29万吨离子膜烧碱盐水精制任务书

29万吨离子膜烧碱盐水精制任务书
29万吨离子膜烧碱盐水精制任务书

29万吨/年离子膜烧碱新建项目

一次盐水精制方案

(任务书)

班级:应用化工技术1001 班

姓名:李海博

学号:2010040816

黄河水院环境与化学工程系

二〇一二年十一月

目录

一、设计依据

二、设计原则与分工

三、方案设计过程

四、设计感想与设计讨论

五、参考文献

六、附图

一、设计依据

1.XXX集团新建29万吨/年离子膜烧碱一次盐水水量。

2.XXX集团对一次盐水精制的要求。

1)氯化钠含量要高,一般要求大于90%。

2)化学杂质要少。钙镁离子总量要小于1%。硫酸根离子小于0.5%;

3)不溶于水的机械杂质要少;

二、设计原则与分工

1.设计范围

化盐池一次盐水至精制盐水槽。

2.设计原则

1)投资少,运行费用低,一次精制盐水质量高;

2)采用手动和自动相结合管理,降低工作强度,使操作方便。

3.设计规范和标准

1)《钢结构设计规范》GBJ17-88

2)《室外排水设计规范》GBJ14-87(1997年版)

3)《建筑设计防火规范》GBJ16-87

4)《工业企业照明设计标准》GB50034-92

5)《低压配电装置及线路设计规范》GB50054-92

6)《工厂企业厂界噪声标准》GB12348-90

7)《地基基础设计规范》DBJ-11-89

三、方案设计

1.项目概述

XXX集团新建29万吨/年离子膜烧碱项目,在盐水精制环节需要设计一套全新的盐水精制工艺。

我国传统的离子膜烧碱盐水一次过滤一般采用澄清桶-砂滤器-碳素管法。其中,该

法预处理器——澄清桶+砂滤器存在占地面积大、过滤精度不够高、出水水质不稳定、易返浑等缺点;碳素管过滤器设备则需预涂α-纤维素,操作复杂,运行费用太高,严重影响氯碱企业的竞争力。后来出现预处理+膜法的盐水精制工艺,盐水质量较好,但存在处理流程较长,运行费用较高,操作管理比较复杂的缺点。因此需要一种更经济、操作更简单的方法提高一次精制盐水的质量和稳定性。

2、设计参数

(1)设计水量:348m3/h

(2)设计水质:混合反应后悬浮物含量≤5000mg/L

(3)设计标准:离子膜电解工艺一次精制盐水要求:出水悬浮物(ss)含量≤1mg/L。

(4)生产1吨烧碱需要消耗的一次盐水流量: 348m3/h(一次盐水浓度为305±5g/L,生产工作时间按8000h计算。)

3、工艺方案的选择

原盐是氯碱工业的主要原料,将原盐制成盐水,由于原盐的不纯,使盐水中常含有悬浮物和金属离子(如:Ca2+、Mg2+、Fe3+等)。这些物质进入电解工序,则会损坏电解膜,缩短电解膜的使用寿命,因此必须通过精制将这些离子除去。

盐水精制一般采用加入化学药剂生成几乎不溶解的化学沉淀物,然后通过澄清、过滤等手段达到目的。在澄清过滤的同时也达到去除泥沙及机械杂质的目的。

目前盐水电解生产烧碱的方法主要有隔膜法和离子膜法,离子膜法具有综合能耗低、液碱浓度高、氯氢纯度高、装置自动化控制程度高、环境污染轻等优势,是当今世界公认的先进制碱技术及发展方向。

通过附图1中的几种工艺比较,从对比情况来看, 传统方法已经淘汰,凯膜技术虽然应用广泛,但在工艺中还有所欠缺,陶瓷膜及西恩过滤工艺相对凯膜工艺流程更简化, 控制更简单, 从而在投资及运行费用上也更省。由于陶瓷膜及西恩过滤技术的固液分离技术不同, 西恩过滤器出水质量会有波动, 而陶瓷膜工艺动力电消耗较高,从实际生产需要考虑选择以西恩过滤器为主的盐水精制工艺,工艺流程框图如下:

注:工艺流程图如附图2

4、工艺流程说明

将仓库里的原盐通过运输带送入化盐池溶解后经过折流槽后进入混合反应槽,投加NaOH和Na2CO3,使Ca2+、Mg2+生成CaCO3和Mg(OH)2,搅拌一段时间后,保证盐水充分混合反应(即浑盐水加药后在混合反应槽中停留2小时以上),然后进入CN过滤器进行固液分离,进过滤器前投加BaCl

。经过CNI型及CNII型过滤器处理后,上清液清澈

2

透明,出水悬浮物稳定在1mg/L以下,可直接进入二次盐水精制工段。

过滤器底部排放的盐泥则用泵打入板框压滤机进行脱水,干泥外运处理,盐水则回到混合反应槽。

CN过滤器采用连续运行方式,反冲和排放盐泥时可不必停泵。CN过滤器反冲不需要任何介质,不存在化学药剂再生和膜更换费用。过滤器操作简单,方便实现自动化,降低工作强度。CNII过滤器一般每隔2~4小时反冲一次,排放盐泥每次约2~3m3,CNI 型过滤器一般每隔12~24小时排泥反冲一次,具体可根据进水悬浮物浓度决定。

5、自控系统

在本方案中,每套CN过滤器的出水口处都安装一台浊度仪,可对过滤器的工作状况和出水水质实现在线监控。在运行过程中能及时发现并解决问题。

过滤器的日常操作中主要是定时排放浓缩液,新型CN过滤器的排浓缩阀采用气动阀,日常的排料操作可通过控制室的DCS系统(或PLC系统)来进行,大大减轻了劳动强度。

6、工艺特点

(1)与传统澄清桶-砂滤-碳素管工艺相比,以CN 过滤器为主的新工艺简化了工艺流程,占地面积小,设备投资少。

(2)CN 过滤器采用连续运行,反冲放泥无需停泵。相对于预处理+膜分离工艺,CN 过滤反冲操作方便,无需任何介质。运行功耗低,运行费用少,不需要药剂化学再生和膜更换费用,使用寿命长。

(3)CN 过滤器悬浮物去除率高且稳定,操作弹性较大,出水水质基本不会受进水水质波动的影响,保证了一次精制盐水的质量液固分离一次完成,无需其他附属设备。而传统工艺耐冲击负荷能力差,一旦进水出现较大波动,反应较慢,则不仅影响了一次精制盐水的质量,而且会污染离子膜设备,造成运行不正常。

(4)操作简单,自动化程度高,大大降低了操作人员的工作量,减少了人为因素的影响。 (5)降低了对原盐质量的要求,拓宽了选盐的范围,给原料采购提供了方便。

7、工艺计算

物料衡算 :

计算基准 :本设计中的物料衡算均以小时为时间基准,工作时间定位8000小时.

1)设计依据

本设计中烧碱装置的年生产能力为29万吨。采用的烧碱规格如下:

图二 烧碱规格表

以此为依据进行下面的计算。

2)每小时生产的纯净烧碱产品的计算

h Kg /348008000

%

9610297=??

3)每小时理论消耗的食盐的质量计算

设食盐的质量流量为G

由反应方程式:

2Na Cl + 2H 2O —→ 2Na OH + H 2↑ + Cl 2↑ 2×58.5 2×40

G 34800

G = 80

11734800?= 50895kg/h

4)每小时实际消耗的原盐的质量计算

原盐规格如表:

由于副反应存在,综合考虑食盐中的损失率为2.5%. 则加入的实际原盐量应为:

h K /g 54913%

95025

.150895=? 5)原盐中各组分的流量

由原盐规格可计算原盐中各组分的质量流量:

NaCl 的质量流量 : 54913×95% = 52167.35kg/h CaCl 2的质量流量 : 54913×0.20% = 109.8 kg/h MgCl 2的质量流量 : 54913×0.15% = 82.4 kg/h MgSO 4的质量流量: 54913×0.20% =109.8 kg/h

Na 2SO 4的质量流量: 54913×0.30% = 164.7 kg/h 不溶性杂质的质量流量 :54913×0.65% =356.9 kg/h 水分的质量流量: 54913×3.50% = 1921.9 kg/h

6)盐水精制剂的用量

设加入Na 2CO 3的质量为m 1(kg)、沉淀CaCO 3为x 1(kg)、NaCl 为y 1(kg); CaCl 2 + Na 2CO 3 = CaCO 3↓ + 2 NaCl 111 106 100 2×58.5

109.8 m 1 x 1 y 1 解得:m 1=104.9kg x 1= 98.9kg y 1=115.7kg

假设有5%的Na 2CO 3损耗,则每小时实际加入Na 2CO 3的质量为: m 1=104.9×(1+0.05)=107.5kg

设加入NaOH 的质量为m 2(kg)、沉淀Mg(OH)2为x 2(kg) 、NaCl 为y 2(kg); MgCl 2 + 2NaOH = Mg(OH)2↓ + 2NaCl 95 2×40 58 2×58.5 82.4 m 2 x 2 y 2

