存储器子系统的组成与接口

存储器子系统的组成与接口
存储器子系统的组成与接口

半导体存储器分类介绍

半导体存储器分类介绍 § 1. 1 微纳电子技术的发展与现状 §1.1.1 微电子技术的发展与现状 上个世纪50年代晶体管的发明正式揭开了电子时代的序幕。此后为了提高电子元器件的性能,降低成本,微电子器件的特征尺寸不断缩小,加工精度不断提高。1962年,由金属-氧化物-半导体场效应晶体管(MOSFET)组装成的集成电路(IC)成为微电子技术发展的核心。 自从集成电路被发明以来[1,2],集成电路芯片的发展规律基本上遵循了Intel 公司创始人之一的Gordon Moore在1965年预言的摩尔定律[3]:半导体芯片的集成度以每18个月翻一番的速度增长。按照这一规律集成电路从最初的小规模、中规模到发展到后来的大规模、超大规模(VLSI),再到现在的甚大规模集成电路(ULSI)的发展阶段。 随着集成电路制造业的快速发展,新的工艺技术不断涌现,例如超微细线条光刻技术与多层布线技术等等,这些新的技术被迅速推广和应用,使器件的特征尺寸不断的减小。其特征尺寸从最初的0.5微米、0.35 微米、0.25 微米、0.18 微米、0.15 微米、0.13 微米、90 纳米、65 纳米一直缩短到目前最新的32纳米,甚至是亚30纳米。器件特征尺寸的急剧缩小极大地提升了集成度,同时又使运算速度和可靠性大大提高,价格大幅下降。随着微电子技术的高速发展,人们还沉浸在胜利的喜悦之中的时候,新的挑战已经悄然到来。微电子器件等比例缩小的趋势还能维持多久?摩尔定律还能支配集成电路制造业多久?进入亚微米领域后,器件性能又会有哪些变化?这一系列的问题使人们不得不去认真思考。20世纪末

期,一门新兴的学科应运而生并很快得到应用,这就是纳电子技术。 §1.1.2 纳电子技术的应用与前景 2010年底,一篇报道英特尔和美光联合研发成果的文章《近距离接触25nm NAND闪存制造技术》[4],让人们清楚意识到经过近十年全球范围内的纳米科技热潮,纳电子技术已逐渐走向成熟。电子信息技术正从微电子向纳电子领域转变,纳电子技术必将取代微电子技术主导21世纪集成电路的发展。 目前,半导体集成电路的特征尺寸已进入纳米尺度范围,采用32纳米制造工艺的芯片早已问世,25纳米制造技术已正式发布,我们有理由相信相信亚20纳米时代马上就会到来。随着器件特征尺寸的减小,器件会出现哪些全新的物理效应呢? (1)量子限制效应。当器件在某一维或多维方向上的尺寸与电子的徳布罗意波长相比拟时,电子在这些维度上的运动将受限,导致电子能级发生分裂,电子能量量子化,出现短沟道效应、窄沟道效应以及表面迁移率降低等量子特性。 (2)量子隧穿效应。当势垒厚度与电子的徳布罗意波长想当时,电子便可以一定的几率穿透势垒到达另一侧。这种全新的现象已经被广泛应用于集成电路中,用于提供低阻接触。 (3)库仑阻塞效应。单电子隧穿进入电中性的库仑岛后,该库仑岛的静电势能增大e2/2C,如果这个能量远远大于该温度下电子的热动能K B T,就会出现所谓的库仑阻塞现象,即一个电子隧穿进入库仑岛后就会对下一个电子产生很强的排斥作用,阻挡其进入。 以上这些新的量子效应的出现使得器件设计时所要考虑的因素大大增加。目

√半导体存储器——分类、结构和性能

半导体存储器(解说) ——分类、结构和性能—— 作者:Xie M. X. (UESTC ,成都市) 计算机等许多系统中都离不开存储器。存储器就是能够存储数据、并且根据地址码还可以读出其中数据的一种器件。存储器有两大类:磁存储器和半导体存储器。 (1)半导体存储器的分类和基本结构: 半导体存储器是一种大规模集成电路,它的分类如图1所示。半导体存储器根据其在切断电源以后能否保存数据的特性,可区分为不挥发性存储器和易挥发性存储器两大类。磁存储器也都是不挥发性存储器。 半导体存储器也可根据其存储数据的方式不同,区分为随机存取存储器(RAM )和只读存储器(ROM )两大类。RAM 可以对任意一个存储单元、以任意的次序来存/取(即读出/写入)数据,并且存/取的时间都相等。ROM 则是在制造时即已经存储好了数据,一般不具备写入功能,只能读出数据(现在已经发展出了多种既可读出、又可写入的ROM )。 半导体存储器还可以根据其所采用工艺技术的不同,区分为MOS 存储器和双极型存储器两种。采用MOS 工艺制造的称为MOS 存储器;MOS 存储器具有密度高、功耗低、输入阻抗高和价格便宜等优点,用得最多。采用双极型工艺制造的,称为双极型存储器;双极型存储器的优点就是工作速度高。 半导体存储器的基本结构就是存储器阵列及其它电路。存储器阵列(memory array )是半导体存储器的主体,用以存储数据;其他就是输入端的地址码缓存器、行译码器、读出放大器、列译码器和输出缓冲器等组成。 各个存储单元处在字线(WL ,word line )与位线(BL ,bit line )的交点上。如果存储器有N 个地址码输入端,则该存储器就具有2N 比特的存储容量;若存储器阵列有2n 根字线,那么相应的就有2N n 条位线(相互交叉排列)。 在存储器读出其中的数据时,首先需通过地址码缓存器把地址码信号送入到行译码器、并进入到字线,再由行译码器选出一个WL ,然后把一个位线上得到的数据(微小信号)通过读出放大器进行放大,并由列译码器选出其中一个读出放大器,把放大了的信号通过多路输出缓冲器而输出。 在写入数据时,首先需要把数据送给由列译码器选出的位线,然后再存入到位线与字线相交的存储单元中。当然,对于不必写入数据的ROM (只读存储器)而言,就不需要写入电路。 图1 半导体存储器的分类

