量子物理之氢原子的电子云图和概率密度等值面图1

大学物理学下册第15章

第15章 量子物理 一 选择题 15-1 下列物体中属于绝对黑体的是[ ] (A) 不辐射可见光的物体 (B) 不辐射任何光线的物体 (C) 不能反射可见光的物体 (D) 不能反射任何光线的物体 解:选(D)。绝对黑体能够100%吸收任何入射光线,因而不能反射任何光线。 15-2 用频率为υ的单色光照射某种金属时,逸出光电子的最大动能为k E ;若改用频率为2υ的单色光照射此金属,则逸出光电子的最大初动能为[ ] (A) k 2E (B) k 2h E υ- (C) k h E υ- (D) k h E υ+ 解:选(D)。由k E h W υ=-,'2k E h W υ=-,得逸出光电子的最大初动能 'k ()k E hv hv W hv E =+-=+。 15-3 某金属产生光电效应的红限波长为0λ,今以波长为λ(0λλ<)的单色光照射该金属,金属释放出的电子(质量为e m )的动量大小为[ ] (A) /h λ (B) 0/h λ (C) (D) 解:选(C)。由2e m 012 hv m v hv =+,2e m 012hc hc m v λλ= +,得m v = , 因此e m p m v == 。 15-4 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动速率之比13/v v 是[ ] (A) 1/3 (B) 1/9 (C) 3 (D) 9

解:选(C)。由213.6n E n =-,n 分别代入1和3,得22 1122331329112mv E E mv ===,因 此 1 3 3v v =。 15-5 将处于第一激发态的氢原子电离,需要的最小能量为[ ] (A) 13.6eV (B) 3.4eV (C) 1.5eV (D) 0eV 解:选(B)。由2 13.6 n E n =- ,第一激发态2n =,得2 3.4eV E =-,设氢原子电离需要的能量为2'E ,当2'20E E +>时,氢原子发生电离,得2' 3.4eV E >,因此最小能量为3.4eV 。 15-6 关于不确定关系x x p h ??≥有以下几种理解,其中正确的是[ ] (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其他粒子 (A) (1), (2) (B) (2), (4) (C) (3), (4) (D) (4), (1) 解:选(C)。根据h p x x ≥???可知,(1)、(2)错误,(3)正确;不确定关系适用于微观粒子,包括电子、光子和其他粒子,(4)正确。 二 填空题 15-7 已知某金属的逸出功为W ,用频率为1υ的光照射该金属能产生光电效应,则该金属的红限频率0υ=________,截止电势差c U =________。 解:由0W hv =,得h W v = 0;由21e m 12hv m v W =+,而2 e m c 12m v eU =,所以 1c hv eU W =+,得1c h W U e υ-= 。

从经典力学到量子力学的思想体系探讨

从经典力学到量子力学的思想体系探讨 一、量子力学的产生与发展 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象 一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以 h为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。 著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中 电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差△E=hV确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史 上是空前的。 由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。 1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即 康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。 光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利 发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中

大学物理(下)十五章作业与解答

第十五章量子物理基础 一. 选择题 1. 所谓“黑体”是指这样的一种物体: (A) 不能反射任何可见光的物体 (B) 不能发射任何电磁辐射的物体 (C) 能够全部吸收外来的所有电磁辐射的物体 (D) 完全不透明的物体 [ ] 2. 用两束频率、光强都相同的紫光照射到两种不同的金属上,产生光电效应,则 (A) 两种情况下的红限频率相同 (B) 逸出电子的初动能相同 (C) 单位时间内逸出的电子数相同 (D) 遏止电压相同 [ ] 3. 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,保持光频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,满足题意的图是 [ B ] 4. 光电效应和康普顿散射都包含有电子和光子的相互作用过程,以下几种解释正确的是 (A) 两种情况中电子与光子组成的系统都服从动量守恒定律和能量守恒定律 (B) 两种情况都相当于电子与光子的完全弹性碰撞过程 (C) 两种情况都属于电子吸收光子的过程 (D) 光电效应是电子吸收光子的过程,康普顿散射相当于光子与电子的完全弹性碰撞过程 [ ]