解得:m 2= 69.4Kg x 2= 50.3 Kg y 2=101.4Kg

加入Na OH 的质量为m 3(kg)、沉淀Mg(OH)2为x 3(kg) 、Na 2SO 4为y 3(kg);

MgSO 4 + 2Na OH = Mg(OH)2↓ + Na 2SO 4

120 2×40 58 142 109.8 m 3 x 3 y 3

解得: m 3= 73.2kg x 3=53.1kg y 3=129.9kg 假设有5%的Na OH 损耗,则每小时实际加入Na OH 的质量为:

m 37.149)05.01()2.734.69(=+?+=kg

设加入BaCl 2的质量为m 4(kg)、沉淀BaSO 4为x 4(kg)、Na Cl 为y 4(kg);

Na SO 4 + BaCl 2 = BaSO 4↓ + 2Na Cl 142 138 241 2×58.5 164.7+129.9 m 4 x 4 y 4

解得: m 4=286.3kg x 4=499.9kg y 4=242.7kg

7)用水量的计算

利用氯化钠的溶解度可算出用水量,可在表四中查得不同温度下的溶解度:

表四不同温度下氯化钠在水中的溶解度表

氯化钠的溶解度随温度的升高而增大,为加快溶盐速度,使化盐桶中Ca 2+、Mg 2+能很好的沉淀,化盐温度一般为45~55℃,本设计取50℃,查得该温度下KCl 、CaCl 2、MgCl 2、CaSO 4、MgSO 4的溶解度见表五。

由溶解度公式:S =

M 质

M 剂

× 100 % 可得化盐总需水量: ①溶解NaCl 所需H 2O 的质量为:

kg M 5.194001%

89.2652167

H2O ==

②溶解CaCl 2所需H 2O 的质量为:

3.137%

808

.109H2O ==

M kg ③溶解MgCl 2所需H 2O 的质量为:

3.154%

4.534

.82H2O ==M kg

④溶解MgSO 4所需H 2O 的质量为:

4.428%

63.258

.109H2O ==M kg

⑤溶解Na 2 SO 4所需H 2O 的质量为:

5.337%

80.487

.164H2O ==M kg

由以上结果可得每小时溶解原盐所需H 2O 的总质量为:

O H M 2 = 194001.5+137.3+154.3+428.4+337.5 =195059kg

以上数据如下表六:

表六物料衡算表注:物料工艺流程图如附图3 8、主要设备及选型

设备设计与选型的基本要求:

化工设备是化工生产中重要的物质基础,对生产过程起着重要作用。因此,在设计过程中要考虑工艺上的要求,运行的可靠性,操作的安全性,便于连续生产和自动化生产,要能创造良好的工作环境和无污染,便于购置和容易制造。

总之,要考虑到先进、适用、高效、安全、可靠、省材、节约资源等原则。可从技术经济指标和设备制造结构两方面入手。

此工艺中可用到的设备大概如下表。

图七主要设备表

9、车间设计

基本资料:初步设计需要的工艺流程图、施工设计需要管道仪表流程图、物料衡算数据及物料性质、相关设备表、车间定员以及建厂地形等资料。

1)布置原则

要满足生产工艺要求;要符合经济原则;要符合安全生产要求;便于安装和检修作业;要有良好的操作环境。

2)设计的主要内容

车间包括:生产部门、辅助部门、生活部门三部分,设计时应根据生产流程、原料、中间体、产品物化性质以及它们之间的关系,确定应给设计几个工段,需要哪些辅助部门和生活部门。

3)设备布置技术要素

生产工艺对送个吧布置的要求:满足生产工艺的前提下,要保证水平方向和垂直方向的连续性;尽可能的将相同设备放在一起集中管理、排列整齐;要尽可能地缩短设备间管线;传动设备要有安全防护设施等。

设备安装专业对布置的要求:要考虑设备能顺利进出车间;设备的大小、安装、检修及拆卸所需要的空间和面积合理;通过楼层的设备,楼面上面要设置吊装孔。

厂房建筑对设备布置的要求:凡是笨重的设备在工作时都有巨大的振动,所以在建筑

方面要做到防振措施;布置设备时应避开建筑物的柱子、梁及沉降缝或伸缩缝;厂房中操作台必须统一有利于操作又显得美观;设备尽可能避免布置在窗前,以免影响采光和开窗;在厂房的大门或楼梯旁布置设备时,不要影响开门和行人出入畅通。

10、非工艺专业要求

1)管道设计与要求

管道设计主要包括管道的设计计算和布置设计两部分。

管道直径的计算:管道直径采用以下计算式:d=

式中:d—管道内径,mm;

V—流体流量,m3 /h;

u—平均流速,m/s;

流速常用范围为液体0.5-2.0m/s ;气体8—15m/s,水蒸汽40-60 m/s。

设计压力:

化工管道及其组成件设计压力应不低于操作过程中有由内压与温度组合的最苛刻条件下的压力。

所有与设备或者压力容器连接的管道,其设计压力应不低于设备或容器的设计压力,并满足一下要求:设置安全泄压装置的管道,其设计压力应不低于安全泄放压力与液柱静压力之和;没有设置安全泄压装置时,其设计压力不应低于压力源可能达到的最高压力和静液柱压力之和。

设计温度:

化工管道及其组成件的设计温度不应低于操作过程中,由压力和温度构成的最苛刻的条件要求。不同管道的设计温度由以下要求确定:

○1无隔热层管道的设计温度:SHA级的管道组成件,应当取介质温度为设计温度,如取其他温度作为设计温度时必须通过计算并通过实验核实。

○2其余级别的管道及其组成件的设计温度,当介质的温度小于65度时取介质温度,当介质温度大于或等于65度时按下列原则选取:

A、管子、对焊管件、承插焊或对焊阀门及其他壁厚与管道相近的组成件设

温度不一般高小于95%介质温度。

B、法兰、垫片及带法兰的阀门管件应不低于90%介质温度。

C、螺栓、螺母等紧固件应不低于80%介质温度。

○3带外隔热层得管道应根据温度条件对管材的作用后果的严重性取介质的最高最低工作温度作为设计温度。

○4带村里或内隔热层得管道,其基体材料设计温度应经产热计算或实测确定。

○5带夹套会伴热的管道当工艺温度高于伴热介质时,取工艺介质温度为设计温度;当工艺介质温度低于伴热介质温度时,取伴热介质温度减10度和工艺介质温度较高者

○6对于安全泄压管道应取排放时可能出现的最高温度或最低温度作为设计温度。

○7要求吹扫的管道应根据具体条件确定。

设备的管道布置:

泵的管道布置:泵体不宜承受进出口管道和阀门的重量,故进泵前和出泵后的管道必须设置支持装置,尽可能做到泵移走时不设临时支架。吸入管道应尽可能短,少拐弯,并避免突然缩小管径。吸入管道的直径不应小于泵的吸入口。当泵的吸入口为水平方向时,应配置偏心异径管,采用的泵的吸入口为垂直方向,可配置同心异径管。为防止泵停时物料倒冲,泵的排出管上应设止回阀。止回阀应设在切断阀之前,停车后将切断阀关闭,以免止回阀的阀板长期受压损坏。

立式容器的管道布置:容器底部排出管道沿墙铺设离墙距离应小些,可节省占地面积,设备间距要求大些,以便操作人员切换阀门与检修。排出管在设备前引出。设备间距离及设备离墙距离均可以小些,排出管通过阀门后一般应立即引至地下,使管道走地沟或楼面下。排出管在设备底中心引入,适用于设备底部离地面较高,有足够距离可以安装和操作阀门,这样铺设高度短,占地面积小,布置紧凑。

卧式槽的进、出料口位置应分别在两端,一般进料在顶部、出料在底部,进入容器的管道铺设在设备前部。

其他管道布置:管道最高点设置放气阀,最低点设置放净阀,排放管道阀门靠近主管设备放空排气阀门最好应与设备本体直接链接。排放易燃易爆的气体管道上应设置阻火器,室外容器的排气管道上的阻火器应放置在排气管接口(与设备相接的口)500mm处,室内容器的排气必须接出屋顶,阻火器放在屋面上或靠近屋面,阻火器至排放口之间的距

离不宜超过1m。管路上设置取样点时,应选择便于操作、取出样品有代表性、真实性的位置。

管道支吊架的选用:定型管架包括十大类:管托、管卡;管吊;型钢吊架;柱架;墙架;平管支架;弯管支架;立管支架;大管支承的管架;弹簧托、弹簧吊和弹簧吊架。管道布置应考虑的因素:

物料因素:有腐蚀性物料的管道,应布置在平行管道的下方或外侧。易燃、易爆、有毒和有腐蚀性物料的管道不应敷设在生活区、楼梯和走廊处,并配置安全阀、防暴膜、阻火器、水封等。防水、防暴装置、放空管应引至室外指定地方或高出屋面2m以上。

冷热管道尽量分开布置。不得已时,热管在上,冷管在下。其保温层外表面的间距,上下并行时一般不小于0.5m。交叉排列时,不应小于0.25m,保温材料及保温层的厚度根据规范规定。