[考研类试卷]计算机专业基础综合(存储器系统的层次结构)模拟试卷2.doc

[考研类试卷]计算机专业基础综合(存储器系统的层次结构)模拟试卷 2 一、单项选择题 1-40小题,每小题2分,共80分。下列每题给出的四个选项中,只有一个选项是最符合题目要求的。 1 下列关于DRAM和SRAM的说法中,错误的是( )。 Ⅰ.SRAM不是易失性存储器,而DRAM是易失性存储器 Ⅱ.DRAM比SRAM集成度更高,因此读写速度也更快 Ⅲ.主存只能由DRAM构成,而高速缓存只能由SRAM构成 Ⅳ.与SRAM相比,DRAM由于需要刷新,所以功耗较高 (A)Ⅱ、Ⅲ和Ⅳ (B)Ⅰ、Ⅲ和Ⅳ (C)Ⅰ、Ⅱ和Ⅲ (D)Ⅰ、Ⅱ、Ⅲ和Ⅳ 2 某机字长32位,主存容量1 MB,按字编址,块长512 B,Cache共可存放16个块,采用直接映射方式,则Cache地址长度为( )。 (A)11位 (B)13位 (C)18位 (D)20位 3 在Cache和主存构成的两级存储体系中,Cache的存取时间是100ns,主存的存取时间是1000ns。如果希望有效(平均)存取时间不超过(;ache存取时间的15%,则Cache的命中率至少应为( )。

(A)90% (B)98% (C)95% (D)99% 4 下列关于Cache写策略的论述中,错误的是( )。 (A)全写法(写直达法)充分保证Cache与主存的一致性 (B)采用全写法时,不需要为Cache行设置“脏位/修改位” (C)写回法(回写法)降低了主存带宽需求(即减少了Cache与主存之间的通信量) (D)多处理器系统通常采用写回法 5 假定用若干个8K×8位的芯片组成一个32K×32位的存储器,则地址41FDH所在芯片的最大地址是( )。 (A)0000H (B)4FFFH (C)5FFFH (D)7FFFH 6 某机器采用四体低位交叉存储器,现分别执行下述操作: (1)读取6个连续地址单元中存放的存储字,重复80次; (2)读取8个连续地址单元中存放的存储字,重复60次; 则(1)、(2)所花时间之比为( )。 (A)1:1

主存储器部件的组成与设计.

主存储器部件的组成与设计 主存储器部件的组成与设计 类别:存储器 主存储器概述(1)主存储器的两个重要技术指标◎读写速度:常常用存储周期来度量,存储周期是连续启动两次独立的存储器操作(如读操作)所必需的时间间隔。◎存储容量:通常用构成存储器的字节数或字数来计量。(2)主存储器与CPU及外围设备的连接是通过地址总线、数据总线、控制总线进行连接,见下图主存储器与CPU的连接◎地址总线用于选择主存储器的一个存储单元,若地址总线的位数k,则最大可寻址空间为2k。如k=20,可访问1MB的存储单元。 ◎数据总线用于在计算机各功能部件之间传送数据。◎控制总线用于指明总线的工作周期和本次输入/输出完成的时刻。(3)主存储器分类 ◎按信息保存的长短分:ROM与RAM◎按生产工艺分:静态存储器与动态存储器静态存储器(SRAM):读写速度快,生产成本高,多用于容量较小的高速缓冲存储器。动态存储器(DRAM):读写速度较慢,集成度高,生产成本低,多用于容量较大的主存储器。静态存储器与动态存储器主要性能比较如下表:静态和动态存储器芯片特性比较SRAMDRAM存储信息触发器电容破坏性读出非是 需要刷新不要需要送行列地址同时送分两次送运行速度 快慢集成度低高发热量大小存储成本高低 动态存储器的定期刷新:在不进行读写操作时,DRAM存储器的各单元处于断电状态,由于漏电的存在,保存在电容CS上的电荷会慢慢地漏掉,为此必须定时予以补充,称为刷新操作。2、动态存储器的记忆原理和读写过程(1)动态存储器的组成:由单个MOS管来存储一位二进制信息。信息存储在MOS管的源极的寄生电容CS中。◎写数据时:字线为高电平,T导通。写“1”时,位线(数据线)为低电平,VDD(电源)将向电容充电写“0时,位线(数据线)为高电平,若电容存储了电荷,则将会使电容完成放电,就表示存储了“0”。◎读数据时:先使位线(数据线)变为高电平,当字线高电平到来时T导通,若电容原存储有电荷(是“1”),则电容就要放电,就会使数据线电位由高变低;若电容没有存储电荷(是“0”),则数据线电位不会变化。检测数据线上电位的变化就可以区分读出的数据是1还是0。注意①读操作使电容原存储的电荷丢失,因此是破坏性读出。为保持原记忆内容,必须在读操作后立刻跟随一次写入操作,称为预充电延迟。②向动态存储器的存储单元提供地址,是先送行地址再送列地址。原因就是对动态存储器必须定时刷新(如2ms),刷新不是按字处理,而是每次刷新一行,即为连接在同一行上所有存储单元的电容补充一次能量。③在动态存储器的位线上读出信号很小,必须接读出放大器,通常用触发器线路实现。④存储器芯片内部的行地址和列地址锁存器分先后接受行、列地址。⑤RAS、CAS、WE、Din、