5.根据玻尔氢原子理论,巴尔末线系中最长波长和其次波长之比为 (A) 错误!未找到引用源。 (B) 错误!未找到引用源。 (C) 错误!未找到引用源。 (D) 错误!未找到引用源。 (-1/9+1/4)/(-1/16+1/4) = [ ] 6.两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相等 (B) 能量相等 (C) 速度相等 (D) 动能相等 [ ] 7. 关于不确定关系错误!未找到引用源。,有以下几种理解 (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的坐标和动量不可能同时准确地确定 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子 其中正确的是 (A) (1),(2) (B) (2),(4) (C) (3),(4) (D) (4),(1) [ ] 8. 波函数在空间各点的振幅同时增大D倍,则粒子在空间的概率分布将 (A) 增大D2倍 (B) 增大2D倍 (C) 增大D倍 (D) 不变 [ ] 二. 填空题 9. 普朗克的量子假说是为了解释__________________________ 的实验规律而提出的,它的基本思想是______________________________________________________________. (黑体辐射;略) 10. 已知某金属的逸出功为A,则光电效应的红限频率为_______________,对应的红限波长为_________________.(错误!未找到引用源。;错误!未找到引用源。)

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

第15章量子物理指导

第15章 量子物理基础 内容提要 1.黑体辐射基本定律和普朗克量子假设 黑体:能完全吸收入射辐射的物体,有最大的发射本领。 黑体辐射的两条实验规律: (1) 斯忒藩一玻尔兹曼定律:4 )(T T M σ= 式中4 2 8 1067.5---???=k m W σ称为斯忒藩一玻尔兹曼常数。 (2) 维思位移定律: b T m =λ 式中k m b ??=-310898.2,称为维恩常数,公式表明峰值波长λm 随温度升高向短波方向移动 (3) 普朗克量子假设 黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围的电磁场交换能量;谐振子的能量是最小能量νεh =的整数倍。νεh =称为能量子,s J h ??=-34 1063.6称 为普朗克常量。 2.光电效应的实验规律 实验发现,光电效应表现出四条规律: (1) 入射光的频率一定时,饱和光电流与光强成正比; (2) 光电子的最大初动能与入射光的频率成线性关系,与入射光的强度无关; (3) 光电效应存在一个红限0ν,如果入射光的频率0νν<,便不会产生光电效应 (4) 光电流与光照射几乎是同时发生的,延迟时间在10-9s 以下。 3.光量子假设与爱因斯坦方程 (1) 爱因斯坦认为:光是由以光速运动的光量子组成,在频率为ν的光波中,光子的能量

νεh = 光子的静质量为零,动量为 λ h p = (2) 入射的光子被电子吸收使电子能量增加νh ,电子把一部分能量用于脱离金属表面时所需要的逸出功,另一部分为逸出电子的初动能。即 A mv h m +=2 2 1ν 4.康普顿效应 康普顿效应的实验规律 (1) 散射线中除了和原波长0λ相同的谱线外,还有一种波长0λλ>。 (2) 波长差0λλλ-=?随散射角θ的增大而增加。其增加量为 2 sin 2200θλλλc m h = -=? (3) 0λλλ-=?与散射物质无关,但散射光中原波长0λ的强度随散射物的原子序数 增加而增大,而λ的光强则相对减小。 利用光量子理论对康普顿效应能给予很好的解释。康普顿效应进一步证实了光的量子性。 4.光的波粒二象性 光既具有波动性又具有粒子性。光的波动性可以用波长λ和频率ν描述,光的粒子性可以光子的质量、能量和动量描述,其关系可以表示为: 光子能量νεh = 光子动量 λ h P = 光子质量 2 c h m ν = 光子的静质量为零。 5.玻尔的氢原子理论 (1) 氢原子光谱的实验规律 实验发现,氢原子光谱系的波数可以写成 )1 1( 1 ~22n m R -==λ ν