管路布置,除满足正常生产要求外,还应符合开、停工和处理事故的要求。开停工时,由于有关部分有开,有停,应当设置旁路管道,还应设置开工装料,停工时排料及不合格产品的再加工管道,管路应能适应操作变化,避免繁琐,防止浪费。

在蒸汽主管和长距离管线的适当地点应分别设置带疏水器的放水口及膨胀器。为了安全起见,尽量不要把高压蒸汽直接引入低压蒸气系统。如有必要,应装减压阀并在低压系统上装安全阀。

污水应排放至专门系统,并考虑综合利用。根据污水的具体情况,可分别用合流式(即工业污水、雨水和便溺水全部由一个管网排出)或分流式(即工业污水和便溺水由一个管网排出,雨水和工业清水则由另一个管网排出)。有毒的污水须经处理后,方可排放。真空管线应尽量缩短,避免过多的曲折,使阻力小,达到更大的真空度。还应避免用截止阀,因其阻力大,影响系统的真空度。

施工、操作及维修:支管多的管道应布置在并行管的外侧。引支管时,气体管从上方引出,液体管从下方引出。管道应集中架空布置,尽量走直线,少拐弯,不要挡门窗和妨碍设备、阀门、管件等的维修;不应妨碍吊车作业;在行走过道地面2.2m的空间也不应安装管道。

管道应避免出现“气袋”、“口袋”和“盲肠”。集气系统的布置应使得蒸汽能方便地向最高点排放。如有可能管道应沿墙安装,管与墙间距离以能容纳管件、阀门及方便维修为原则。

安全生产:阀门要布置在便于操作的部位。操作频繁的阀门应按操作顺序排列。容易

开错且会引起重大事故的阀门,相互间距要拉开,并涂刷不同颜色。地下管道通过道路或有负荷地区,应加保护措施。管道与阀门的重量,不要考虑支撑在设备上(尤其是制设备、非金属材料设备、硅铁泵等)。

其他因素:距离较近的两设备间,管道一般不应直连,因垫片不宜配准,故难以紧密连接。设备之一未与建筑物固定或有波形伸缩者例外,建议采用45。斜接或90。弯接。管道通过楼板、屋顶或墙时,应安装一个直径大的管套,管套应高出楼板,平台表面50mm。管道布置中应顾及电缆、照明、仪表、暖风等其他管道,应全面考虑,各就各位。

管路设计一般原则:

①管道应成列平行敷设,尽量定直线、少拐弯(除自然补偿或方便安装、检修、操作需要之外) ,少交叉以减少管架的数量,节省管架材料,便于施工。

②设备间的管道连接,应尽可能地短而直,尤其用合金钢的管道和工艺要求压降较小的管道。

③当管道改变标高或走向时,应避免管道形成积聚气体的“气袋”或液体的“口袋”和盲肠。如不可避免时应于高点设放空阀,低点设放净阀。

④输送有毒或有腐蚀性介质的管道,不得在人行通道上设置阀件、伸缩器、法兰等,以免法兰渗漏时介质落入人身上而发生工伤事故。

⑤易燃、易爆介质的管道,不得敷设在生活间、楼梯间和走廊等处。

⑥管道布置不应挡门、窗,应避免通过电动机、配电盘、仪表盘的上空;在有吊车的情况下,管道布置不应妨害吊车工作。

⑦气体或蒸汽管道应从主管上部引出支管,以减少冷凝液的携带;管线要有坡度、以免管内或设备内积液。

⑧由于管法兰处易泄露,生产管道除与设备接口和法兰阀门、特殊管件连接处采用法兰连接外,其他均应采用对焊连接。

⑨不保温、不保冷的常温管道除有坡度要求外,一般不设管托。

2)公用工程设计要求:

采暖通风设计:通风空调的目的是排除并控制车间内余热、余湿、有害气体以及粉尘等,使车间内空气保持适宜的温度、湿度、气流速度和卫生清洁的要求,以确保生产工艺和生活舒适所需的环境。

设计条件:工艺流程图、设备一览表、采暖方式(集中式和分散式)、通风方式(自然通

风或机械排风),设备的散热量、产生的有害物质、性质、数量和生产的粉尘情况。

给水、排水设计:厂区生活水系统供厂区生活区、生产车间办公室、化验及卫生器具等用水,水质符合生活饮用水卫生标准(GB5749-94)。

生活水由园区外的生活给水管网供给,生活水进水总管和分管设置阀门和流量计,以便管理用;生活水管道在厂区内采用枝状供水方式。

生产排水方面有按设备布置图标明排水设备名称和排水点,排水条件如排水量、排水压力、水温和成分等;采用的处理方法、排水的方式是连续或间断排水等;排水位置要标高。

消防用水方面一般设置独立的供水系统,包括消防水池、消防水泵和消防水管道系统等。根据《建筑设计防火规范》中的规定设计出符合要求的供水系统。

配电设计要求:有全厂用电要求和设备清单,供电协议及相关资料,与气象、水文、地质等准备资料;按照相关的供电原则进行配电,做好供电中的防火防爆工作,各类用电要分明管理到位,做到合理用电,节约用电的原则。

11、三废处理

盐水中的可溶性杂质,一般采用加入化学精制剂生成几乎不溶解的化学沉淀物,然后通过沉清、过滤等手段达到精制的目的。在沉清过滤的同时也达到去除泥沙及机械杂质的目的。

在一次盐水工段主要是固体废物的处理,原盐经过处理之后生成难溶解的化学物质氢氧化镁、碳酸钙、硫酸钡以及其他杂物,将过滤盐水经过板框压滤机可以将这些杂质去除,再进行集中处理。

四、设计感受与设计讨论

通过对《化工设计概论》这门课程的学习,了解到了设计的基本原则。我们也带着问题去不断讨论问题、解决问题,最终通过简单的一次盐水工段进行设计学习。从开始到结束让我了解到化工设计并不是一个孤立的部分,是把所有的知识综合使用起来才能达到效果,当然我们这只是把学到的基本原则与实际结合使用,要是和真正的设计相比还有很多不足之处,需要我们更进一步学习这方面的知识,比如制图、识图、设备选择、工艺计算等等方面都还需要很大的努力。

以上设计还有很大不足之处,通过这次学习之后,带着所学过的基本知识进一步去学习相关的内容,要学好这门课还要大量的时间和经验去不断提升,希望自己也能在这面多

学一点。同时也感谢老师的尽心讲解!

五、参考文献:

[ 1] 孙勤, 赫飞.国内氯碱生产技术近况综述. 氯碱工业, 2007,( 8) : 1-9

[ 2] 费红丽.国内氯碱行业盐水精制工艺状况( 2000- 2003) 调查报告.氯碱工业, 2005, ( 5): 16- 17

[3]百度百科.

[4]杨秀琴,化工设计与概论[M],化学工业出版社,2010年。

六、附图

附图一:一次盐水制备工艺比较

烧碱的制作工艺流程

烧碱得制备工艺简介 烧碱得制备方法有两种:苛化法与电解法。现代工业主要通过电解饱与NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法与离子膜法,我国目前主要采用得就是隔膜法与离子膜法,这二者得主要区别在于隔膜法制碱得蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。 目前国内得烧碱生产主要采用得就是离子膜电解法生产烧碱,我们主要针对离子膜电解法介绍烧碱得制作工艺,并简要讨论工艺中得能耗情况。原料为粗盐(含大量杂质得氯化钠),根据生产工艺中得耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产与废气吸收工序等七个流程。 据测算,电解法烧碱生产吨碱综合能耗在各工序得分布如下: 整流2、0%;盐水精制3、9% ; 电解53、2%;氯氢处理1、2%;液碱蒸发25、1%;固碱生产14、6%。从上述可知,电解与液碱蒸发就是主要耗能工序。电解工序中得电耗约为吨碱电耗得90%,碱蒸发中得蒸汽消耗占吨碱蒸汽消耗得74%以上。 图1?烧碱工艺总流程示意图 1整流: 整流就是将电网输入得高压交流电转变成供给电解用得低压直流电得工序,其能耗主要就是变压、整流时造成得电损,它以整流效率来衡量。整流效率主要取决于采用得整流装置,整流工序节能途径就是提高整流效率。当然减少整流器输出到电解槽之间得电损也就是不容忽略得。 2盐水精制: 将工业盐用水溶解饱与并精制(除去Ca2+、M g2+、S 02-4等有害离子与固体杂质)获得供电解用精制饱与盐水,就是盐水精制工序得功能。 一次盐水精制: 采用膜过滤器(不预涂) 1-整流2-盐水精制3-电解4-氯氢处理 5-液碱蒸发 6-固碱生产

3-1离子膜电解槽的操作.