半导体存储器分类

半导体存储器 一.存储器简介 存储器(Memory)是现代信息技术中用于保存信息的记忆设备。在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。 存储器件是计算机系统的重要组成部分,现代计算机的内存储器多采用半导体存储器。存储器(Memory)计算机系统中的记忆设备,用来存放程序和数据。计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。自世界上第一台计算机问世以来,计算机的存储器件也在不断的发展更新,从一开始的汞延迟线,磁带,磁鼓,磁芯,到现在的半导体存储器,磁盘,光盘,纳米存储等,无不体现着科学技术的快速发展。 存储器的主要功能是存储程序和各种数据,并能在计算机运行过程中高速、自动地完成程序或数据的存取。存储器是具有“记忆”功能的设备,它采用具有两种稳定状态的物理器件来存储信息。这些器件也称为记忆元件。在计算机中采用只有两个数码“0”和“1”的二进制来表示数据。记忆元件的两种稳定状态分别表示为“0”和“1”。日常使用的十进制数必须转换成等值的二进制数才能存入存储器中。计算机中处理的各种字符,例如英文字母、运算符号等,也要转换成二进制代码才能存储和操作。 储器的存储介质,存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。一个存储器包含许多存储单元,每个存储单元可存放一个字节(按字节编址)。每个存储单元的位置都有一个编号,即地址,一般用十六进制表示。一个存储器中所有存储单元可存放数据的总和称为它的存储容量。假设一个存储器的地址码由20位二进制数(即5位十六进制数)组成,则可表示2的20次方,即1M个存储单元地址。每个存储单元存放一个字节,则该存储器的存储容量为1MB。

第3章习题--存储系统

第3章存储系统 一.判断题 1.计算机的主存是由RAM和ROM两种半导体存储器组成的。 2.CPU可以直接访问主存,而不能直接访问辅存。 3.外(辅)存比主存的存储容量大、存取速度快。 4.动态RAM和静态RAM都是易失性半导体存储器。 5.Cache的功能全部由硬件实现。 6.引入虚拟存储器的目的是为了加快辅存的存取速度。 7.多体交叉存储器主要是为了解决扩充容量的问题。 8.Cache和虚拟存储器的存储管理策略都利用了程序的局部性原理。 9.多级存储体系由Cache、主存和辅存构成。 10.在虚拟存储器中,当程序正在执行时,由编译器完成地址映射。 二.选择题 1.主(内)存用来存放。 A.程序 B.数据 C.微程序 D.程序和数据 2.下列存储器中,速度最慢的是。 A.半导体存储器 B.光盘存储器 C.磁带存储器 D.硬盘存储器 3.某一SRAM芯片,容量为16K×1位,则其地址线有。 A.14根 B.16K根 C.16根 D.32根 4.下列部件(设备)中,存取速度最快的是。 A.光盘存储器 B.CPU的寄存器 C.软盘存储器 D.硬盘存储器 5.在主存和CPU之间增加Cache的目的是。 A.扩大主存的容量 B.增加CPU中通用寄存器的数量 C.解决CPU和主存之间的速度匹配 D.代替CPU中的寄存器工作 6.计算机的存储器采用分级存储体系的目的是。 A.便于读写数据 B.减小机箱的体积 C.便于系统升级 D.解决存储容量、价格与存取速度间的矛盾 7.相联存储器是按进行寻址的存储器。 A.地址指定方式 B.堆栈存取方式 C.内容指定方式 D.地址指定与堆栈存取方式结合 8.某SRAM芯片,其容量为1K×8位,加上电源端和接地端后,该芯片的引出线的最少数目应为。 A.23 B.25 C.50 D.20 9.常用的虚拟存储器由两级存储器组成,其中辅存是大容量的磁表面存储器。 A.主存—辅存 B.快存—主存 C.快存—辅存 D.通用寄存器—主存 10.在Cache的地址映射中,若主存中的任意一块均可映射到Cache内的任意一快的位置上,则这种方法称为。 A.全相联映射 B.直接映射 C.组相联映射 D.混合映射 三.填空题

交叉存储器设计

计算机组成原理课程设计 多体交叉存储器 一、设计目的 (1)深入了解提高计算机系统效率的一种有效方式——并行性; (2)研究交叉存储器的设计原理和实现方式,采用并行性的设计思想,设计一个简易的采用低位交叉编址的并行结构存储器; (3)复习和回顾译码电路设计、地址、数据和控制电路设计的相关知识;展开研究性教学,拓展大家知识面,提高分析问题解决问题的能力; (4)培养大家独立思考和创新研究的能力,积极营造自主创新的良好氛围; 二、设计内容 本次研究性设计要求为:设计一个容量为64KB 的采用低位交叉编址的8体并行结构存储器。画出CPU 和存储芯片(芯片容量自定)的连接图,并写出图中每个存储芯片的地址范围(用 十六进制数表示)。 三、设计要求 (1)参考教材中关于交叉存储器的原理,给出系统设计方案,包括译码芯片的选择、各个芯片的工作时序设计; (2)注意片选信号的产生电路设计、地址锁存电路设计、数据信号线的电路设计、控制信号线的设计、交叉存储的实现; (3)要了解交叉存储器并行工作原理、各个存储器提的启动信号和地址、数据、片选信号的关系、如何实现1/8存储器周期就能够读取一次数据。 四、设计方案 (1)总线和控制信号确定 设CPU 共有16根地址线,8根数据线,并用IO /M 作为访问存储器或I/O 的控制信号(高电平为访存,低电平为访I/O ),WR (低电平有效)为写命令,RD (低电平有效)为读命令。