第四章从经典物理学到量子力学

第四章从经典物理学到量子力学 §4 - 1 从经典物理学到前期量子论 到19世纪末,经典物理学已经建立了比较完整的理论体系。 力学分析力学,存在海王星的预言及其被证实 电磁学麦克氢原子光谱斯韦方程组,预言了电磁波的存在 热力学+统计物理学 量子力学的研究对象:微观粒子。

量子理论的发展轨迹: 能量子:黑体辐射 光量子:光电效应 固体比热 氢原子光谱 一黑体辐射普朗克的能量子假说( 1 ) 热辐射的基本概念 热辐射:一切物体的分子热运动将导致物体向外不断地发射电磁波。这种辐射与温度有关。温度越高,发射的能量越大,发射的电磁波的波长越短。

平衡热辐射或平衡辐射:如果物体辐射出去的能量恰好等于在同一时间内所吸收的能量,则辐射过程达到了平衡。 单色辐射出射度(简称单色辐出度,用)(T M λ表示):在单位时间内从物体表面单位面积上所辐射出来的,单位波长范围内的电磁波能量,即 λλd )(d )(T M T M =, (4. 1) where d M ( T ):在单位时间内从物体表面单位面积上所辐射出来的,波长在λ 到

λ+d λ 范围内的电磁波能量。 辐射出射度(简称辐出度,在单位时间内从物体表面单位面积上辐射出来的各种波长电磁波能量的总和) ?? ∞==0d )()(d )(λλT M T M T M . (4. 2) 单色吸收比),(T λα和单色反射比),(T λρ:在温度为T 时,物体吸收和反射波长在λ 到λ + d λ 范围内的电磁波能量,与相应波长的入射电磁波能量之比,分别称为该物体的单

色吸收比),(T λα和单色反射比),(T λρ。对于不透明的物体,有 1),(),(=+T T λρλα. (4. 3) ( 2 ) 基尔霍夫定律和黑体 基尔霍夫辐射定律: 对每一个物体来说,单色辐出度与单色吸收比的比值),(/)(T T M λαλ,是一个与物体性质无关(而只与温度和辐射波长有关)的普适函数。即 ),(),()(),()(2211T I T T M T T M λλαλαλλ===Λ, (4. 4)

大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中 2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 122 13.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2 x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ* =? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++= ∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ??? =-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。

第十五章量子物理

第十五章 量子物理 班号 学号 姓名 日期 一、选择题 1.按照爱因斯坦光子理论,下列说法正确的是 (A) 光的强度越大,光子的能量就越大; (B) 光的波长越大,光子的能量就越大; (C) 光的频率越大,光子的能量就越大; (D) 光波的振幅越大,光子的能量就越大。 ( ) 2.钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光的强度,则 (A) 单位时间内逸出的光电子数增加; (B) 逸出的光电子初动能增大; (C) 光电效应的红限频率增大; (D) 发射光电子所需的时间增长。 ( ) 3.要使处于基态的氢原子受激发后能发射赖曼系的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5eV ; (B) 3.4eV ; (C) 10.2eV ; (D) 13.6eV 。 ( ) 4.一初速为150s m 106-??=v 的电子进入电场强度为1C N 400-?=E 的均匀电场,朝着 阳极方向加速行进。则电子在电场中经历位移为cm 20=s 时的德布罗意波长为 (A) 12nm ; (B) 0.14nm ; (C)340nm ; (D) 4200nm 。 ( ) 5.关于不确定关系2 ≥??p x 有以下几种理解: (1)粒子的动量不可能确定; (2)粒子的坐标不可能确定; (3)粒子的动量和坐标不可能同时确定; (4)不确定关系不仅适用于电子和光子,也适用于其它粒子。 (A) (1)、(2); (B) (2)、(4); (C) (3)、(4); (D) (4)、(1)。 ( ) 6.如图所示,一频率为ν的入射光子与初始静止的电子(其静止质量为m )发生散射。如果散射光子的频率为'ν,反冲电子的动量为p ,则在与入射光平行的方向上动量守恒定律的分量形式为 (A) p h h +='νν; (B) 422'c m p h h ++=νν; (C) φθννcos cos 'p h h +=; (D) p c h c h +='νν; (E) φθννcos cos 'p c h c h += 。 ( ) 选择题6图

