场地特征对剪力墙结构地震响应的影响分析

场地特征对剪力墙结构地震响应的影响分析
场地特征对剪力墙结构地震响应的影响分析

场地特征对剪力墙结构地震响应的影响分析

摘要:振型分解反应谱法是高层建筑结构抗震设计

的重要分析方法。文章采用《建筑抗震设计规范》

(GB50011-2010)提供的振型分解反应谱法,通过三个不同场地条件、不同高度的典型剪力墙结构工程案例,分析不同设计地震分组、不同场地类别下结构地震响应的差异,研究场地特征对地震设计反应谱和剪力墙结构地震响应的影响规律。

关键词:振型分解反应谱法;场地特征;剪力墙结构;

地震响应

1 概述振型分解反应谱法是高层建筑结构抗震设计的重要分

析方法。[1]《建筑抗震设计规范》(GB50011-2010)(以下简称《抗规》)以地震影响系数曲线的形式给出了地震设计反

应谱。[2]相同地震烈度、相同场地条件时,影响地震设计反

应谱的因素有很多,如震源机制、震级大小、震中距远近等

抗规》考虑地震作用时,以地震烈度为基础,通过场地特征周期Tg 反映设计地震分组、场地类别对地震设计反应谱的场地土软硬程度和覆盖层厚度的影响。

影响。[3]其中,设计地震分组区分震源远近,场地类别体现

文章采用振型分解反应谱法,通过三个不同场地条件、

不同高度的典型剪力墙结构工程案例,研究设计地震分组、场地类别对地震设计反应谱和剪力墙结构地震响应的影响规律。

2工程案例

工程一位于浙江省湖州市,6度(0.05g)区,剪力墙结

构,设计地震分组第一组,rn类场地,场地特征周期0.45s,多遇地震水平地震影响系数最大值0.04,地上11 层、地下1

层,建筑平面长度21.2m、宽度12.6m,结构高度31.9m,

第一、第二阶周期分别为 1.229s、1.160s。

工程二位于福建省福州市,7度(0.10g)区,剪力墙结

构,设计地震分组第二组,rn类场地,场地特征周期0.55s,

多遇地震水平地震影响系数最大值0.08,地上18层、地下1 层,建筑平面长度35.9m、宽度20.6m,结构高度52.4m ,

第一、第二阶周期分别为 1.791s、1.628s。

工程三位于安徽省阜阳市,7度(0.10g)区,剪力墙结

构,设计地震分组第一组,rn类场地,场地特征周期0.45s,多遇地震水平地震影响系数最大值0.08,地上34 层、地下1

层,建筑平面长度33.5m、宽度16.4m,结构高度98.6m ,

第一、第二阶周期分别为 3.085s、2.905s。

3场地特征对地震设计反应谱的影响

抗规》以地震影响系数曲线的形式给出了地震设计反

应谱,通过场地特征周期Tg 反映设计地震分组、场地类别对地震设计反应谱的影响,不同的场地特征周期Tg 对应不同的地震影响系数曲线。以工程一为例,多遇地震时,结构阻尼比?啄取5%,不同设计地震分组、不同场地类别的地震影响系数曲线如图1所示。图1中T1、T2对应工程一的第一、第二阶周期。

由图2 可知,设计地震分组和场地类别对应的场地特征

周期Tg越大,地震影响系数?琢值越大,且地震影响系数曲线受设计地震分组的影响要小于受场地类别的影响。场地特征对地震设计反应谱的影响主要集中在地震影响系数曲线的速度控制段,对位移控制段影响较小,对加速度控制段则没有影响。以工程一为例,第一、第二阶周期处于地震影响系数曲线的速度控制段,不同设计地震分组对?琢值影响的变化幅度均匀,约15?20%,不同场地类别对?琢值影响的变化幅度差异较大,约25?40%。