要求:设计一个容量为64KB 的采用低位交叉编址的8体并行结构存储器。画出CPU 和存储芯片(芯片容量自定)的连接图,并写出图中每个存储芯片的地址范围(用十六进制数表示)。 所需存储器芯片和138 Ai A0 … CE … WE Dn D0 RAM 存储器芯片 74LS138译码器 (2)设计分析 要设计一个容量为64KB 、采用低位交叉编址的8体并行结构存储器,则每个存储体容量应为64KB/8 = 8KB ,所以,应选择8KB (213B )的RAM 芯片,需要芯片8块、地址线13根(A12-A0)、数据线8根(D7-D0),其中在片选信号的产生时需要用到74LS138译码器。 (3)设计实现 ① 8片8K ×8RAM 芯片对应的二进制编码 第0片:0000、0008、0010、…、FFF8H ,即: A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 第1片:0001、0009、0011、…、FFF9H ,即: A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 第2片:0002、000A 、0012、…、FFFAH ,即: A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 … RAM G1 /Y7 /G2A /Y6 /G2B /Y5 /Y4 /Y3 C /Y2 B /Y1 A /Y0

存储器及其接口

存储器的种类、特性和结构 一、分类 按元件组成:半导体M,磁性材料存储器(磁芯), 激光存储器 按工作性质:内存储器:速度快,容量小(64K?8Gbyte) 外存储器:速度慢,容量大(20MB?640GB)二、半导体存储分类 RAM SRAM 静态 DRAM 动态 IRAM 集成动态 ROM 掩膜ROM PROM 可编程 EPROM 可改写 E PROM 可电擦除 三、内存储器性能指标 1. 容量M可容纳的二进制信息量,总位数。 总位数=字数×字长bit,byte,word 2. 存取速度 内存储器从接受地址码,寻找内存单元开始,到它 取出或存入数据为止所需的时间,T A。 T A越小,计算机内存工作速度愈高,半导体M存储 时间为几十ns?几百ns ns=mus 3.功耗 维持功耗操作功耗 CMOS NMOS TTL ECL (低功耗.集成度高)(高速.昂贵.功耗高) 4、可靠性 平均故障间隔时间 MTBF(Mean Time Between Failures) 越长,可靠性越高.跟抗电磁场和温度变化的能力有关. 5、集成度 位/片1K位/片?1M位/片

在一块芯片上能集成多少个基本存储电路 (即一个二进制位) 四、存储器的基本结构 随机存储器RAM 或读写存储器 一、基本组成结构 存储矩阵 寄存二进制信息的基本存储单元的集合体,为便于读写,基本存储单元都排列成一定的阵列,且进行编址。 N×1—位结构:常用于较大容量的SRAM,DRAM N×4 N×8 —字结构常用于较小容量的静态SRAM

2、地址译码器 它接收来自CPU的地址信号,产生地址译码信号。选中存储矩阵中某一个或几个基本存储单元进行读/写操作 两种编址方式: 单译码编址方式. 双译码编址方式 (字结构M)(复合译码) 存储容量

第7章 存储器分层体系结构 复习要点

第7章存储器分层体系结构复习要点 一、存储器概述和存储器芯片 1. 熟悉随机存取存储器、顺序存取存储器、直接存取存储器、相联存储器、只读存储器、读写存储器、非易失(不挥发)性存储器、易失(挥发)性存储器、静态存储器、动态存储器这些名称的含义。这些类型的存储器在计算机的层次结构存储系统中 按工作性质/存取方式分类: 随机存取存储器(RAM) :每个单元读写时间一样,且与各单元所在位置无关。如:内存。(注:原意主要强调地址译码时间相同。现在的DRAM芯片采用行缓冲,因而可能因为位置不同而使访问时间有所差别。) 顺序存取存储器(SAM):数据按顺序从存储载体的始端读出或写入,因而存取时间的长短与信息所在位置有关。例如:磁带。 直接存取存储器(DAM):直接定位到读写数据块,在读写数据块时按顺序进行。如磁盘。相联存储器(AM/CAM):按内容检索到存储位置进行读写。例如:快表。 按信息的可更改性分类: 读写存储器(Read / Write Memory):可读可写。 只读存储器(Read Only Memory):只能读不能写。 按断电后信息的可保存性分类: 非易失(不挥发)性存储器(Nonvolatile Memory) 信息可一直保留,不需电源维持。(如:ROM、磁表面存储器、光存储器等) 易失(挥发)性存储器(Volatile Memory) 电源关闭时信息自动丢失。(如:RAM、Cache)按功能/容量/速度/所在位置分类: 寄存器(Register)封装在CPU内,用于存放当前正在执行的指令和使用的数据;用触发器