大学物理 上册(第五版)重点总结归纳及试题详解第十六章 从经典物理到量子物理

第十六章 从经典物理到量子物理 一、基本要求 1. 了解描述热辐射的几个物理量及绝对黑体辐射的两条实验规律。 2. 理解普朗克的“能量子”假设的内容,了解普朗克公式。 3. 理解光电效应和康普顿效应的实验规律,以及爱因斯坦的光子理论对 这两个效应的解释。 4. 理解爱因斯坦光电效应方程;红限概念和康普顿散射公式。 5. 理解光的波粒二象性以及光子的能量,质量和动量的计算。 6. 掌握氢原子光谱的实验规律,理解玻尔氢原子理论的三条基本假设的内容;并由三条假设出发,推导出氢原子的光谱规律。 二、基本内容 1. 黑体辐射 (1)绝对黑体 在任何温度下都能全部吸收照射在其上的任何波长的电磁波的物体,称为绝对黑体。绝对黑体是一种理想模型,其在任何温度下对任何波长入射辐射能的吸收比均为1。 (2)黑体辐射的实验规律 斯特藩-玻尔兹曼定律 40)(T T M σ= 式中)(0T M 为绝对黑体在一定温度下的辐射出射度,σ=5.67×10-8W ·m -2·K -1为斯特藩常量。 维恩位移定律 b T m =λ 式中m λ为相应于)(0T M λ曲线极大值的波长,31089.2-?=b m ·K (3)普朗克的能量子假说 辐射黑体是由原子分子组成的。这些原子和分子的振动可看作线性谐振子,这些谐振子的能量只能是某一最小能量ε的整数倍,即ε,2ε,3ε...,n ε,

物体发射或吸收的能量必须是这个最小单元的整数倍。ε称为能量子,n 为正整数,叫量子数。在黑体辐射理论中,能量子ε=hv ,其中h 是普朗克常量,v 是特定波长的辐射所对应的频率。 (4)普朗克黑体辐射公式 )(0T M λ= 1 1 25 2 -?T k hc e hc λλ π 式中h 为普朗克常量,k 为玻尔兹曼常量,c 为真空中光速。由此公式可推导出斯特藩-玻尔兹曼定律和维恩位移定律,而且在低频和高频情况下可分别化为瑞利-金斯公式和维恩公式。 2. 光电效应 金属及其化合物在电磁辐射下发射电子的现象称为光电效应。 (1)光电效应的实验规律 ① 单位时间内逸出金属表面的光电子数与入射光强成正比。 ② 光电子的最大初动能随入射光的频率上升而线性增大,与入射光强无关。 ③ 如果入射光的频率低于该金属的红限,则无论入射光的光强多大,都不会使这种金属产生光电效应。 ④ 光电效应是瞬时的。只要入射光的频率大于该金属的红限,当光照射到这种金属表面时,几乎立即产生光电子,而与入射光强无关。 对光电效应经典理论遇到困难,主要表现在三个方面:①光电子最大初动 能问题;②光电效应的红限问题;③发生光电效应的时间问题。 (2)爱因斯坦的光子理论 爱因斯坦认为光束是以光速c 运动的粒子流 ,其中每一个粒子携带的能量为hv ,这些粒子称为光量子。光子具有波粒二象性。 光子的能量 hv ε= 光子的动量 λ h p = 其中ε,p 表示光子的粒子性;v ,λ表示光子的波动性。 光子的质量 2 2hv h m c c c ε λ = = = 光子的静止质量 00m =