职业教育应用化工技术专业教学资源库《离子膜烧碱生产操作》课程案例教学内容 离子膜电解槽电解精制盐水的操作 ⒈ 案例选取的内容 ⑴ 离子膜电解槽型号 BiTAC -859复极式离子膜电解槽 ⑵ 电极尺寸为1400×2340mm ⑶ 阴阳极室内设计工作压差:350±20mmH 2O ⑷ 设计温度:0-100℃ (温差变化要缓慢) ⑸ 有效面积为3.276m 2 ⑹ 日产100%NaOH 的量:101.5t ⑺ 运行温度:82~88℃ ⑧ 板片材料 阳极:钛材(包括钛网与活性涂层);阴极:镍材(包括镍网与活性涂层) ⑨ 工作介质 阳极室含NaCl 量为250g/l 左右的盐水,并含有NaClO 3、NaClO 和新生态的Cl 2和少量的新生态的O 2;阴极室含30%左右的NaOH 溶液,并含有新生态的H 2。 ⑩ 工作地点:离子膜烧碱生产精制盐水电解生产工序 ⑾ 完成任务的工作人员:顶岗实习的学生小赵、小阚与班长乙 其整体结构见图1所示。 图1 BiTAC -859复极式离子膜电解槽的基本结构示 紧固螺 阴极终端板 电解单元 单元取样 阳极终端 阳极液流出 盐水入槽汇总 压紧螺帽、弹性垫片 槽框横梁 槽框 阴极液流出管 碱液入槽汇总管

图2 离子膜电解槽阴阳极液气液分离装置 ⒉工作任务要求 在二次盐水精制生产岗位上已经生产出含NaCl为310g/l左右,PH=8~10,总硬度为12PPb的合格盐水(Ca2++Mg2+≤20PPb),需要送入电解槽阳极室进行电解;另有合格的30%NaOH 的烧碱溶液和高纯水作为阴极室循环使用,现在准备离子膜电解开车的其他准备工作已由调度安排妥当,本岗位需要生产合格的烧碱产品。 工作时间:每天24小时连续生产。 ⒊工作流程 阴极液系统中的循环碱经流量控制阀调节适当的流量,加入适量的高纯水后,使之碱液的浓度在28%~30%,通过烧碱换热器加热或冷却循环碱液,确保电解槽的操作温度保持在85~90℃,送入电解槽底部的碱液分配器,进入电解槽底部的碱液分配器,分配到电解槽的每个阴极室进行电解。 二次精制合格的盐水经盐水预热器(正常开车时很少用)预热后,调节到合适的流量与高纯盐酸、循环淡盐水在混合器中混合,使之显酸性,但PH值须大于2,然后送入电解槽底部的盐水分配器到电解槽的每个阳极室进行电解。 从电解槽流出的淡盐水通过流量控制阀加酸,调节PH值为2左右,进入阳极液接收罐后,用淡盐水泵送出,并分成两路:一部分与精盐水混合后送往电解槽,循环使用;另一部分送往脱氯塔进行脱除游离氯。 从电解槽阳极侧产生的湿氯气送到氯气总管,去氯气处理系统。当总管Cl2压力过大,可直接高压安全水封去事故氯处理系统,避免Cl2外溢。当总管Cl2负压过大,可由低压安全水封吸入空气,避免膜受到机械损坏。 电解槽溢流而出的烧碱依靠重力流入碱循环罐,由碱循环泵分成两路:一部分产品添加

离子膜烧碱工艺流程

离子膜烧碱工艺流程 https://www.360docs.net/doc/e910019467.html,/thread-437527-1-1.html CAD 邢家悟主编《离子膜法制烧碱操作问答》(化学工业出版社,2009年7月) 第一章盐水精制甲元 1.盐水精制的目的 氯碱工业生产过程中,无论采用海盐、湖盐、岩盐或卤水中的哪一种原料,都含有Ca2+、Mg2+、SO2-等无机杂质,以及细菌、藻类残体、腐殖酸等天然有机物和机械杂质。这些杂质在化盐时会被带入盐水系统中,如不去除将会造成离子膜的损伤,从而使其效率下降,破坏电解槽的正常生产,并使离子膜的寿命大幅度缩短。盐水中一些杂质会在电解槽中产生副反应,降低阳极电流效率,并对阳极寿命产生影响。因此,盐水必须进行精制操作除去盐水中的大量杂质,生产满足离子膜电解槽运行要求的精制盐水。 2.盐水精制工艺简述 直至20世纪70年代中期,传统絮凝沉降盐水精制工艺基本上没有实质性发展;目前用于离子膜法电解的盐水精制工艺是在上述方法基础上增加二次过滤和二次精制先进工艺技术形成的。其工艺流程为∶饱和粗盐水加入精制反应剂,经过精制反应后加入絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二次过滤,使盐水中的悬浮物小于1×10-6,然后进入离子交换树脂塔,进行二次精制,得到满足离子膜电解槽运行要求的精制盐水。其工艺流程简图如图1所示。 第二章电解单元 92.离子膜电解槽电解反应的基本原理 离子膜电解槽电解反应的基本原理是将电能转换为化学能,将盐水电解,生成NaOH、Cl2、H2,如图20所示,在离子膜电解槽阳极室(图示左侧),盐水在离子膜电

解槽中电离成Na+和Cl-,其中Na+在电荷作用下,通过具有选择性的阳离子膜迁移到阴极室(图示右侧),留下的Cl-在阳极电解作用下生成氯气。阴极室内的H2O电离成为H+和OH-,其中OH-被具有选择性的阳离子挡在阴极室与从阳极室过来的Na+结合成为产物NaOH,H+在阴极电解作用下生成氢气。 93.离子膜电解槽的类型 离子膜电解槽按照单元槽的结构形式不同,分为单极式离子膜电解槽(图21)和复极式离子膜电解槽(图22)。单极式离子膜电解槽是指在一个单元槽上只有一种电极,即单元槽是阳极单元槽或阴极单元槽,不存在一个单元槽上既有阳极又有阴极的情况。复极式离子膜电解槽是指在一个单元槽上,既有阳极又有阴极(每台离子膜电解槽的最端头的端单元槽除外),是阴阳极一体的单元槽。 94.不同类型离子膜电解槽的供电方式 离子膜电解槽的供电方式有两种∶并联和串联。在一台单极式离子膜电解槽内部(参见图23),直流供电电路是并联的,因此总电流即为通过各个单元槽的电流之和,各单元槽的电压基本相等,所以单极式离子膜电解槽的特点是低电压大电流。

离子膜烧碱装置工艺培训课件

离子膜烧碱装臵工艺培训课件 一、装臵简介 巴陵石化环氧树脂事业部有二套离子膜烧碱生产装臵,一是1993年建成投产采用日本旭化成公司强制式循环电槽工艺的20000t/a离子膜装臵,一是2001年12月份建成投产采用日本旭化成自然式循环电槽工艺的50000t/a离子膜装臵。 二、烧碱制碱技术的发展历程 烧碱从电石法、水银法、隔膜阳极法发展到离子膜制碱技术。 离子膜烧碱制碱技术是十九世纪60年代开始进入工业生产,最早由美国杜邦、日本旭化成、西欧伍德等化工公司实现工业生产。主要是膜和相应电解槽的发展决定离子膜制碱技术。 膜和电解槽的发展历程与离子膜烧碱技术发展是同步的,目前离子膜只有美国杜邦、日本旭化成、旭硝子公司生产,我国去年开始山东东岳集团才开始生产出用于强制循环的膜。电解槽从最开始的单级式电解槽发展到强制循环电解槽、自然循环电解槽、高电密电解槽、零极距电解槽及零极距高电密电解槽。 三、装臵工序简介 装臵分为20000t/a离子膜装臵精制、电解工序、氢处理工序,氯气送50000t/a离子膜装臵氯干燥处理;50000t/a离子膜装臵分为

精制工序、电解工序、淡盐水脱氯工序、蒸发工序、氯气处理工序、氢处理工序。 四、原材料产品简绍 产品性质 30%离子膜烧碱 30%离子膜烧碱化学分子式NaOH,比重约1.3左右,分子量40,凝固点4.65℃,生成热101.99 千卡/克分子,熔点318.4℃、沸点1390℃。30%离子膜烧碱为无色粘状液体,呈强碱性,对皮肤、角膜、动物纤维有强腐蚀性,可吸收氯气和二氧化碳。离子膜烧碱广泛用于造纸、冶金、纺织、无机化工、军工领域,是一种基本无机化工原料。 氯气(Cl2) 氯气化学分子式Cl2,在常温常压下为黄绿色有刺激性气味的有毒气体。密度为3.21,是空气的2.45倍。易溶于碱溶液、二硫化碳和四氯化碳,难溶于饱和食盐水。在常温下,氯气被加压到0.6~0.8MPa或在常压下冷却到-35~40℃时就能液化为黄绿色透明液体。液氯的密度为 1.47,熔点-102℃,沸点-34.6℃,气化热62kcal/kg(36℃)。氯气的化学性质很活泼,是一种活泼的非金属。液氯为第二类危险化学品,人体吸入浓度为2.5mg/m的氯气时,就会死亡。氯气爆炸的危害包括两部分:爆炸本身造成的危害及泄漏的氯气造成的二次危害常温下水中的溶解度为5~7g/l,湿氯气对绝大部分金属具有强烈的腐蚀性。氯气与氢气混合后在温度和光的作用下可