4场地特征对剪力墙结构地震响应的影响根据SATWE的计算结果,不同设计地震分组、不同场地

类别时,三个工程案例的X向结构地震响应如表2、表3所

示,X向结构层间位移角曲线如图3、图4所示

工程一的结构基本周期较短,不同设计地震分组、不同

场地类别时,结构基本周期均处于地震影响系数曲线的速度

控制段。由表1 可知,设计地震分组每提高一级,结构地震

响应提高约20%;1 1、H、m类场地时,场地类别每提高

级,结构地震响应提高约20%,W类场地时,结构地震响

应提高约40%。由图2可知,不同设计地震分组及I 1、n、in类场地时,层间位移角曲线变化幅度均匀,W类场地时,

层间位移角曲线变化幅度增大较多。

工程二的结构基本周期较短,不同设计地震分组及n、

m、w类场地时,结构基本周期均处于地震影响系数曲线的

速度控制段,i 1类场地时,结构基本周期处于地震影响系数曲线的位移控制段。由表2可知,设计地震分组每提高级,结构地震响应提高约15%;不同场地类别时,结构地震

响应的变化幅度差异较大,n类场地较I 1类场地提高约io%,m类场地较n类场地提高约20%,w类场地较n类场地提高约30%。由图3 可知,不同设计地震分组时,层间位移角曲线变化幅度均匀,i i、n类场地时,层间位移角曲线变化幅度较小,m、w类场地时,层间位移角曲线变化幅度增大较多。

工程三的结构基本周期较长,设计地震分组第三组及W

类场地时,结构基本周期均处于地震影响系数曲线的速度控

制段,设计地震分组第一组、第二组及I i、n、m类场地

时,结构基本周期均处于地震影响系数曲线的位移控制段。

度差异较大,第二组较第一组提高约5%,第三组较第二组

由表3 可知,不同设计地震分组时,结构地震响应的变化幅

提高约15%;11、n、rn类场地时,场地类别每提高一级,

结构地震响应提高约5%,w类场地时,结构地震响应提高约20%。由图4可知,设计地震分组第一组、第二组及I 1、

n、rn类场地时,层间位移角曲线变化幅度均匀且幅度较小,

设计地震分组第三组及W类场地时,层间位移角曲线变化幅度增大较多。

综上所述,场地特征对剪力墙结构地震响应、层间位移

角曲线均有较大影响,且场地类别的影响要大于设计地震分组的影响。当结构基本周期处于地震影响系数曲线的速度控制段时,场地特征对剪力墙

结构影响较大,结构地震响应、层间位移角曲线变化幅度均匀,W类场地时,由于场地特征周期Tg提高较多,结构地震响应、层间位移角曲线变化幅度增大较多。随着建筑高度增加、结构周期延长,场地特征对剪力墙结构地震响应的影响逐渐减小。当结构基本周期处于地震影响系数曲线的位移控制段时,场地特征对剪力墙结构影响较小,结构地震响应、层间位移角曲线变化幅度较小。

5 结束语文章采用振型分解反应谱法,通过三个典型的剪力墙结

构工程案例,研究场地特征对地震设计反应谱和剪力墙结构地震响应的影响,得到以下结论:(1)场地特征对地震设计反应谱的影响主要集中在地震影响系数曲线的速度控制段,对位移控制段影响较小,对加速度控制段则没有影响。地震

影响系数曲线受设计地震分组的影响要小于受场地类别的影响。(2)当结构基本周期处于地震影响系数曲线的速度控制段时,场地特征对剪力墙结构影响较大,设计地震分组或

场地类别每提高一级,结构地震响应提高约15?20%,W类场地时,结构地震响应提高约30?40%。随着建筑高度增加、结构周期延长,场地特征对剪力墙结构地震响应的影响逐渐减小。(3)当结构基本周期处于地震影响系数曲线的位移控

制段时,场地特征对剪力墙结构影响较小,设计地震分组或

场地类别每提高一级,结构地震响应提高不大于10%。

参考文献

[1]赵西安.高层建筑结构抗震设计的若干问题[J].建筑科

学,1994(1).

[2]GB50011-2010. 中华人民共和国国家标准. 建筑抗震设计规范[S].北京: 中国建筑工业出版社,2010.

[3]吕悦军,等.场地类别条件对地震参数影响的关键问题

[J].震灾防御技术,2008,6(3).