大学物理讲义(第15章量子力学基础)第五节

§15.5 量子力学的基本概念和基本原理 描述微观粒子运动的系统理论是量子力学,它是薛定谔、海森伯等人在 1925~1926年期间初步建立起来的.本节介绍量子力学的基本概念和基本方程. 一、波函数极其统计解释 在经典力学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用 它的位置矢量和动量来描述的.但是,对于微观粒子,由于它具有波动性,根据不确 定关系,其位置和动量是不同时具有确定值的,所以我们就不可能仍然用位置、动 量及轨道这样一些经典概念来描述它的运动状态.微观粒子的运动状态称为量子 态,是用波函数来描述的,这个波函数所反映的微观粒子的波动性,就是德布罗意 波.这是量子力学的一个基本假设. 例如一个沿X 轴正方向运动的不受外力作用的自由粒子,由于能量E 和动量p 都是恒量,由德布罗意关系式可知,其物质波的频率ν和波长λ也都不随时间变化,因此自由粒子的德布罗意波是一个单色平面波. 对机械波和电磁波来说,一个单色平面波的波函数可用复数形式表示为 )(2)x/λνt πi Ae t y(x,--= 但实质是其实部.类似地,在量子力学中,自由粒子的德布罗意波的波函数可表示 为 η)/(0)(Px Et i e t x,--ψ=ψ 式中0ψ是一个待定常数, η/0iPx e ψ相当于x 处波函数的复振幅,而ηiEt/e -则反映波函 数随时间的变化. 对于在各种外力场中运动的粒子,它们的波函数要随着外场的变化而变化.力 场中粒子的波函数可通过下面要讲的薛定谔方程来求解. 经典力学中的波函数总代表某一个物理量在空间的波动,然而量子力学中的 波函数又代表着什么呢?对此,历史上提出了各种不同的看法,但都未能完善的解 释微观粒子的波—粒二象性,直到1926年玻恩(M.Born,1882—1970)提出波函数的 统计解释才完善的解释了微观粒子的波—粒二象性.玻恩认为:实物粒子的德布 罗意波是一种几率波;t 时刻,粒子在空间 r 附近的体积元dV 中出现的几率dW 与该处波函数的模方成正比,即 V t r,Ψt r,ΨV t r,ΨW *d d d 2 )()()(== (15.35) 由式(15.35)可知,波函数的模方2)(t r,Ψ代表t 时刻粒子在空间r 处的单位体积中 出现的几率,称为几率密度.这就是波函数的物理意义,波函数本身没有直接的物

第15章 量子物理基础习题解答

126 第15章 量子物理基础 15-1 太阳可看作是半径为m 100.78?的球形黑体,试计算太阳表面的温度。太阳光直射到地球表面上单位面积的的辐射功率为321.510W/m ?,地球与太阳的距离为111.510m d =?。 解 已知32 0 1.510W/m P =?,8s 7.010m R =?,m 105.111?=d 。太阳辐射的总功率2s 4πE R ?,假设 辐射没有能量损失,则分布在2 4πd 的球面上, 有 22s 04π4πE R p d ?=? 运用斯特藩—玻耳兹曼定律4E T σ=,得 113 1/21/41/21/43088 1.510 1.510()()()() 5.910(K)7.010 5.6710s p d T R σ-??===??? 15-2 已知地球到太阳的距离81.510km d =?,太阳的直径为61.410km D =?,太阳表面的温度为 5900K T =,若将太阳看作绝对黑体,求地球表面受阳光垂直照射时,每平方米的面积上每秒钟得到的辐 射能为多少? 解 根据斯特藩—玻耳兹曼定律4E T σ=和能量守恒方程220π4πE D p d =,得 ()942428 232011 11 1.410()() 5.67105900W/m 1.510W/m 441.510 D p T d σ-?==???=?? 15-3 在加热黑体的过程中,其单色辐出度的最大值所对应的波长由0.69μm 变化到0.50μm ,其总辐射出射度增加了几倍? 解 由维恩位移定律m T b λ =和斯特藩—玻耳兹曼定律4T E σ=得 444 22m111m20.69()()() 3.630.50 E T E T λλ====(倍) ,即增加了2.63倍. 15-4 从铝中移出一个电子需要4.2eV 的能量,今有波长为2000 ?的光投射到铝表面,求(1)从铝表面发射出来的光电子的最大初动能是多少?(2)遏止电势差为多大?(3)铝的红限频率为多大? 解 (1)由 2 m 12 h m W νυ= +得 34821919m 10 1 6.62610310 4. 2 1.60210J 3.2110J 2200010hc m h W W υνλ----?????=-=-=-??=?????? (2) 2 m 12a eU m υ= 2 m 12 2.0V a m U e υ== (3)由 0W h ν= 19150344.2 1.60210Hz 1.0210Hz 6.62610 W h ν--??===?? 15-5 用波长为4000 ?的紫光照射金属,产生光电子的最大初速度为5 510m/s ?,则光电子的最大初动能是多少?该金属红限频率为多少? 解 光电子的最大初动能为 ()2315219m m 11 9.1110(510) 1.1410J 22 k E m υ--= =????=?