5万吨离子膜烧碱消耗定额

5万吨离子膜烧碱消耗定额 以每吨100%NaOH计,装置能力5万吨/年32%wt烧碱液 吨耗年耗 1 卤水NaCl290g/l t 2.9 2 146000 2 食盐t 0.7 3 36500 3 纯碱:NaCO3 大于98.5%wt kg 15 750t 4 氯化钡:BaCl 大于98%wt kg 12 600t 5 纯水t 1.4 160000 6 助沉剂kg 0.5 25t 7 亚硫酸钠:Na2SO3 大于95%wt kg 0.6 30t 8 离子膜烧碱100%计kg 19 9 包装袋个40 80万个 10 离子膜m2 0.01 500m3 11 螯合树脂L 0.02 1000t 12 硫酸98%wt kg 22 1100t 13 直流电kwh 2160 1.08亿度负荷1.35万kw 14 动力电kwh 1500 0.75亿度负荷0.94万kw 15 新鲜水28度t 1.5 7500 16 循环水33度t 190 9500000 17 仪表空气Nm3 16 18 工艺空气Nm3 10 19 天然气燃料Nm3 150 7500000 20 蒸汽1.0MPa t 1.9 95000 原料,辅助材料及动力供应 1 原料 规格年用量 卤水NaCl 290g/L 146000t 食盐93% 36500t 2 辅助材料供应 规格年用量 亚硫酸钠外观白色粉末30t NaSO3 大于95%wt NaCl 小于0.5%wt Fe3+ 小于0.02%wt 助沉剂FeCl2 大于90%wt 温度小于30度25t 离子交换膜500m3 包装袋10kg/袋380万个

螯合树脂型号TP260或相当品1000L 堆积比重0.7--0.8g/ml 交换容量1.3eq/l 钠型树脂 纯碱Na2CO3 大于98.5%wt 750t 硫酸H2SO4 大于98%wt 1100t 氯化钡BaCl2 大于98%wt 600t 动力供应 规格年用量 纯水电阻率大于1x55 Ω.cm SiO2 0.1ppmwt 160000t 循环水33----44度9500000t 生产水75000t 蒸汽 1.0MPa 95000t 天然气7500000Nm3 电解电10kv 108000000度动力电380v 7500000度

离子膜电解槽

设备维护检修规程 离子膜电解槽维护检修规程

1总则 1.1规程适用范围 本规程适用于意大利De Nora2×19DD350复级式离子膜电解槽的维护和检修。 1.2设备结构简述 De Nora2×19DD350复级式离子膜电解槽由38个单元槽组成,有效电解面积为3.5m2,每个单元槽都由三部分组成:10mm厚不锈钢为基础的单元基体、阳极室及阴极室。 a.单元基体分为三部分:

1)中间一层是5mm钢板为导电支承体,上面均匀分布着238个不锈钢柱,等距穿过钢板两侧,进行焊接固定。 2)将1mm钛盘(上面有与钢板对应的238个凹槽)焊接在钢板的不锈钢柱上,同样方式将1mm镍盘焊接在钢板的另一侧。 3)在钛盘和镍盘侧面分别焊接1mm厚的钛网和镍网,作为阳极、阴极的支承网。 b.阳极室在钛盘的钛支承网上,采用该公司创制的贴粘涂层工艺,焊上一层阳极,组成阳极室(即由细、粗钛网及钛板等构成阳极室)。阳极的主体材质为钛,呈丝网状,上涂Ti、Ru等金属的氧化物固溶体作为活性涂层,涂层微观上呈龟裂状态,增大了涂层的表面积。 c.阴极室在镍盘的镍支承网上,覆盖一层由镍丝编织成的弹性镍,在弹性镍上平铺一层1mm的活性镍阴极,组成阴极室(即由粗、软、细三种镍网构成阴极室)。阴极的主体材质为镍,由于弹性镍网有成百万个小孔,可以压缩50%以上,所产生的弹性力将阴极压向膜,从而形成零极距。 1.3设备主要性能 工作介质:盐水、烧碱、氯气、氢气; 工作负荷: 11.5KA 电流密度: 3.285KA/m2 额定电流负荷: 13KA 额定电流密度: 3.71KA/m2 循环方式:自然循环 单元槽电压: 3.07V(新膜) 槽温:正常85℃ 电流效率: 93%(二年平均)、92%(三年平均) O 氯气压力: -20~-50mmH 2 O 氢气压力: +80~+120mmH 2 阳极主体材质:钛 通电面积: 3.5m2 阴极主体材质:镍

离子膜烧碱生产原理

离子膜烧碱生产原理 烧碱生产是以超纯盐水为原料,在离子交换膜电解槽中进行强烈的电化学反应而生成的。 在阳极室中氯化钠按下列方式在溶液中进行电离: NaCl → Na+ + Cl- 主要阳极反应为阴离子Cl-在阳极上发生氧化生成氯气 2Cl-→ Cl 2 + 2e- 阳极室的Na+和水通过离子交换膜一起传输到阴极室. 阴极室的水在电流的作用下发生如下的电解反应: 2H 2O + 2e-→ H 2 + 2OH- 阴极室最开始的反应是阳离子H+得到电子被还原为H 2 ,同时产生OH-。 Na+和OH-结合生成NaOH: Na+ + OH-→ NaOH 整个电化学反应方程式如下: 2NaCl + 2H 2O → 2NaOH + Cl 2 + H 2 为了调节阴极室中NaOH的浓度在NaOH循环管中加入纯水 淡盐水和Cl 2 一起排放出阳极室外。 阴极室中产生的烧碱和H 2 一起排放出阴极室外。 把循环碱液用纯水稀释后重新加到阴极室中。 上述电化学反应如图1所示 在电解进行过程中,由于阳极中的一部分Cl-透过了离子交换膜进入阴极室,阴极液就受到了少量盐的污染。一般来说,膜的电流效率越低,阴极液的盐污染程度就越高。 电解时,由于OH-在电场作用下由阴极室向阳极室移动,我们称之为OH-反渗透。Na+传输量的减少取决于OH-的透过离子膜的多少。电解槽电流效率的减少和OH-的减少直接有关。当阴极室OH-浓度增加时,电流效率减少。因此所生产烧碱的浓度受到限制,一般为32-35wt%此外,还要取决所用膜的类型。 新装膜原理上只允许Na+和少量的OH-和Cl-透过。实际上膜都有一定的使用寿命,随着膜工作时间的增加,阴离子透过膜的量也相应增加,槽的电流效率下降,阳极室由于下面的副反应PH值增加: 电化学副反应 ·H 2 O被氧化产生氧气

离子膜法烧碱生产安全技术规定

离子膜法烧碱生产安全技术规定 HABOO—2002 2002—05—10 发布2002—10—01 实施 1主题内容与使用范围 1. 1本规定规定了离子膜法烧碱生产过程中物料的安全使用要求、生产安全技术规定、机电设备的安全技术规定、检修的特殊安全要求、劳动保护和劳动环境的安全规定以及消防和现场急救。 1. 2本规定提出的内容仅限于离子膜法工艺装置中共性的安全生产要求,对不同离子膜法工艺装置的各种特殊规定,仍应按相应的规定执行。新建、扩建、改建以及技术改造的离子膜法烧碱建设项目的安全卫生要求,应同时符合《化工企业安全卫生设计规定》。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 HG20571-95《化工企业安全卫生设计规定》 SH3047《石油化工企业职业安全卫生设计规范》 GBJ16-87(2001年版)《建筑设计防火规范》 HGJ-28-90《化工企业静电接地设计规程》 GB50058-92《爆炸和火灾危险环境电力装置设计规范》 HG23011-1999《厂区动火作业安全规程》 GB11984-89《氯气安全规程》 3物料的安全使用要求 3. 1化盐用水、卤水(井盐)、原盐必须定期或者按批次进行

铵含量分析,以确保电解用的盐水中铵含量符合要求。 3. 2辅助材料中的纯碱、亚硫酸钠和氯化钡、a纤维素,分属 有害品或毒害品;烧碱、盐酸、硫酸等属强腐蚀剂,应定点储存,做好标识。储运系统设计应符合《石油化工企业职业安全卫生设计规范》,储罐周围应设围堰,并用防渗防腐材料铺砌,同时建立相应的管理制度。 生产安全技术规定 4.1 主要安全指标* 4.1.1 入槽盐水 NaCI290- 310g/L 无机铵<1mg/ L 总铵詔mg/ L Ca"+Mg0.02ppm (wt) 4.1 .2 入槽纯水 电导率勻0 e/cm 3+ Fe 0.1 ppm (wt) 4.1 .3 高纯盐酸 HCI 鸟0%( wt) 游离氯屿ppm (wt) Ca++Mg+ 0.3ppm (wt) 3+ Fe <10ppm( Wt) 4.1 .4 氯气 单槽氯中含氢<1%( vol )