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

框架结构地震响应时程分析的计算模型

框架结构地震响应时程分析的计算模型 摘要:在结构进行地震响应时程分析时,必须首先确定结构的计算模型,以便确立结构的层间刚度。在地震作用下,结构计算模型是结构进行地震响应时分析的主体,由几何模型和物理模型两部分组成。其中几何模型反映了结构计算模型的几何构成,物理模型反映了材料或构件的力学性能。目前在工程上常用的计算模型主要有层间模型、杆系模型和杆系—层间模型。本文针对这三种模型进行全面的分析,并对它们的优缺点展开论述。 1前言 在求解结构在地震作用下的运动方程时,必须要计算结构的刚度矩阵[k],而要计算结构的刚度矩阵[k],就得确定结构的计算模型。因此,确定结构的计算模型是结构进行动力分析时必不可少的内容。对于多层框架结构,目前应用最广泛的模型是层间模型、杆系模型和杆系—层间模型。 2 层间模型 层间模型是在假定建筑各层楼板在其自身平面内刚度无穷大,水平地震作用下同层各竖向位移相同,以及建筑结构刚度中心和质量中心相重合,水平地震作用下没有绕竖轴扭转发生的基础上建立起来的。在这种模型中,将结构视为一根竖向杆,结构的质量集中于各楼层处,如图1(a)所示。 (a) (b) (c) (d) 图1 层间模型 (a)层间模型一般形式;(b)层间剪切模型;(c)层间弯曲模型;(d) 层间弯剪模型计算时,层间模型取各层为基本计算单元,采用层恢复力模型来表示地震作用过程中层刚度随层剪力的变化关系,而不考虑弹塑性阶段层刚度沿层高的变化。其几何模型相当于串联质点模型,物理模型的重要参数是层间刚度及其非线性变化规律。根据结构形式、构造特点以及结构侧向变形情况不同,层间模型又分为层间剪切模型、层间弯曲模型及层间弯剪模型,如图1(b)—(d)所示。其中,层间弯曲模型主要用于结构侧向变形以弯曲为主的剪力墙结构中。 而在进行框架结构动力分析时,常用的层间模型是层间剪切模型和层间弯剪模型。当框架横梁与柱的线刚度之比较大时,即“强梁弱住”型框架结构,在振动过程中各楼层始终保持水平,结构的变形表现为层间的错动,其侧向变形主要是层间剪切变形,那么应该采用层间剪切模型。 当框架梁对柱的约束相对较弱时,如一些高层框架,即“强柱弱梁”型结构,其侧向变形包含有层间弯曲和剪切两种成分,层间剪切模型已不能完全反映其变形特点,那么应该采用层间弯剪模型。 层间模型的优点在于自由度数较少,动力方程逐步积分所耗时也较少,但方法比较粗糙,计算精度较差,无法求出结构各杆件的时程反应,也不能确定结构各杆单元的内力和变形。因此,在工程实践中,层间模型主要是用于确定结构的层间剪力和层间侧移,以校核结构在地震作用下层间剪力是否超过层间极限承载力和检验结构在地震作用下的薄弱层位置。 3 杆系模型 杆系模型是较为精确的计算模型,它是在假定楼板在其自身平面内为绝对刚性的基础上建立起来的。这种模型将整个框架结构的梁柱构件离散为杆元,以结构的各杆件作为基本计算单元,将结构的质量集中于框架的各个节点,如图2所示。