实现,速度快,容量小(几~几十个)。 高速缓存(Cache)位于CPU内部或附近,用来存放当前要执行的局部程序段和数据;用SRAM实现,速度可与CPU匹配,容量小(几MB)。 内存储器MM(主存储器Main (Primary) Memory)位于CPU之外,用来存放已被启动的程序及所用的数据;用DRAM实现,速度较快,容量较大(几GB)。 外存储器AM (辅助存储器Auxiliary / Secondary Storage)位于主机之外,用来存放暂不运行的程序、数据或存档文件;用磁表面或光存储器实现,容量大而速度慢。 2. 层次结构存储系统中的寄存器、高速缓存、内存(主存)、外存它们所在的位置、工作速度、存储容量、成本等的相对大小和大致的数量级。这些存储器和前述各类存储器之间的对应关系。 3. 静态存储器和动态存储器的基本工作机制;动态存储器刷新的概念,按行刷新的含义。最大刷新周期的确定的依据是什么。DRAM的集中刷新、分散刷新和异步刷新的刷新操作与正常访存分别是如何安排的? 4. 了解SDRAM芯片中的突发传输方式 二、存储器容量的扩展及其与CPU的连接 1. 位扩展、字扩展、字位扩展方式,系统存储容量的计算,芯片数的计算,这几种扩展方式下的芯片(组)与片选信号的地址线分配,各芯片(组)的地址范围的计算、划分。片选信号用地址信号表示的逻辑表达式。 三、高速缓冲存储器(cache) 1. 直接映射、全相联映射、组相联映射三种方式映射关系;三种方式下的主存地址与cache 的行、内容之间的对应关系;cache容量的计算方法,注意区分数据区、标记、有效位。 2. CPU对cache的访问时,直接映射采用的是按地址进行查找的方法,而全相联映射采用

实验五_存储器设计

计算机组成原理 实验五《存储器设计》 实验报告 姓名:吴速碘黄紫微 学号:13052053 13052067 班级:计算机二班 日期2015、5、25

实验五存储器设计 一、实验目的 1、掌握RAM和ROM的Verilog语言描述方法; 2、学习用宏模块的方法定制RAM和ROM。 二、实验任务 1、设计并实现一个128*16 的单端口的RAM; 2、设计并实现一个128*16的ROM; 3、设计并实现一个双端口的128*16的RAM 4、设计并实现一个16*32的FIFO。 5、设计并实现正弦信号发生器,见“正弦信号发生器实验指南”。 三、实验步骤 1 编写Verilog代码(见附页) 2功能仿真 进行分析与综合,排除语法上的错误 建立波形仿真文件,输入激励 生成功能仿真网表 进行功能仿真,观察输出结果 3选择器件 DE2_70开发板的使用者请选择EP2C70F896C6 4绑定管脚 5 下载验证 DE2_70开发板的下载:使用USB-Blaster进行下载 四、实验内容 五、实验思考题 1、分析存储器采用三态输出的原因是什么? 存储器的输出端是连接在数据总线上的。数据总线相当于一条车流频繁的大马路,必须在绿灯条件下,车辆才能进入这条大马路,否则要撞车发生交通事故。同 理,存储器中的数据是不能随意传送到数据总线上的。例如,若数据总线上的数 据是“1”(高电平5V),存储器中的数据是“0”(低电平0V),两种数据若碰到一 起就会发生短路而损坏单片机。因此,存储器输出端口不仅能呈现“l”和“0”两 种状态,还应具有第三种状态“高阻"态。呈“高阻"态时,输出端口相当于断开,对数据总线不起作用,此时数据总线可被其他器件占用。当其他器件呈“高阻”态 时,存储器在片选允许和输出允许的条件下,才能将自己的数据输出到数据总线 上。 2、单端口和双端口的区别是什么? 单端口ram是ram的读写只有一个端口,同时只能读或者只能写。 双端口ram是ram读端口和写端口分开,一个端口能读,另一个端口可以同时写。 3、什么情况下考虑采用双端口存储器?

半导体存储器件及其操作方法与相关技术

图片简介: 一种半导体存储器件,包括:熔丝部分,包括:第一熔丝组,具有针对第一模式分配的多个第一熔丝;以及第二熔丝组,具有针对第二模式分配的多个第二熔丝;以及编程部分,适于在所述第二模式下响应于修复控制信号而编程包括在所述第一熔丝组中的所述第一熔丝之中的可用熔丝或编程包括在所述第二熔丝组中的所述第二熔丝。 技术要求 1.一种半导体存储器件,包括: 熔丝部分,包括:第一熔丝组,具有针对第一模式分配的多个第一熔丝;以及第二熔丝组,具有针对第二模式分配的多个第二熔丝;以及 编程部分,适于在所述第二模式下响应于修复控制信号而编程包括在所述第一熔丝组中 的所述第一熔丝之中的可用熔丝或编程包括在所述第二熔丝组中的所述第二熔丝。 2.如权利要求1所述的半导体存储器件,其中,所述编程部分包括:

第一熔丝信息储存块,适于:储存对应于所述第一熔丝组的第一熔丝信息,且通过确定所述第一熔丝组是否具有所述第一熔丝之中的未使用的熔丝来产生过流信号; 第二熔丝信息储存块,适于储存对应于所述第二熔丝组的第二熔丝信息;以及 选择输出块,适于在所述第二模式下响应于所述过流信号而输出所述第一熔丝信息或所述第二熔丝信息。 3.如权利要求2所述的半导体存储器件,其中,所述编程部分还包括: 启动控制块,适于:在启动操作中确定所述第一熔丝组和所述第二熔丝组是否被使用且更新所述第一熔丝信息和所述第二熔丝信息。 4.如权利要求2所述的半导体存储器件,其中,所述编程部分还包括: 地址锁存块,适于锁存从外部器件接收的缺陷地址信息。 5.如权利要求2所述的半导体存储器件,其中,所述编程部分还包括: 断裂控制块,适于使与自所述选择输出块输出的所述第一熔丝信息或所述第二熔丝信息相对应的熔丝断裂。 6.如权利要求2所述的半导体存储器件,其中,所述第一熔丝信息储存块输出当所述第一熔丝组具有所述可用熔丝时被禁用且当所述第一熔丝组无可用熔丝时被使能的所述过流信号。 7.如权利要求2所述的半导体存储器件,其中,所述选择输出块包括: 选择控制信号发生单元,适于:接收在所述第二模式下被使能的封装后修复PPR模式使能信号、扩展模式信号和所述过流信号,且产生选择控制信号;以及 选择单元,适于响应于所述选择控制信号而选择性地输出所述第一熔丝信息或所述第二熔丝信息。 8.一种半导体存储器件,包括:

计算机组成原理课程设计-相联存储器的设计

沈阳航空航天大学 课程设计报告 课程设计名称:计算机组成原理课程设计课程设计题目:相联存储器的设计与实现 院(系):计算机学院 专业:物联网技术方向 班级:物联1305 学号: 姓名: 指导教师: 完成日期:2016年1月15日

目录 第1章总体设计方案 (1) 设计原理 (1) 设计思路 (2) 设计环境 (3) 第2章详细设计方案 (5) 总体方案的设计与实现 (5) 创建顶层图形设计文件 (5) 器件的选择与引脚锁定 (5) 功能模块的设计与实现 (8) 检索寄存器的设计与实现 (8) 屏蔽寄存器的设计与实现 (8) 存储体的设计与实现 (9) 比较器的设计与实现 (10) 与门芯片的设计与实现 (11) 第3章程序调试与结果测试 (12) 程序调试 (12) 程序测试及结果分析 (12) 参考文献附录(源代码) (15)

第1章总体设计方案 1.1设计原理 相联存储器不按地址寻址而按照内容寻址,相联存储器由检索寄存器CR、屏蔽寄存器MR、存储体和结果寄存器SRR构成。设存储器有8个字,8位,则CR 与MR为1字8位,将要检索的内容输入到检索寄存器CR中,用屏蔽寄存器MR 屏蔽掉存储体中不参与比较的位数,其余比较位不变,将这个结果与检索寄存器比较,将结果送入结果寄存器保存,根据结果寄存器的数据可以得到符合检索寄存器的数据所在的存储区域,原理如图1。 图 1 相联存储器原理图

1.2设计思路 检索寄存器(CR):存放要检索的数据,位数与存储器字长一致。 屏蔽寄存器(MR):与CR配合使用,检索位置为1,其余不参与比较的位设为0,位数与存储体字长一致,与存储体里的数据相与,得到的结果送入结果寄存器保存。 存储体:由3-8译码器选择地址输入数据,是8乘8的结构。 结果寄存器:存放检索寄存器和屏蔽寄存器相与的结果。 若存储体存的八个存储单元分别存着数据为: 00100110、、、、01100010、、00101001,CR中存储的数据为00010100,MR存的数据是00011100,经过比较可以发现第三个和第五个存储单元符合CR,所以输出00101000,见图2。 X X X 1 0 1 X X CR SRR 1 1

存储器设计:存储器设计课程设计

计算机组成原理实验 实验五存储器设计 专业班级计算机科学与技术 学号0936008 姓名冯帆 学号0936036 姓名张琪 实验地点理工楼901 实验五存储器设计 一、实验目的 1、掌握RAM 和ROM 的Verilog 语言描述方法; 2、学习用宏模块的方法定制RAM 和ROM 。 二、实验内容

1、设计并实现一个8*8 的单端口的RAM ; 2、设计并实现一个128*16的ROM ; 3、设计并实现一个双端口的128*16的RAM 。 4、设计并实现正弦信号发生器,参考“正弦信号发生器实验指南”。 三、实验仪器及设备 PC 机+ Quartus Ⅱ0 + DE2-70 四、实验步骤 打开Quartus 软件,新建工程。 2.分析单端口,双端口,ROM,RAM 的含义。 3.Verilog 程序如下,并简单注释。 ①

module SingleRamTest(read_data, read_address, write_data, write_address, memwrite, clock, reset); output [7:0] read_data; //数据的输出 input [2:0] read_address; //读数据地址的输入 input [7:0] write_data; //写数据地址的输入 input [2:0] write_address; //写数据地址的输入 input memwrite; //若该信号为1,进行写操作,反之,写操作input clock; input reset; //复位和时钟信号 reg [7:0] read_data, mem0, mem1,mem2,mem3,mem4,mem5,mem6,mem7; //设置存储器存储单元 always @(read_address or mem0 or mem1 or mem2 or mem3 or mem4 or mem5 or mem6 or mem7) //若上述信号有一个发生变化,则启动该模块begin

存储器的发展与技术现状.