9 第15章 量子物理 作业 答案

一、简答题: 1. 电子和质子具有相同的动能,二者谁的德布罗意波长较短? 答:在非相对论情况下,粒子的动量 k mE p 2=,k E 是粒子的动能,而k mE p 2 = =λ,在相同的k E 情况下,质量大的有较短的波长,所以质子波长短。 2.什么是不确定关系?为什么说不确定关系指出了经典力学的适用范围? 答:微观粒子的位置和动量是不能同时被精确确定的。在一维情况下,它们各自不确定范围满足如下关系 , ≥???x p x 这个关系式为不确定关系,这是微观粒子波粒二象性的必然表现。对于宏观物体,波动性可以忽略,因而不确定关系可以不考虑,而粒子的位置和动量可以同时确定的。经典力学认为物体的位置和动量是可以同时精确确定的,因此经典力学适用于宏观物体而不适用于微观粒子。 3.什么是光的波粒二象性? 答:光的波粒二象性指的是光即有粒子性又具有波动性,其中,粒子的特性有颗粒性和整体性,没有“轨道性”;波动的特性有叠加性,没有“分布性”。一般来说,光在传播过程中波动性表现比较显著,当光与物质相互作用时,粒子性表现显著。光的这种两重性,反映了光的本质。 4.如果一个粒子的速率增大了,其德布罗意波长增大了?还是减小了?试给以解释。 根据德布罗意假设,粒子波长和动量关系为p =λ,对非相对论情形,粒 子动量v m p 0=,所以有v m 0 =λ,显 然随着速率的增大,波长变短。对于相对论情况,粒子动量 c m c v v m p 02 1 220)1(-==γ,所以 v m c v v m 021 220)1( -= =γλ,同样随着速率v 的增大,波长λ会减小,因此粒子 的波长随v 的增加总是减小。 二、填空题: 1.质量为m 的粒子,以速率v 运动(v<< c )。①该粒子的德布罗意波长 为 ;②如果对该粒子波长的测定可以精确到3 10-(精确度),该粒子位置的不确定度为 。 (1)h h p mv λ= = (2)3 2 10h h p p λ λλ λλ -??=- ?= =? 310 h h x p mv -?≥ =?? 2. 如果某系统属于激发态,此状态能量的最小不确定度为2.21×10-23J ,求此激发态的寿命是 。 E t h ???≥, 341123 6.6310 3.0102.2110 h t s E ---??≥==??? 3.一光子位置不确定度为0.3m ,若测定该光子的波长的精确度为10-5,该光子的波长 。(普朗克常数h=6.63×10-34s J ?)。 x h P ?≥ ?