地下结构地震破坏形式与抗震分析方法综述

地下结构地震破坏形式与抗震分析方法综述 摘要:随着人口的在激增以及经济的发展,人们的需求也开始狂飙式的增长。然而,城市的空间有限,地面空间已经被充分利用,人们的视线开始转为地下,地下结构的开发缓解了城市的地面压力。然而,由于地下结构的抗震技术的发展还并不成熟,在地震后,往往会造成地下结构的损坏甚至直接丧失继续工作的能力,给人们的财产安全带来威胁,影响人们的正常生活。因此在此文中对地下结构的震害形式以及近年来地下结构抗震分析的研究成果进行展示。以加深对地下结构震害的了解,并引起人们对地下结构抗震减震的重视。 关键词:地下结构抗震,震害形式,抗震分析,抗震减震 0 引言 地震是自然界自然界一种常见的自然灾害,地球上每年约发生500多万次地震,即每天要发生上万次地震。其中绝大多数太小或太远以至于人们感觉不到。真正能对人类造成严重危害的地震大约有一二十次,能造成特别严重灾害的地震大约有一两次。然而,这种地震不仅仅会给损害人们的财产安全,更有甚者会威胁到生命安全。 以往的抗震研究主要集中在地上建筑。认为地下结构受到的外界环境较少,各方向约束较多,刚度较大,且高度较小,加之过去地下结构的建设规模相对较少,地下结构受地震作用引起的结构的严重破坏的相关资料也较少,因此地下结构的工程抗震研究及设计长期未得到足够的重视。 1923年日本关东大地震(M8.2),震区内116座铁路隧道,有82座受到破坏;1952 年美国加州克恩郡地震(M7.6),造成南太平洋铁路的四座隧道损坏严重;1976年唐山地震(M7.8),唐山市给水系统完全瘫痪,秦京输油管道发生五处破坏;1978年日本伊豆尾岛地震(M7.0)震后出现了横贯隧道的断裂,隧道衬砌出现了一系列的破坏;特别是1995年日本阪神大地震(M7.2)中,神户市及阪神地区几座城市的供水系统和污水排放系统受到严重破坏,其中神户市供系统完全破坏,并基本丧失功能。神户市部分地铁车站和区间隧道受到不同程度的破坏,其中大开站最为严重,一半以上的中柱完全倒塌,导致顶板坍塌和上覆土层大量沉降,最大沉降量达2.5m。 地震对地下结构造成大规模破坏的同时,地震对地下结构的安全性构成的威胁也开始引起了人们的重视,地下结构工程抗震从业者在震后获取了大量的地震动作用在地下结构上产生的动力特性及影响结构动 力响应的影响因素等宝贵资料,对地下结构工程抗震减震领域的发展具有极大的推动作用。 近年来,关于地下结构的工程抗震分析方法的文献大量涌现。学者从不同角度对地下结构抗震进行阐述,并且有不少理论转化为工程技术,在工程实践中得到了论证。笔者试图综合前人的研究成果,在本文中简要介绍地下结构在地震作用下的破坏形式以及地下结构抗震分析方法,以便加深对地下结构工程抗震的了解,也可增加人们对地下结构工程抗震的重视程度。 1 地下结构震害 由于所处环境、约束情况等的差异,地下结构的破坏形式与结构破坏的影响因素与地上结构有很多不同之处。 1.1 地下结构震害形式 以下以日本阪神地震为主要对象,结合其他地震造成的震害,总结了地铁车站、地下管道、地下隧道的主要震害形式。

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

大型地下结构三维地震响应特点研究

第43卷第3期2003年5月 大连理工大学学报 Jour nal of Dalian University of Technology Vol .43,No .3May 2003 文章编号:1000-8608(2003)03-0344-05 收稿日期:2002-04-01; 修回日期:2003-03-25. 基金项目:国家自然科学基金资助项目(50209002);辽宁省自然科学基金资助项目(20022130). 作者简介:陈健云*(1968-),男,副教授;林 皋(1929-),男,教授,博士生导师,中国科学院院士. 大型地下结构三维地震响应特点研究 陈健云*, 胡志强, 林 皋 (大连理工大学土木水利学院,辽宁大连 116024) 摘要:采用阻尼影响抽取法分析了地下结构无限围岩介质的动刚度特性,建立了岩石地下 结构抗震分析的实用相互作用分析时域模型,比较研究了地下结构-围岩动力相互作用分析中地震动输入机制、无限围岩动刚度及结构特性等各种主要因素对地下结构地震响应的影响程度.指出几种常用地下结构地震响应近似分析方法只在一定条件下适用,无限介质的阻尼特性对结构响应起着重要的作用. 关键词:地下洞室;地震反应分析;动刚度;优化;阻尼影响抽取法中图分类号:T U 35;TU 9;TV3 文献标识码:A 0 引 言 随着国民经济的发展,地下空间得到了越来越广泛的使用.然而近几年世界范围内发生了一 系列大地震,造成了巨大的灾难,不少地下结构遭受破坏.由于与围岩的相互作用,地下结构的动力特性十分复杂,其响应特点与地面结构有明显的差别.研究表明[1] ,对地下结构采用施加惯性力的地震响应分析,即使采用几倍于结构尺寸的地基离散模型,施加不同的边界条件对地震位移响应的影响可达10倍,应力差别达5~6倍. 目前各种实际地下结构的动力响应分析仍以各种近似方法为主.包括各种拟静力方法,如位 移响应法[2、3] ,地基影响参数通常根据简化假定采 用经验参数.动力近似分析通常将结构简化为二维问题处理[4],对于地下管线等结构形式具有一定的适用性.对于处于比较复杂地质、地形条件下的地下结构,或者形式较复杂的大型地下空间结构,要合理地反映地下结构的地震响应,则必须进行三维动力响应分析. 当前常用的地下结构三维地震分析方法,主要有在模型外边界施加各种人工透射边界解决能量向无限远处辐射[5]的波动分析方法;以地下结构为主体,围岩的作用通过相互作用力来求解的相互作用分析方法[6] ,通常采用有限元、边界元、 解析法或半解析法等耦合求解;以及在外边界施 加粘性阻尼器的惯性力方法.前两种方法属于较精确的数值方法,后一种方法则为近似方法. 由于围岩介质对结构的动力影响在时间与空 间都是耦合的,较精确的地下结构地震响应分析具有一定难度,时域求解复杂且求解代价很大. 本文采用相互作用分析方法,结合溪洛渡超 大型地下洞室群的地震响应分析,研究动力相互 作用运动方程中各主要因素对地下结构地震响应的影响程度,为地下结构的简化分析提供依据. 1 地下结构地震响应的相互作用分 析方法 地下结构的相互作用分析主要采用各种耦合 方法,如有限元与边界元的耦合分析.本文则采 用阻尼影响抽取法得到地基刚度与有限元进行耦合分析. 1.1 阻尼影响抽取法的基本概念 [7] 将无限地基截取有限区域,其刚度阵为S t (X )=K -X 2 M (1) 式中:K 和M 分别为有限域的刚度阵与质量阵. 引入量纲一的频率a 0=X ?r 0/c s 及刚度阵K 与质量阵M ,则式(1)可表达为  S t (X )=Gr s -2 0(K -a 20M )=Gr s -2 0S (a 0) (2)