零极距离子膜电解槽

零极距离子膜电解槽 近年来,中国新建和改造项目基本都采用离子膜法烧碱工艺,离子膜法烧碱产能已占到总产能的69%,其中采用的电解槽多为高电流密度自然循环复极式离子膜电解槽。近两年出现的新型零极距离子膜电解槽也开始在我国逐步推广应用,该离子膜电解槽比普通离子膜电解槽节能减排效果明显。 离子膜法烧碱电解装置中,电解单元的阴阳极间距(极距)是一项非常重要的技术指标,其极距越小,单元槽电解电压越低,相应的生产电耗也越低,当极距达到最小值时,即为零极距,亦称之为膜极距。 一般用的电解槽都是窄极距的,即阴阳电极间距约2~3mm,从而避免电解单元槽挤坏离子膜,且电压也稍高一些;而零极距是在窄极距的基础上将阴极上加一层弹性缓冲网和面网,即弹性阴极,从而将阴阳电极间距缩小到离子膜的厚度,从而使电解槽的欧姆降大大减小了。不仅提高的电流密度和产量,且电耗明显降低许多。 零极距电解槽通过降低电解槽阴极侧溶液电压降,从而达到节能降耗的效果。原有电解槽阴阳极之间的极间距为1.8~2.2毫米,溶液电压降为200毫伏左右,零极距电解槽就是改进阴极侧结构,增加弹性构件,使得阴极网贴向阳极网,电极之间的间距为膜的厚。与普通电槽相比,同等电密下零极距电槽电压降低约180毫伏,相应吨碱电耗下降约127千瓦时。此外,零极距复极式离子膜电解槽操作方便、运行平稳,可满足大规模生产工艺要求。

我国目前烧碱年产量为1850万吨,如果全部改造为零极距电解槽,年节约电能约23.5亿千瓦时。我国已提出推广该项新技术,根据安排,2012年之前将完成300万吨烧碱产能应用零极距离子膜电解槽的目标,年可节约电能约3.81亿千瓦时。 附:相关介绍 1.弹性网 弹性网是由金属线材(镍)编制,由机械压花折弯使其具备一定弹性的丝网产品。 2.极网 极网由纯镍线材编制加工,有特殊涂层(各个公司有自己不同专利)是膜极距电解槽电极重要组成部分。 3.保护网 保护网是保护膜极距电解槽电极产品,也是由金属线材编织 防止电极弹性网、极网脱落。 4.零极距电解槽生产厂家 零极距电解槽生产厂家有中国的蓝星北化机和日本的旭化成公司。另外,德国伍迪公司的伍德电解槽极距较之零极距多0.04mm 其不采用弹性阴极,也是一种比较节能的选择。 5.零极距电解槽的操作要求以及其他工艺指标可以控制为与高电流密度自然循环电解槽一样。因此 还可以自己购买弹性阴极网在相关厂家的指导下将其改造为零极距电解槽。

离子膜烧碱的工业分析

离子膜烧碱的工业分析-----中间产品及副产物分析 离子膜烧碱就是采用离子交换膜法电解食盐水而制成烧碱(即氢氧化钠)。其主要原理是因为使用的阳离子交换膜,该膜有特殊的选择透过性,只允许阳离子通过而阻止阴离子和气体通过,即只允许H+、Na+通过,而Cl-、OH-和两极产物H2和Cl2无法通过,因而起到了防止阳极产物Cl2和阴极产物H2相混合而可能导致爆炸的危险,还起到了避免Cl2和阴极另一产物NaOH反应而生成NaClO影响烧碱纯度的作用。 离子膜法电解制碱是世界上工业化生产烧碱当中最先进的工艺方法,具有能耗低、三废污染少、成本低及操作管理方便等优点。副产的氯气和氢气,可以合成盐酸,或深加工氯下游产品如PVC、有机硅及甲烷氯化物等。 淡盐水脱氯 淡盐水脱氯有两种工艺路线:一种采用空气吹除法,该法脱氯效果欠佳,从淡盐水中分离出来的废氯气纯度低,无法汇入湿氯气总管送氯气处理工序,只能由烧碱液循环吸收,制成次氯酸钠溶液。另一种采用真空脱氯法,该法脱氯效果较好,通过蒸汽喷射器或真空泵提供的真空系统将含氯淡盐水中的游离氯抽出分离后进入湿氯气总管。建议采用真空法淡盐水脱氯工艺技术。 氯氢处理(含废氯气处理) 1、氯气处理 由电解槽出来的湿氯气,温度高并伴有大量的水蒸气和杂质,具有较强的腐蚀性,必须经过冷却、干燥和净化处理。 氯气处理系统分为冷却、干燥、输送三部分。 冷却选用填料式洗涤塔,能够较好地除去湿氯气带出的盐雾,填料采用CPVC 花环。氯气冷凝下来的氯水回收送淡盐水脱氯工序。 对于干燥部分,在实践应用中已采用过多种干燥塔型和不同的组合方式,比较典型的有: a、一段泡沫塔、二段泡沫塔; b、一段填料塔、二段泡沫塔; c、一段填料塔、二段泡罩塔。 国内采用最多的是填料塔和泡沫塔组合,这是两种典型的塔。 泡沫塔的特点是结构简单、造价低、塔板数多;缺点是操作弹性小、不便于增加硫酸循环量,操作弹性仅为15%,塔板阻力降大,一般为100-200mmH2O, 而且开孔的加工精度、酸泥沉积等因素易影响其操作稳定性。 填料塔操作弹性大,易操作,压降小,但投资大,有效塔板数少。 泡罩塔的特点介于泡沫塔与填料塔制碱,塔板数多,压降与泡沫塔相当,操作弹

离子膜电解槽安装说明

离子膜烧碱工艺标准操作说明 第四部分电解槽操作 2010年12月 旭化成化学株式会社

-目录- IV. 电解槽操作 IV-A 电解槽操作一般指导 IV-A-1 单元槽 IV-A-2 支架 IV-A-3 管口附件 IV-A-4 一次盐水中的悬浮固体(离心脱水) IV-A-5 软管和软管垫片 IV-A-6 总管 IV-A-7 固定头和活动头的隔离(片/板) IV-B 电解槽组件的定期更新和检查 (1) 单元槽垫片 (2) 软管垫片 (3) 阳极液管口处的辅助电极 (4) 单元槽和总管上的阳极液管口 (5) 单元槽和总管上的阴极液管口 (6) 阳极 (7) 阴极 IV-C 电解槽的安装 IV-C-1 安装单元槽 (1) 准备工作 (2) 安装 IV-C-2 在单元槽上贴垫片 (1) 准备工作 (2) 垫片粘贴及垫片位置的设定 IV-C-3 膜安装 (1) 确认和准备工作 (2) 安装膜到单元槽(除了阳极端槽) (3) 安装膜到阳极端框 (4) 记录 IV-C-4 电解槽软管的安装 (1) 准备工作 (2) 电槽软管安装 IV-C-5 充液前检查电解槽 IV-D 膜的更换IV-D-1 局部膜的更换 (1) 确认 (2) 准备工作 (3) 膜的置换 IV-D-2 拆除全部的膜 (1) 确认 (2) 准备工作 (3) 从阳极端框取出膜 (4) 其他膜的取出 (5) 膜取出后所需进行的工作 IV-E 从电解槽中取出单元槽 (1) 准备工作 (2) 把单元槽放在搬运车上

(3) 把单元槽放在木制平台上 IV-A 电解槽操作一般指导 IV-A-1 单元槽 单元槽被复合隔板分成两部分,称作阳极室和阴极室。阳极室的内部是由钛材制成以防止氯气的腐蚀,阴极室的内部侧是镍材制成以防止碱的腐蚀。阳极室和阴极室的隔板两侧分别焊接固定的筋板,筋板上焊接阳极和阴极。每个电解室安装有电解液进口和出口的2个管口。单元槽臂的两边用螺栓固定有支架,单元槽通过支架挂在侧杠上。 图IV-1 图IV-2