第15章量子力学习题解答

第15章 量子物理基础习题 15.1 钾的光电效应红限波长为μm 62.00=λ。求(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的遏止电势差。 解:(1)逸出功eV 01.2J 1021.31900=?== =-λνhc h W (2)由光电效应方程W m h m +=221υν及022 1eU m m =υ 可得 V 76.10=-=-=e W e hc e W e h U λν 15.2 铝的逸出功为4.2eV ,今用波长为200nm 的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?遏止电势差为多大?铝的红限波长是多大? 解:(1)由光电效应方程W m h m +=22 1υν,得 eV 0.2J 1023.321192=?=-=-=-W hc W h m m λ νυ (2)由022 1eU m m =υ,得 V 0.22120==e mv U m (3)由00λνhc h W ==,得 nm 2960==W hc λ 15.3 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率。哪一种金属可以作可见光范围内的光电管阴极材料? 解:由光电效应方程W m h m +=22 1υν可知,当入射光频率

.02 120===υννm h W 表面,其初动能时,电子刚能逸出金属因此0ν是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关。 钨的截止频率 z h W H 1009.115101?==ν 钡的截止频率 z h W H 10603.015202?== ν 对照可见光的频率范围0.395×1015~0.75×1015z H 可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管阴极材料。 15.4 钾的截止频率为4.62×1014z H ,今以波长为435.8nm 的光照射,求钾放出的光电子的初速度。 解:根据光电效应的爱因斯坦方程 W m h m +=22 1υν 其中 0νh W =, λ νc = 所以电子的初速度 152/10s m 1074.5)(2-??=??????-=νλυc m h 由于逸出金属的电子的速度c <<υ,故式中m 取电子的静止质量。 15.5 用波长nm 1.00=λ的光子做康普顿散射实验。求散射角为900的散射波长是多少?(普朗克常量h =6.63×10-34J ·s ,电子静止质量m e =9.11×10-31kg ) 解:(1)康普顿散射光子波长改变为: m 10024.0)cos 1(10-?=-=?θλc m h e m 10024.1100-?=?+=λλλ

经典物理与量子物理的区别和联系

经典物理与量子物理的区别和联系 作者:阿布都哈力克--201211141946 单位:北京师范大学物理系师范班 摘要: 经典物理和量子之间存在很多联系与区别。它们的适用范围、适用对象、物理理论、数学表达都有很大的区别,但同时也有很大的联系,本文主要述说经典物理和量子物理的相关思想和各自的发展,阐明经典物理学和量子物理学之间的区别和联系。 关键词:经典物理、量子物理、区别、联系 引言: 经典物理发展了很多年,有了很深厚的基础,量子物理是经典物理独立于经典物理而存在,两者之间既有很多联系,也有很多区别。自从16世纪以来物理学飞速发展,进过伽利略、胡克、牛顿等人的变革,物理学的很多领域都得到了很大的提高和充实,物理学逐渐成为一门独立的学科展现给世人。牛顿的经典力学体系是物理学的基础,对物理学领域具有举足轻重的地位,其对前期物理学的影响非常深厚。近代随着光电效应、黑体辐射、以太假说等实验和黑体辐射理论的困难,牛顿力学显得越来越局限,在这种条件下普朗克提出了量子假说,认为能量是分立的,一份一份存在的。爱因斯坦很好地解释了光电效应,并提出了波粒二象性,后来德布罗意又提出了物质波的概念。认为自然界的任何物体都具有粒子性和波动性,奠定了量子物理学的基础。后来经过玻恩、海森堡、薛定谔、狄拉克等人的发展,量子力学日趋完善,与经典力学同位物理学的两大理论。 一、经典理论的发展 经典物理学的建立和发展时期是17世纪初至19世纪末,形成了比较完整的经典物理学体系。系统的观察实验和严密的数学推导相结合的方法,被引进物理学中,导致了17世纪主要在天文学和力学领域中的“科学革命”。牛顿力学体系的建立,标志着近代物理学的诞生。经过18世纪的准备,物理学在19世纪获得了迅速和重要的发展。终于在19世纪末以经典力学、热力学和统计物理学、经典电磁场理论为支柱,使经典物理学的发展达到了它的顶峰。在爱因斯坦的相对论提出后,经典物理的绝对时间和绝对空间被彻底打破,经典宏观物理就进入了宇宙空间阶段。随着经典物理学的不断发展,在十九世纪末、二十世纪初,经典物理学的理论遇到了困难。有一些新的物理现象,如黑体辐射、康普顿效应、光电效应、原子的光谱线系以及固体在低温下的比热等等,都是经典物理理论所无法解释的。此时,量子理论的提出对这些现象都有了比较满意的解释。