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

地震工程学心得体会

精心整理《地震工程学》课程总结? 1.对所学内容的综述? 1.1结构地震反应分析的方法? 结构地震反应分析的方法很多,下面主要介绍反应谱理论和时程反应分析法? 绍。 也并不是一次地震动作用下的反应谱,而是不同地震反应的包线。 1.1.2?? 时程分析法? 时程分析法又称作动态分析法。它是将地震波段按时段进行数值化后,输入结构体系的振动微分方程,采用逐步积分法进行结构弹塑性动力反应分析,计算出结构在整个强震时域中的振动状态过程,给出各个时刻各杆件的内力和变形以及各杆

件出现塑性铰的顺序。? 时程分析法计算地震反应需要输入地震动参数,该参数具有概率含义的加速度时程曲线、结构和构件的动力模型考虑了结构的非线性恢复力特性,更接近实际情况,因而时程分析方法具有很多优点。它全面地考虑了强震三要素;比较确切地、具体地和细致地给出了结构弹塑性地震反应。? 1.1.3地震信号频域分析? ???? X(f), 1.2? 1.2.1 (1) ??(2 (3 ?(4 性和有效性;? ?? (5)验证抗震理论、结构地震反应分析方法、结构振动控制算法等的可靠性和适用性。? 1.2.2? 结构抗震试验的实施程序? ??

(1)确定研究目标和试验方法,含试验目的、试验设备和试件的采用、需要测量的物理量等;? ?? (2)荷载施加,含与试验设备相关的荷载施加方式和加载规则等;? ?(3)测点布置和数据采集,含各类传感器和数采设备的采用、测点数量的选择;? ??(4)数据分析,含测试数据的常规处理和特殊分析。? (1 ? (2 ????旨在 (3 ?? 入下结构或构件的地震反应,研究和验证结构地震破坏机理、破坏特征、抗震能力和抗震薄弱环节。 ?(4)振动台试验? ?????振动台试验是利用振动台装置进行的结构强迫振动试验,是地震工程研究中最重要的实验手段之一。?