存储器的发展史及技术现状 20122352 蔡文杰计科3班 1.存储器发展历史 1.1存储器简介 存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。自世界上第一台计算机问世以来,计算机的存储器件也在不断的发展更新,从一开始的汞延迟线,磁带,磁鼓,磁芯,到现在的半导体存储器,磁盘,光盘,纳米存储等,无不体现着科学技术的快速发展。 1.2存储器的传统分类 从使用角度看,半导体存储器可以分成两大类:断电后数据会丢失的易失性存储器和断电后数据不会丢失的非易失性存储器。过去都可以随机读写信息的易失性存储器称为RAM(Randoo Aeeess Memory),根据工作原理和条件不同,RAM又有静态和动态之分,分别称为静态读写存储器SR AM(St ate RAM)和动态读写存储器DRAM(Dynamie RAM);而过去的非易失控存储器都是只读存储RoM(Readon一y Memo-ry),这种存储器只能脱机写人信息,在使用中只能读出信息而不能写人或改变信息.非易失性存储器包含各种不同原理、技术和结构的存储器.传统的非易失性存储器根据写人方法和可写人的次数的不同,又可分成掩模只读存储器MROM(Mask ROM)、一次性编程的OTPROM(one Time Programmable ROM)和可用萦外线擦除可多次编程的Uv EPROM(Utravio-let ErasableProgrammable ROM).过去的OT PROM都是采用双极性熔丝式,这种芯片只能被编程一次,因此在测试阶段不能对产品进行编程性检侧,所以产品交付用户后,经常在编程时才会发现其缺陷而失效,有的芯片虽然能被编程,但由于其交流性不能满足要求,却不能正常运行.故双极性熔丝式PROM产品的可信度不高. 2.半导体存储器 由于对运行速度的要求,现代计算机的内存储器多采用半导体存储器。半导体存储器包括只读存储器(ROM)和随机读写存储器(RAM)两大类。 2.1只读存储器 ROM是线路最简单的半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般地,只读

第6章 存储器层次结构

n局部性原理★ n存储器层次结构☆n高速缓存存储器☆

n到目前为止的计算机模型中,我们假设计算机的存储器系统是一个线性的字节数组,而CPU能够在一个常数时间内访问每个存储器位置。但它没有反映现代系统实际的工作方式。 n实际上,存储器系统是一个具有不同容量、成本和访问时间的存储设备的层次结构。 n如果你的程序需要的数据是存储在CPU寄存器中,那在指令的执行期间,在零个周期内就能访问到它们;如果存储在高速缓存中,需要1~30个周期;如存储在主存中,需要50~200个周期;如存储在磁盘上,需要大约几千万个周期 n作为一个程序员,需要理解存储器层次结构,它对应用程序的性能有着巨大的影响,这是因为计算机程序的一个称为局部性的基本属性引起的。

?不同矩阵乘法核心程序执行相同数量的算术操作,但有不同程度局部性,它们运行时间可以相差20倍 ?本章将介绍基本的存储技术、局部性、高速缓冲存储器等内容。

n局部性原理★ n存储器层次结构☆n高速缓存存储器☆

?RAM(随机访问存储器,Random-Access Memory )–静态RAM (SRAM) ?每个cell使用6个晶体管电路存储一个位 ?只要有电,就会无限期地保存它的值 ?相对来说,对电子噪声等干扰不敏感 ?比DRAM更快、更贵 –动态RAM (DRAM) ?每个cell使用1个电容和1个访问晶体管电路存储一个位 ?每隔10-100 ms必须刷新值 ?对干扰敏感 ?比SRAM慢,便宜 ü拍、太、吉、兆、千、毫、微、纳(毫微)、皮(微微)、飞(毫微微)

?传统DRAM芯片 –所有cell被组织为d个supercell,每个supercell包含了w个cell,一个d×w的DRAM总共存储了dw位信息。supercell被组织成r行c 列的矩阵,即rc=d。