离子膜法制烧碱的生产工艺总结

离子膜法制烧碱的生产工艺总结 本文着重介绍了离子膜法制烧碱的生产工艺过程中的离子膜法碱液蒸发的特点以及影响碱液蒸发的因素。标签:离子膜法隔膜法蒸汽分离器 离子膜法制烧碱是烧碱生产工艺的常用制法之一,但是在目前烧碱生产工艺中所见的比例并不是很大,所以我们必须仔细的认识一下子膜法制烧碱的工艺特点 一、离子膜法碱液蒸发的特点 1.流程简单,简化设备,易于操作。由于离子膜碱液仅含有极微量的盐,所以,在其整个蒸发浓缩过程中,即使是生产99的固碱,也无须除盐。这就是极大的简化了流程设备,即隔膜碱蒸发必须有的除盐的设备及工艺工程都被取消(如旋液分离器、盐沉降槽、分离机、回收母液贮罐等),而且,由于在蒸发过程中没有盐的析出,也就很难发生管道阻塞,系统打水问题,使操作容易进行。 2.浓度高,蒸发水量少,蒸汽消耗低。离子膜法碱液的浓度高,一般在30~33,比隔膜法碱液的10~11要高很大,因而大量的减少了浓缩所用的蒸汽。若以32的碱液为例,如果产品的浓度为50,则每吨50的成品碱需蒸出水量为:1.15t,而隔膜法电解碱液若同样浓缩到50,则一般要蒸出6.5t的水量(隔膜碱液浓度按10.5计)。也就是说,浓缩到同样的50,离子膜碱液蒸发比隔膜碱液蒸发少蒸出约5. 4t水。由于蒸发水量的减少,蒸汽消耗就大幅度下降。以双效流程为例,一般仅耗汽0.73~0.78t/t(100碱),另外蒸汽的空间也相应的减少,使设备的投资也相应的降低。 二、影响碱液蒸发的因素 1.生蒸汽压力。蒸汽是碱液蒸发中的主要热源,生蒸汽(或称一次蒸汽)的压力高低对蒸发能力有很大的影响。通常较高的一次蒸汽压力,使系统获得较大的温差,单位时间所传递的热量也相应的增加,因而也使装备具有较大的生产能力。当然,蒸汽压力也不能过高,因为过高的蒸汽压力容易使加热管内碱液温度上升过高,造成液体的沸腾,形成汽膜,降低了传热系数,反而使装备能力受到影响。同样,蒸汽压力偏低,经过加热器的碱液不能达到需要的温度,减少了单位时间内的蒸发量,使蒸发强度降低。 因此,选择适宜的蒸汽压力是保证蒸发强度的重要因素。另外,保持蒸汽的饱和度也是至关重要的。因为,饱和蒸汽冷凝潜热是其可提供的最大热量;再则,保持蒸汽压力的稳定也是保持操作的主要因素之一,因为,加热蒸汽压力的波动,就会使蒸发过程很不稳定,从而直接影响了进出口物料的浓度、温度,甚至影响液面、真空度、产品质量等。 2.蒸发器的液位控制。在循环蒸发器的蒸发过程中,维持恒定的蒸发器液位

试论离子膜烧碱工艺中能耗问题

试论离子膜烧碱工艺中能耗问题 摘要:随着我国经济的不断发展,化工产业也取得了长足的进步。离子膜法是一种新兴的制碱方法,在我国的多个地区都进行了规模化生产,但同时也造成了一种供大于求的局面。大规模的生产造成研发水平滞后,产品耗能水平较高,交换膜使用寿命短的问题开始显现。本文通过对离子膜法烧碱工艺进行介绍,对能耗原因与改善对策进行分析,以降低能耗,提高生产效益,实现产业节能。 关键词:离子膜烧碱工艺能耗效益 1、引言 随着我国化工产业的不断规模化发展,极大地推动了我国经济的进步与社会的发展,做出了积极的贡献。但在化工业不断发展的同时,带来的能耗过大、环境污染以及供大于求的问题开始不断显现。近年来,国家通过不断下达相关政策,积极进行产业结构调整,试图通过技术手段与管理手段对相关产业进行升级。我国能源丰富,但人均却在世界上倒数,要按照可持续发展战略规划要求,就必须要节约资源,降低能源损耗,提高生产效率,在有限的资源中不断提高生产效益。离子膜烧碱工艺中,由于一直从事简单生产,技术革新速度过慢,存在严重的能源损耗问题。通过工艺技术的

不断创新,可以有效降低生产能耗,为生产企业节约成本,提高收效。 2、离子膜法烧碱工艺概述 离子膜法主要是通过利用阳离子交换膜把单元电解槽 进行分隔为阳极室与阴极室,从而使电解产品分开。离子膜电解法是一种新兴技术,通过对阴阳离子选择性透过,可以把带一种电荷的离子进行通过,对异性的离子进行阻挡,从而达到脱盐、净化与合成的目的。目前离子膜法已经应用于氯碱的生产与海水的淡化等领域。在氯碱工业中,利用阳离子交换膜电解槽电解食盐或氯化钾水溶液对生产氯气、氢气与烧碱等。[1] 离子膜法烧碱工艺流程并不复杂,首先是盐水溶液经过精制后,进入阳极室,钠离子在电场作用下通过交换膜向阴极室移动,钠离子与电解水形成的氢氧离子合成为氢氧化钠,在阴极生成氢气。氢化钠在电解完成后,淡盐水将会经脱除深解氯,固体盐重饱和后返回到阳极室,形成盐水回路。 3、离子膜法烧碱工艺能耗存在的问题 3.1电解液电耗能 电解液中很多因素都会影响到耗能问题。另外材料的杂质较多与设备损耗等同时也是能耗居高不下的一大原因。[2]在电解液过程中,电解质在不断地进行电解会增加了大量的杂质,在生产中钙离子、铝离子、钡离子等都会对电解槽的

影响离子膜电解槽电压因素

万方数据

万方数据

万方数据

影响离子膜电解槽电压因素 作者:梅冬艳, MEI Dong-yan 作者单位:唐山冀东氯碱有限公司,河北,唐山,063021 刊名: 中国氯碱 英文刊名:CHINA CHLOR-ALKALI 年,卷(期):2005(4) 被引用次数:1次 本文读者也读过(10条) 1.辛经萍.XIN Jing-ping浅析离子膜电解槽电流效率的影响因素[期刊论文]-氯碱工业2005(10) 2.耿庆鲁.GENG Qing-lu氯碱企业整流设备的检查和维护[期刊论文]-氯碱工业2008,44(1) 3.崔亦星.朱玉菡.公克利.Cui Yixing.Zhu Yuhan.Gong Keli浅谈电解槽电流效率的测定及影响因素[期刊论文]-中国氯碱2002(3) 4.许敬荣.刘树娟.王新锋.XU Jing-rong.LIU Shu-juan.WANG Xin-feng隔膜电解槽电压高的原因分析及降低措施[期刊论文]-氯碱工业2006(2) 5.任建芬离子膜电流效率计算公式的探讨[期刊论文]-中国氯碱2003(7) 6.郝亮降低离子膜出碱温度提高45%碱质量[期刊论文]-中国氯碱2002(11) 7.张爱华.曹长青SQP并行优化算法在离子膜烧碱生产中的在线优化[期刊论文]-氯碱工业2003(11) 8.葛平.张洪林.GE Ping.ZHANG Hong-lin离子膜电解槽技术改造后的节能分析[期刊论文]-电力需求侧管理2009,11(2) 9.冯缅红.袁新.钟玉华.周艳玲.FENG Mian-hong.YUAN Xin.ZHONG Yu-hua.ZHOU Yan-ling30DD350型电解槽电压的影响因素[期刊论文]-氯碱工业2006(4) 10.宣庆国影响槽电压的因素及降低措施[期刊论文]-中国氯碱2003(1) 引证文献(1条) 1.郭春平离子膜电解种分铝酸钠溶液的新方法研究[学位论文]硕士 2007 引用本文格式:梅冬艳.MEI Dong-yan影响离子膜电解槽电压因素[期刊论文]-中国氯碱 2005(4)

离子膜烧碱工艺(整理过)要点

离子膜烧碱工艺 一、工艺流程简介 烧碱目前以离子膜工艺为主。按流程顺序分为一次盐水、二次盐水精制、电 解、淡盐水脱氯、Cl 2处理、H 2 处理等工序。核心工序是二次盐水精制和电解部 分。 盐水一次精制的主要目的是控制悬浮物(SS)与各种杂质离子的含量在要求的范围内,为盐水二次精制作准备。盐水二次精制最主要部分是螯合树脂塔,,使粗盐水经过树脂塔后除去二价阳离子。部分工艺在二次精制中盐水进螯合树脂塔之前设置碳素管或其它类型过滤器,以进一步降低盐水中的悬浮物的含量。电解部分是烧碱制备流程的关键工序,符合电解要求指标的精制盐水流经电解槽时,在一定直流电作用下,离子经离子交换膜的发生迁移,最终在阴极液相形成 烧碱,阳极液相产生淡盐水,阴极气相生成H 2,阳极气相生成Cl 2 。 二、离子交换膜法电解制碱的主要生产流程 工艺流程图 精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极 室,通电后H 2O在阴极表面放电生成H 2 ,Na+则穿过离子膜由阳极室进入阴极室, 此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl 2 。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。 阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。

三、具体工艺流程 盐水精制单元 工艺简述:饱和粗盐水加入精制反应剂,经过精制反应后加入絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二次过滤,使盐水中的悬浮物小于1×10-6,然后进入离子交换树脂塔,进行二次精制,得到满足离子膜电解槽运行要求的精制盐水。其工艺流程简图如图1所示。 ①一次盐水精制 一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。 bc 精制原理 ①除镁 镁离子常以氯化物的形式存在于原盐中,精制时向粗盐水中加入 烧碱溶液生成不溶性的氢氧化镁沉淀。 反应方程式:MgCl 2+2NaOH=Mg(OH) 2 ↓+2NaCl 离子反应方程式:Mg2++2OH-=Mg(OH) 2 ↓ 为使反应完全,控制氢氧化钠过量,本反应速度快几乎瞬间完成,是本工艺中的前反应。 ②除钙 钙离子一般以氯化钙和硫酸钙的形式存在于原盐中,精制时向粗盐水中加入碳酸钠溶液使生成不溶性的碳酸钙沉淀,反应方程式: CaCl 2+Na 2 C0 3 =CaC0 3 ↓+2NaCl CaS0 4+Na 2 C0 3 =CaC0 3 ↓+Na 2 S0 4 离子反应方程式: Ca2++CO 32-=CaC0 3 ↓ 为使反应完全,碳酸钠一般控制过量,本反应速度较慢,反应速度受温度影响较大,一般在50℃左右,在碳酸钠过量情况下需半小时方能