基于软土场地实测记录的三种土层地震反应分析方法可靠性研

第27卷第5期2018年10月 自 然 灾 害 学 报JOURNAL OF NATURAL DISASTERS Vol.27No.5Oct.2018 收稿日期:2018-01-18; 修回日期:2018-05-07 基金项目:国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0105500);中央级公益性研究所基本科研业务费专项(2016A02) Supported by :Key Special Project of National Key R&D Plan,International Scientific and Technological Innovation Cooperation(2016YFE0105500);Sci?entific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration (2016A02) 作者简介:王鸾(1993-),女,博士研究生,主要从事土动力学和岩土地震工程研究.E?mail:1286290758@https://www.360docs.net/doc/e87953882.html, 通讯作者:汪云龙(1985-),男,副研究员,主要从事岩土地震工程、土工测试及地质勘察等方面的研究.E?mail:Wyl_iem@https://www.360docs.net/doc/e87953882.html, 文章编号:1004-4574(2018)05-0012-08DOI押10.13577/j.jnd.2018.0502 基于软土场地实测记录的三种土层地震反应 分析方法可靠性研究 王 鸾1,袁近远2,汪云龙1,王 克1 (1.中国地震局工程力学研究所,中国地震局地震工程与工程振动重点实验室,黑龙江哈尔滨150080;2.香港中文大学工程学院,中国香港) 摘 要:软土场地地震反应计算分析方法是公认难题。以日本KiK?net 强震观测台网中所有软土场 地井下记录为样本,对传统等效线性化方法SHAKE2000、时域非线性方法DEEPSOIL 和频率一致等 效线性化方法SOILQUAKE 三者在软土场地地震反应分析计算中的可靠性进行对比检验。检验工况 包括KiK?net 井下台网中地表峰值加速度不小于0.05g 的所有水平软土场地的总计309台次的加速 度记录,涉及24个台站,土层厚度28m ~240m,地表峰值加速度范围0.050g ~0.580g。对比结果表 明:烈度6度和7度偏下(地表PGA 在0.12g 以下)的较弱地震动下,对三类、四类和巨厚场地,SOILQUAKE、SHAKE2000和DEEPSOIL 三个方法计算结果相差不大,与实际记录较为接近,皆可采 用;烈度7度中上以上(地表PGA 在0.12g 以上)的较强地震动下,无论是三类、四类和巨厚场地,DEEPSOIL 和SHAKE2000计算出的地表PGA 和反应谱较实际记录偏小,且随地震动强度增加差距 急剧增大,甚至小于井下输入,而SOILQUAKE 计算出结果与实际记录基本相当,可体现出软土场地 放大作用,也证明了频率一致等效线性化方法的有效性。 关键词:传统等效线性化方法SHAKE2000;时域非线性方法DEEPSOIL;频率一致等效线性化方法 SOILQUAKE;地震反应分析;软土场地中图分类号:TU4;X93 文献标志码:A Reliability comparison of three kinds of seismic response analysis methods for soil layers in soft soil site WANG Luan 1,YUAN Jinyuan 2,WANG Yunlong 1,WANG Ke 1 (1.Institute of Engineering Mechanics,China Earthquake Administration;Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration,Harbin 150080,China;2.Faculty of Engheering,The Chinese University of Hongkong,Hongkong China)Abstract :Seismic response analysis of soft soil site is a difficult problem in seismic response analysis of soil https://www.360docs.net/doc/e87953882.html,ing the 309times records of underground seismic observation of Japanese KiK?net strong motion of network data?base,the three methods for calculating one?dimensional earthquake response analysis of soil layers in soft sites are verified.One of the methods is SOILQUAKE16recently developed and the others are SHAKE2000and DEEP?SOIL5.0used worldwide.The test conditions include seismic acceleration records of all soft soil sites with a surface peak acceleration of not less than 0.05g in the KiK?net network.The peak ground acceleration of these records be?

ANSYS地震反应谱SRSS分析共24页

ANSYS地震反应谱SRSS分析 我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算 结果,命令流如下: !进入PREP7并建模 /PREP7 B=15 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ET,1,beam4 !二维杆单元 R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参 MP,EX,1,2.0E11 !杨氏模量 mp,PRXY,1,,0.3 mp,dens,1,7.8e3 N,1,-B,0,0 !定义结点 N,2,0,0,0 N,3,-B,0,b

N,4,0,0,b N,5,-B,0,2*b N,6,0,0,2*b N,7,-B,0,3*b N,8,0,0,3*b E,1,3 !定义单元 E,2,4 E,3,5 E,4,6 E,3,4 E,5,6 e,5,7 e,6,8 e,7,8 D,1,ALL,0,,2 FINISH ! !进入求解器,定义载荷和求解 /SOLU D,1,ALL,0,,2 !结点UX=UY=0

sfbeam,1,1,PRES,100000, sfbeam,3,1,PRES,100000, sfbeam,7,1,PRES,100000, SOLVE FINISH allsel NMODE=10 /SOL !* ANTYPE,2 !* MSAVE,0 !* MODOPT,LANB,NMODE EQSLV,SPAR MXPAND,NMODE , , ,1 LUMPM,0 PSTRES,0 !* MODOPT,LANB,NMODE ,0,0, ,OFF