半导体存储器的分类

半导体存储器的分类作者去者日期 2010-3-20 14:27:00 2 推荐 1.按制造工艺分类 半导体存储器可以分为双极型和金属氧化物半导体型两类。 双极型(bipolar)由TTL晶体管逻辑电路构成。该类存储器件的工作速度快,与CPU处在同一量级,但集成度低,功耗大,价格偏高,在微机系统中常用做高速缓冲存储器cache。 金属氧化物半导体型,简称MOS型。该类存储器有多种制造工艺,如NMOS, HMOS, CMOS, CHMOS等,可用来制造多种半导体存储器件,如静态RAM、动态RAM、EPROM等。该类存储器的集成度高,功耗低,价格便宜,但速度较双极型器件慢。微机的内存主要由MOS型半导体构成。 2.按存取方式分类 半导体存储器可分为只读存储器(ROM)和随机存取存储器(RAM)两大类。ROM是一种非易失性存储器,其特点是信息一旦写入,就固定不变,掉电后,信息也不会丢失。在使用过程中,只能读出,一般不能修改,常用于保存无须修改就可长期使用的程序和数据,如主板上的基本输入/输出系统程序BIOS、打印机中的汉字库、外部设备的驱动程序等,也可作为I/O数据缓冲存储器、堆栈等。RAM是一种易失性存储器,其特点是在使用过程中,信息可以随机写入或读出,使用灵活,但信息不能永久保存,一旦掉电,信息就会自动丢失,常用做内存,存放正在运行的程序和数据。 (1)ROM的类型 根据不同的编程写入方式,ROM分为以下几种。 ① 掩膜ROM 掩膜ROM存储的信息是由生产厂家根据用户的要求,在生产过程中采用掩膜工艺(即光刻图形技术)一次性直接写入的。掩膜ROM一旦制成后,其内容不能再改写,因此它只适合于存储永久性保存的程序和数据。 ② PROM PROM(programmable ROM)为一次编程ROM。它的编程逻辑器件靠存储单元中熔丝的断开与接通来表示存储的信息:当熔丝被烧断时,表示信息“0”;当熔丝接通时,表示信息“1”。由于存储单元的熔丝一旦被烧断就不能恢复,因此PROM存储的信息只能写入一次,不能擦除和改写。 ③ EPROM EPROM(erasable programmable ROM)是一种紫外线可擦除可编程ROM。写入信息是在专用编程器上实现的,具有能多次改写的功能。EPROM芯片的上方有一个石英玻璃窗口,当需要改写时,将它放在紫外线灯光下照射约15~20分钟便可擦除信息,使所有的擦除单元恢复到初始状态“1”,又可以编程写入新的内容。由于EPROM在紫外线照射下信息易丢失,故在使用时应在玻璃窗口处用不透明的纸封严,以免信息丢失。 ④ EEPROM EEPROM也称E2PROM(electrically erasable programmable ROM)是一种电可擦除可编程ROM。它是一种在线(或称在系统,即不用拔下来)可擦除可编程只读存储器。它能像RAM那样随机地进行改写,又能像ROM那样在掉电的情况下使所保存的信息不丢失,即E2PROM兼有RAM和ROM的双重功能特点。又因为它的改写不需要使用专用编程设备,只需在指定的引脚加上合适的电压(如+5V)即可进行在线擦除和改写,使用起来更加方便灵活。 ⑤ 闪速存储器 闪速存储器(flash memory),简称Flash或闪存。它与EEPROM类似,也是一种电擦写型ROM。与E EPROM的主要区别是:EEPROM是按字节擦写,速度慢;而闪存是按块擦写,速度快,一般在65~170ns之

杭电计算机组成原理存储器设计实验5

杭州电子科技大学计算机学院 课程名称 实验项目 指导教师 实验位置 计算机组成原理 存储器设计实验 实验报告 ______ 姓 ______ 班 名 级 号 期 2015年5月15日

本实验的结果正确,根据自己写的coe 文件中存储的数据进行操作,和实验四 有很多的相似 处,只是进行简单的读写的操作 ,实验的结果正确?能够根据操 作,lED 灯显示具体的数据? 配置管脚: NET "C[0]" LOC = T10; NET "C[1]" LOC = T9; NET "Clk" LOC = C9; ( 接 上) 实验 内容 ( 算 法、 程 序、 步骤 NET "LED[0]" LOC = :U16; NET "LED[1]" LOC = :V16; NET "LED[2]" LOC = :U15; NET "LED[3]" LOC = :V15; NET "LED[4]" LOC = :M11; NET "LED[5]" LOC = :N11; NET "LED[6]" LOC = :R11; NET "LED[7]" LOC = :T11; NET "Mem_Addr[2]" LOC = :V9; NET "Mem_Addr[3]" LOC = :M8; NET "Mem_Addr[4]" LOC = :N8; NET "Mem_Addr[5]" LOC = :U8; NET "Mem_Addr[6]" LOC = :V8; NET "Mem_Addr[7]" LOC = :T5; NET "Mem_Write" L( OC = B8; 实验仿真结果 数据 记录 和计 Objqcti f

最新存储器及其接口

存储器及其接口

存储器的种类、特性和结构 一、分类 按元件组成:半导体M,磁性材料存储器(磁芯),激光存储器 按工作性质:内存储器:速度快,容量小(64K?8Gbyte)外存储器:速度慢,容量大(20MB?640GB) 二、半导体存储分类 RAM SRAM 静态 DRAM 动态 IRAM 集成动态 ROM 掩膜ROM PROM 可编程 EPROM 可改写 E PROM 可电擦除 三、内存储器性能指标 1. 容量 M可容纳的二进制信息量,总位数。 总位数=字数×字长 bit,byte,word 2. 存取速度 内存储器从接受地址码,寻找内存单元开始,到它

取出或存入数据为止所需的时间,T A。 T A越小,计算机内存工作速度愈高,半导体M存储时间为几十ns?几百ns ns=mus 3.功耗 维持功耗操作功耗 CMOS NMOS TTL ECL (低功耗.集成度高)(高速.昂贵.功耗高) 4、可靠性 平均故障间隔时间 MTBF(Mean Time Between Failures) 越长,可靠性越高.跟抗电磁场和温度变化的能力有关. 5、集成度 位/片 1K位/片?1M位/片 在一块芯片上能集成多少个基本存储电路 (即一个二进制位) 四、存储器的基本结构

随机存储器 RAM 或读写存储器 一、基本组成结构 存储矩阵 寄存二进制信息的基本存储单元的集合体,为便于读写,基本存储单元都排列成一定的阵列,且进行编址。 N×1—位结构:常用于较大容量的SRAM,DRAM

N×4 N×8 —字结构常用于较小容量的静态SRAM 2、地址译码器 它接收来自CPU的地址信号,产生地址译码信号。选中存储矩阵中某一个或几个基本存储单元进行读/写操作 两种编址方式: 单译码编址方式. 双译码编址方式 (字结构M)(复合译码) 存储容量

相关文档
最新文档