离子膜烧碱法的工艺流程

离子膜烧碱的生产分析 —离子膜法液碱质量检测 一、离子膜液碱生产的工艺流程 二、离子膜液碱的检测项目 09工分 徐然

一、产品说明 离子膜法制碱共生产三种产品:离子膜(液)碱、氯气和氢气。1.离子膜(液)碱 离子膜(液)碱,即氢氧化钠水溶液,NaOH(分子量为39.997)含量为32±0.5%,比重1.307~1.317(85℃),无色透明,有滑腻感的液体,沸点:116℃,凝固点:1.2℃。属于低毒类物质,对皮肤、粘膜有强烈的刺激性和腐蚀性。浓的碱液会灼伤皮肤和肌肉,若吸入HaOH雾沫或较浓的蒸气,可使气管和肺部遭受严重的伤害,甚至发生肺炎,若溅入眼中,则可能会引起失明。 烧碱溶液能与多种物质反应,对动植物组织有强烈的腐蚀作用。 a. NaOH的强碱性,能使蓝紫色的石蕊变成蓝色,使无色的酚酞呈红色。 b.能与酸反应NaOH+HCL → NaCL+H2O c.能与酸性氧化物反应2NaOH+CO2 → Na2CO3+H2O d.能与锡、锌等反应2AL+6NaOH → 2Na3ALO3+3H2↑ e.与硅化物的作用2NaOH+SiO2 → NaSiO3+H2O 烧碱主要用于轻工、纺织、医药、冶金、建材等工业部门。 二、盐水精制甲元 1.盐水精制的目的 氯碱工业生产过程中,无论采用海盐、湖盐、岩盐或卤水中的哪一种原料,氯碱工业生产过程中,无论采用海盐、湖盐、岩盐或卤水中的哪一种原料,都含有Ca2+、Mg2+、SO2-等无机杂质,以及

细菌、藻类残体、腐殖酸等天然有机物和机械杂等无机杂质,以及细菌、藻类残体、质。这些杂质在化盐时会被带入盐水系统中,如不去除将会造成离子膜的损伤,从而使这些杂质在化盐时会被带入盐水系统中,如不去除将会造成离子膜的损伤,其效率下降,破坏电解槽的正常生产,并使离子膜的寿命大幅度缩短。其效率下降,破坏电解槽的正常生产,并使离子膜的寿命大幅度缩短。盐水中一些杂质会在电解槽中产生副反应,降低阳极电流效率,并对阳极寿命产生影响。因此,会在电解槽中产生副反应,降低阳极电流效率,并对阳极寿命产生影响。因此,盐水必须进行精制操作除去盐水中的大量杂质,生产满足离子膜电解槽运行要求的精制盐水。须进行精制操作除去盐水中的大量杂质,生产满足离子膜电解槽运行要求的精制盐水。 2.盐水精制工艺简述 直至20世纪70年代中期,传统絮凝沉降盐水精制工艺基本上没有实质性发展;直至20 世纪70 年代中期,传统絮凝沉降盐水精制工艺基本上没有实质性发展;目前用于离子膜法电解的盐水精制工艺是在上述方法基础上增加二次过滤和二次精制先进工艺技术形成的。其工艺流程为∶饱和粗盐水加入精制反应剂,进工艺技术形成的。其工艺流程为∶饱和粗盐水加入精制反应剂,经过精制反应后加入艺技术形成的絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,再经α-纤维素预涂碳素管过滤器二絮凝剂进入澄清桶澄清,澄清盐水经砂滤器粗滤后,纤维素预涂碳素管过滤器二次过滤,然

节能减排取得显著成效

节能减排取得显著成效——“十一五”节能减排回顾之一 2011/09/27 国家发展改革委讯 ---------------------------------------------------------------------------------------------------党中央、国务院高度重视节能减排工作,把节能减排作为调整经济结构、转变发展方式、推动科学发展的重要抓手,提出“十一五”单位GDP能耗降低20%左右、主要污染物排放总量减少10%的约束性指标。国务院成立节能减排工作领导小组,发布节能减排综合性工作方案,做出关于加强节能工作的决定,采取强化目标责任、调整产业结构、实施重点工程、推动技术进步、强化政策激励、加强监督管理、开展全民行动等一系列强有力的政策措施,经过艰辛努力,节能减排取得显著成效。“十一五”期间,全国单位GDP能耗下降19.1%,全国二氧化硫排放量减少14.29%,全国化学需氧量排放量减少12.45%,基本完成了“十一五”规划《纲要》确定的目标任务。节能减排的成效主要体现在八个方面: 一是为保持经济平稳较快发展提供了有力支撑。“十一五”期间,我国以能源消费年均6.6%的增速支撑了国民经济年均11.2%的增速,能源消费弹性系数由“十五”时期的1.04下降到0.59,缓解了能源供需矛盾。 二是扭转了我国工业化、城镇化加快发展阶段能源消耗强度和主要污染物排放量上升的趋势。“十五”后三年

全国单位GDP能耗上升了9.8%,全国二氧化硫和化学需氧量排放总量分别上升了32.3%和3.5%;“十一五”期间,全国单位GDP能耗下降了19.1%,全国二氧化硫和化学需氧量排放总量分别下降了14.29%和12.45%。 三是促进了结构优化升级。2010年与2005年相比,电力行业300兆瓦以上火电机组占火电装机容量比重由47%上升到71%,钢铁行业1000立方米以上大型高炉比重由21%上升到52%,建材行业新型干法水泥熟料产量比重由39%上升到81%。 四是推动了技术进步。2010年与2005年相比,钢铁行业干熄焦技术普及率由不足30%提高到80%以上,水泥行业低温余热回收发电技术由开始起步提高到55%,烧碱行业离子膜法烧碱比重由29.5%提高到84.3%。 五是节能减排能力明显增强。“十一五”期间,通过实施十大节能重点工程形成节能能力3.4亿吨标准煤;新增城镇污水日处理能力6500万吨、处理率达到77%;燃煤电厂投运脱硫机组容量达5.78亿千瓦,占全部燃煤机组容量的82.6%。 六是能效水平大幅提高。2010年与2005年相比,火电供电煤耗由370克标准煤/千瓦时降到333克标准煤/千瓦时,下降了10.0%;吨钢综合能耗由694千克标准煤降到605千克标准煤,下降了12.8%;水泥综合能耗下降了24.6%;乙烯综合能耗下降了11.6%;合成氨综合能耗下降了14.3%。 七是环境质量有所改善。2010年与2005年相比,环保重点城市二氧化硫年均浓度下降26.3%,地表水国控断面劣五类水质比例由27%下降到16.4%,七大水系国控断面好于三类比例由41%上升到59.9%。 八是为应对全球气候变化做出了重要贡献。“十一五”

离子膜烧碱生产安全技术规定

离子膜烧碱生产安全技术规定 第一章总则 第一条本规定适用于离子膜法食盐电解制取烧碱的生产。 第二章物料的安全要求 第二条化盐用水、原盐及纯碱需定期分析铵含量,以确保电解用盐水对铵量的要求≤1ppm。 第三条辅助材料:氯化钡属有毒物品,应定点贮存,由专人负责。 第四条氯中含水≤100ppm。 第三章生产安全技术规定 第五条主要安全指标 1、原盐中铵量分析要求和控制指标: (1)无机铵含量≤15ppb; (2)铁离子含量≤900ppb; (3)氯化钠含量308-314g/l; (4)Ca+Mg≤5ppm。 2、二次盐水的质量要求: (1)Ca+Mg≤20ppb; (2)Sr≤200ppb (3)铁离子含量≤500ppb; (4)Ni≤10ppb;

(5)Ba≤500ppb 3、阳极液的质量要求:氯化钠含量220-230g/l 4、高纯酸中游离氯≤300ppb。 5、氯氢压差控制在40mbar。 6、单槽氯中含氢≤0.4%。 7、氢气总管含氧≤0.4%。 8、电解系统停车后和开车前,氢气系统必须用惰性气体进行置换(若用氮气,纯度应大于99%,含氧≤0.5%);开车前,氢气管道中含氧应小于1%。 第六条生产中的安全要求 1、阳极液氮气流量5Nm3/h。 2、在电槽运行期间要做到:直流电均衡稳定,二次盐水连续稳定,阴极液连续稳定,氯气、氢气压力、压差平稳。 3、在电解系统的氯氢处理过程中,应保证氢气系统正压,干燥塔严禁大负压、氢气总管严禁负压。 4、在电槽运行期间,禁止将氢气排放在厂房内。 5、在氢气管道装设排空、排水装置。 6、透平机出口流量≥1000N m3/h,喷油压力1.0~1.5MPa,油温30~55℃,电机电流≤280A。 7、在电槽运行期间,作业人员都必须穿绝缘鞋,并禁止一手接触电槽,一手触及其它接地构件,以防触电。 第七条紧急情况处理中的特殊要求

相关文档
最新文档