结构地震反应谱分析实例

在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X 与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0<T<=0.04 秒 0.4853*(0.10/T)^(-0.686) 0.04<T<=0.1 秒 0.4853 0.1<T<=1.2 秒 0.4853*(1.2/T)^1.5 1.2<T<=4 秒 以下是命令流程序 ---------------------------------------------------------------------------------------------------- /filname,SPEC,1 /PREP7 !定义单元类型及材料特性 ET,1,45 MP,EX,1,2.8E10 MP,DENS,1,2.4E3 MP,NUXY,1,0.18 !建立模型 BLOCK,0,1,0,1,0,5 !网格剖分 ESIZE,0.5 VMESH,all /VIEW,,-0.3,-1,1 EPLOT FINISH /SOLU !施加底部约束 ASEL,,LOC,Z,0 DA,ALL,ALL ALLSEL !施加自重荷载 ACEL,0,0,10 !进行模态求解

ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom lcwrite,11

针对场地地震反应分析的ANSYS二次开发

收稿日期:2004-01-10; 修订日期:2004-03-17 基金项目:重庆市科委资助(7549) 作者简介:王一功(1978-),男,硕士研究生,主要从事结构抗震方面研究. 文章编号:100021301(2004)022******* 针对场地地震反应分析的ANSYS 二次开发 王一功,杨佑发 (重庆大学土木工程学院,重庆400045) 摘要:以往的场地地震反应分析程序往往缺乏很好的前后处理,难以应用于实际工程。本文利用通用 有限元分析程序ANSYS 进行二次开发,引入多次透射边界以适用于场地地震反应分析。 关键词:ANSYS ;场地地震反应;多次透射边界 中图分类号:P315.96 文献标识码:A A secondary development of ANSYS for site earthquake response WAN G Y i 2gong ,YAN G Y ou 2fa (Faculty of Civil Engineering ,Chongqing University ,Chongqing 400045,China ) Abstract :Most programs capable of analysis of site earthquake response don ′t include pre 2and post 2processing ,so that they can ′t be good at engineering practice.A secondary development is applied to reinforce ANSYS with multi 2transmitting boundary in order to be applicable to analysis of site earthquake response. K ey w ords :ANSYS ;site earthquake response ;multi 2transmitting boundary 1 引言 建筑场地情况对房屋的抗震性能有着明显的影响,特别是各种特殊地形往往会加重邻近结构的地震破坏。但由于场地情况千差万别,欲归纳出统一规律指导抗震设计目前还有困难。最好的办法是针对特定的场地、房屋进行专门的分析研究,以提供设计建议。但目前绝大多数进行场地地震反应分析或上下部共同作用分析的程序都缺乏很好的前后处理,难以直接用于工程实际。本文利用普遍使用的通用有限元程序AN 2SYS 进行APDL 层次上的二次开发,使之适用于场地地震反应分析,并进而应用于上下部共同作用分析。2 人工边界的引入 场地地震反应分析与单一上部结构的地震反应分析最大的不同之处在于场地地震反应分析必须考虑场地的无限性。对场地进行有限元分析,必然要截取出有限区域进行分析,但该区域的底面及两侧本来还存在着地基,这些地基向外延伸很远,可认为是无限远。在实际情况下,地震波由边界内传到边界时会向外传播而不返回,因此需要引入人工边界,以模拟这种现象。如果不引入人工边界则需要将边界距离取得尽量远,但这将受计算机容量的限制,这种方法一般只在验证人工边界准确度时作为对比对象采用。人工边界处理的好坏对计算结果的精度有着极大的影响。 第24卷第2期 2004年4月地 震 工 程 与 工 程 振 动EARTHQUA KE EN GIN EERIN G AND EN GIN EERIN G V IBRA TION Vol.24,No.2Apr.,2004

