2均成45°角。G 1的一个表面镀有 半反射、半透射膜A ,使射到其上的光线分为光强度差不 多相等的反射光和透射光;G 1称为分光板。当光照到G 1 上时,在半透膜上分成相互垂直的两束光,透射光(1) 射到M 1,经M 1反射后,透过G 2,在G 1的半透膜上反射 后射向E ;反射光(2)射到M 2,经M 2反射后,透过G 1 射向E 。由于光线(2)前后共通过G 1三次,而光线(1) 只通过G 1一次,有了G 2,它们在玻璃中的光程便相等了, 于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G 2称为补偿板。当观察者从E 处向G 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.等光程位置的确定 当M 2与M 1ˊ不完全平行时,M 2和M 1ˊ之间形成楔形空气膜,一般情况下

干涉的分类和薄膜干涉的分类

实验十五用牛顿环测量球面的曲率半径 一、干涉的分类和薄膜干涉的分类 干涉:是指满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布. 干涉的种类: 1、相长干涉(constructive interference): 两波重叠时,合成波的振幅大于成分波的振幅者,称为相长干涉或建设性干涉。 若两波刚好同相干涉,会产生最大的振幅,称为完全相长干涉或完全建设性干涉(fully constructive interference)。 2、相消干涉(destructive interference): 两波重叠时,合成波的振幅小于成分波的振幅者,称为相消干涉或破坏性干涉。 若两波刚好反相干涉,会产生最小的振幅,称为完全相消干涉或完全破坏性干涉(fully destructive interference)。 薄膜干涉的分类: 等倾干涉和等厚干涉是薄膜干涉的两种典型形式 等倾干涉:由薄膜上、下表面反射(或折射)光束相遇而产生的干涉.薄膜通常由厚度很小的透明介质形成.如肥皂泡膜、水面上的油膜、两片玻璃间所夹的空气膜、照相机镜头上所镀的介质膜等.比较简单的薄膜干涉有两种,一种称做等厚干涉,这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉.另一种称做等倾干涉.当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经上、下表面反射(或折射)后相遇形成同一条干涉条纹,不同的干涉明纹或暗纹对应不同的倾角,这种干涉称做等倾干涉.等倾干涉一般采用扩展光源,并通过透镜观察. 等厚干涉:把两块干净的玻璃片紧紧压叠,两玻璃片间的空气层就形成空气薄膜.用水银灯或纳灯作为光源,就可以观察到薄膜干涉现象.如果玻璃内表面不很平,所夹空气层厚度不均匀,观察到的将是一些不规则的等厚干涉条纹,通常是一些不规则的同心环.若用很平的玻璃片(如显微镜的承物片)则会出现一些平行条纹.手指用力压紧玻璃片时,空气膜厚度变化,条纹也随之改变.根据这个道理,可以测定平面的平直度.测定的精度很高,甚至几分之一波长那么小的隆起或下陷都可以从条纹的弯曲上检测出来.若使两个很平的玻璃板间有一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可用来测很小的长度. 二、等厚干涉的特点 明暗相间的同心圆环;级次中心低、边缘高;中心疏,边缘密的同心圆环. 三、牛顿环的历史

薄膜干涉之等厚资料

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 薄膜干涉之等厚资料 二级物理实验【1】、薄膜干涉中等厚干涉的特点和性质 1、薄膜干涉分振幅法--点光源 Q 发出的一束光投射到两种透明媒质的分界面上时,它携带的能量一部分反射回来,一部分透射过去,,这种分割方式称为分振幅法。 最基本的分振幅干涉装置是一块由透明媒质做成的薄膜。 Q 是点光源。 由 Q 点发出的光射在薄膜的上表面时,它被分割为反射和折射两束光,折射光在薄膜的下表面反射后,又经上表面折射,最后回到原来的媒质,在这里与上表面的反射光束交迭,在两光束交迭的区域里每个点上都有一对相干光线在此相交,如相交于 A, B, C, D 各点, A 点在薄膜表面, B 点在薄膜上面空间里, C 点是两平行光线在无穷远处相交, D 点是光线延长线在薄膜下面空间里。 只要 Q 点发出光束足够宽,相干光束的交迭区可以从薄膜表面附近一直延伸到无穷远。 此时,在广阔的区域里到处都有干涉条纹。 观察薄膜产生的干涉条纹,可以用屏幕直接接收,更多的是利用光具组使干涉条纹成像(或用眼睛直接观察)。 由物像等光程性可知: 两束光在 A, B, C, D 各点的光程差与在 A , B , C , D点的光程差是相等的,即参加干涉的两光束经光具组重新相遇时光程差 1 / 10

是不变的,因此,我们在像平面上得到与物平面内相似的干涉图样,利用此方法,我们不仅可以观察薄膜前的实干涉条纹,还可以观察薄膜后的虚干涉条纹。 普遍地讨论薄膜装置整个交迭区内任意平面上的干涉图样是很复杂的问题,但实际中意义最大的是: ① 厚度不均匀薄膜表面的等厚条纹② 厚度均匀薄膜在无穷远产生的等倾条纹 2、等厚干涉一列光波照射到透明薄膜上,从膜的前、后表面分别反射形成两列相干光波,叠加后产生干涉.其中,对楔形薄膜来说,凡是薄膜厚度相等的一些相邻位置,光的干涉效果相同而形成一条同种情况(譬如光振动加强) 的干涉条纹(亮纹) .随着薄膜厚度的逐渐变化,干涉效果出现周期性变化,一般在薄膜上形成明暗交替相间的干涉条纹图样.称为等厚薄膜干涉.由 Q 点发出的光经薄膜的上表面反射一束光,再经下表面反射一束光,这两束光满足相干条件,它们在 P 点相干迭加,形成干涉条纹。 这是双光束干涉问题,要研究干涉条纹的特征,我们必须先计算这两束光在 P 点的光程差,如图: I2nEISW =图 2-4 薄膜表面干涉场中光程差的计算又因为 A 和 P 两点很近,夹角很小,作为一级近似,可作垂直于,则有(折射定律)所以其中 i 是光在薄膜内的折射角, n 为薄膜的折射率, h 为 P 点薄膜的厚度由极值方程知:

相关文档
最新文档