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

浅谈工程地震勘探及场地地震反应分析

浅谈工程地震勘探及场地地震反应分析 工程地震勘探是被广泛应用于种类繁多的高标准工程建设项目中,勘探工程基础地质条件并解决地质问题的一种方法。其方法简单而且既快速又准确。在工程地震勘探中,场地地震安全性的综合评价,对结构抗震有至关重要的作用,是具体建设场址区精确合理、经济可靠的抗震设防依据。 标签:工程地震勘探场地地震反应分析 破坏性地震是一种严重危及人类生命和财产安全的突发性自然灾害。随着科学技术发展水平的进步,抗震设计规范也在不断的发展和完善。世界各国政府十分重视对地震灾害的防御,力求能够将最新科学研究成果及时有效地应用于抗震设计,最大限度地抵御强烈地震的袭击,减轻地震灾害。 早期的地震学家主要把地震当作一种自然现象来进行研究,但亦涉及强烈地震时建筑物的破坏。工程地震学是地震学中为工程建设服务的一个分支,主要研究强烈地震运动及其效应。该学科主要从工程角度研究与减轻地震灾害有关的地震问题,并对工程场地的地震动参数进行定量的预测,以便对工程场地进行场地安全性评价,并为建筑结构提供合理的设计地震动参数,以便采取抗震设防措施,最大限度地减轻地震灾害。工程地震学介于地震学和土木工程学两大学科之间,它与两大学科相互联系又有区别。工程地震学与地震学研究侧重不同,工程地震学主要预报地震在工程场地上的可能引起的地结构的破坏作用。侧重于建立满足工程分析需要的潜在震源模型,用于定量估计工程抗震设计所需要的地震动参数。 就现状来看,工程地震学所研究的主题大致包括地震宏观考察、强震观测、近场地面运动、地震区域划分和地震危险性分析以及地震小区划。 工程地震勘探是工程地震最基本的一项内容。随着我国建设事业的发展,新兴的工业城市、港口城市、经济开发区等不断发展,老城市的现代化改造也在迅速进行,种类繁多的新型的高标准工程建设项目日益增多。这不仅对各种工程基础的地质条件提出了更高的要求,并且也要求用较少的人力和投资,快速可靠地完成工程勘察任务。工程地震勘探应运而生且广泛应用。 工程地震勘探,又被称之为浅层地震勘探。其与深部地震勘探在野外工作方法、室内资料处理及解释方法有相似之处,但是,目的不同。深部地震勘探主要为了了解地壳、岩石圈的结构,探测石油、天然气。而工程地震勘探则主要是勘探地面以下100M范围内,有时甚至是地下几米内的地质构造、岩土结构、力学性质。因为主要为城市规划建设、工业建设、公共设施建设等提供必要的工程地质依据,所以工程地震勘探往往激发能量较小,勘查范围较窄,勘查网度较密,勘探精度较高。 工程地震勘探具有既快速、又准确的优点。工程地震勘探的应用领域非常广

结构抗震课后习题答案解析

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

地层地震反应对地下结构的影响

地层地震反应对地下结构的影响 隧道二班谭坤(07011227) 地震对地下工程影响的一般规律 地震对地下工程的影响规律总体上有以下的特点: 1) 地下结构的振动变形受周围地基土壤的约束作用显著,结构的动力反应 一般不明显表现出自振特性的影响。 2) 地下结构的振动形态受地震波入射方向的影响很大,地震波的入射方向 发生不大的变化,地下结构各点的变形和应力可以发生较大的变化,相位差别也 十分明显。但主要应变一般与地震加速度大小的联系不很明显,随埋深发生的变化也不很明显。 3) 地下结构地基的相互作用都对它的动力反应产生重要影响,对结构动力 反应起主要作用的因素是地基的运动特性,一般来说,结构形状的改变对动力反 应的影响相对较小,只引起量的变化。而地下结构的存在对周围地基震动的影响一般很小(指地下结构的尺寸相对于地震波长的比例较小的情况) 。 岩体隧道震害的形式主要有裂纹、剥落、底部隆起或倾斜,破坏程度主要取决于地震作用力方向及现场地质条件,一般发生于存在破碎带的地层中。 对于土体隧道,土体对地震的响应要明显强于岩体,所以隧道破坏的可能性 也更大。又由于土体隧道多用于城市地铁,车站较多,整体结构形式不均一,容易产生应力集中,使破坏多集中在车站上。 1) 并行隧道距离越小, 其地震内力反应越大, 当距离小于隧道断面外径D , 尤其是小于0. 5D 时, 抗震设计应给予足够的重视; 2) 地震引起的地基变形是影响盾构隧道地震反应的决定性因素, 因而在抗震设计时需要合理考虑盾构隧道应承受的地基变形, 因此相对于地震系数法, 反应位移法的设计思想更为合理; 3) 相对于目前广泛采用的设计基本地震加速度, 对地铁区间隧道等地下结构进行抗震分析及设计时采用地面峰值相对位移作为设计地震动参数更为合理。 上述结论是基于三类建筑场地条件得出的, 可供地铁盾构区间隧道等地下 结构抗震设计参考。对于其他场地条件, 还有待进一步研究。

相关文档
最新文档