第15 章 量子物理基础

第15章 量子物理基础 习 题 12.1(1)推导实物粒子德布罗意波长与粒子动能E k 和静止质量m 0的关系。 (2)证明2c m E c k <<时, k E m h 02≈λλ;202c m E k >>时,k E hc /≈λ 12.2 设粒子静质量为m0、带电为q 、被电压为U 的电场加速,试导出一般形式的表示相对论粒子的德布罗意波长与电压的关系式。 12.3 要在电子显微镜中获得与使用0.2MeV γ射线的γ射线显微镜相同的分辨本领,需对电子加速的加速电压为多大? 12.4 计算电子经过U 1=100V 和U 2=104V 的电压加速后的德布罗意波长λ1和λ2分别是多少? 12.5 用干涉仪确定一个宏观物体的位置精确度为±10-12m 。如果我们以此精度测得一质量为0.50kg 的物体的位置,根据不确定关系,它的速度不确定量多大? 12.6 一个质量为m 的粒子,约束在长度为L 的一维线段上。试根据不确定关系估算这个粒子所能具有的最小能量的值。 由此,试计算在直径10-14m 的核内质子和中子的最小动能。 12.7 如果一个电子处于原子某能态的时间为10-8s ,这个原子的这个能态的能量的最小不确定量是多少? 设电子从上述能态跃迁到基态,对应的能量为3.39e V,试确定所辐射光子的波长及这波长的最小不确定量。 12.8 证明若粒子位置不确定量约等于它的德布罗意波长时,则其速度的不确定量约等于它的速度。 12.9 由不确定关系=≥?x P x ??证明,对于自由粒子,不确定关系还可写成 πλλ??22≥?x 其中λ为该粒子的德布罗意波长。 12.10 一维无限深方势阱的宽度为a ,试用不确定关系估算其中质量为m 的粒子的零点能量。 12.11 量为m 的粒子被限制在宽度为a 的一维无限深方势阱中,计算在n =5的能级上,粒子出现概率密度最大的位置。当n →∞时,说明什么问题。 12.12用气体放电时高速电子撞击氢原子的方法,激发基态氢原子使其发光。如果高速电子的能量为12.2e V,试求氢原子被激发后所能发射的光的波长。 12.13 基态氢原子被外来单色光激发后发出的巴尔末系中,仅观察到两条光谱线。试求这两条谱线的波长及外来光的频率。 12.14 已知巴尔末系的最短波长是3650?。由此求里德堡常数。 12.15 对处于第一激发态(n =2)的氢原子,如果用可见光(3800 ?~7600 ?)照射,能否使之电离? 12.16 氢原子处于基态时,根据玻尔理论求电子的(1)量子数,(2)轨道半径,(3)角动量和线动量,(4)绕行频率、角速度和线速度,(5)所受的力和加速度,(6)动能、势能和总能量,各是多少? 12.17 原则上讲,玻尔理论也适用于太阳系:地球相当于电子,太阳相当于核,而万有引力相当于库仑电力。 (1)求出地球绕太阳运动的允许半径的公式; (2)地球运行半径实际上是1.50×1011m ,和此半径对应的量子数n 多大? (3)地球实际的轨道和它的下一个较大的可能轨道的半径差值多大? 12.18 求出能够占据一个d 分壳层的最大电子数,并写出这些电子的m l 和m s 值。 12.19 写出钾原子中电子的排列方式。 部分习题答案

第三章量子统计理论 从经典统计到量子统计 量子力学对经典力学的改正

第三章 量子统计理论 第一节 从经典统计到量子统计 量子力学对经典力学的改正 波函数代表状态 (来自实验观测) 能量和其他物理量的不连续性 (来自Schroedinger 方程的特征) 测不准关系 (来自物理量的算符表示和对易关系) 全同粒子不可区分 (来自状态的波函数描述) 泡利不相容原理 (来自对易关系) 正则系综 ρ不是系统处在某个()q p ,的概率,而是处于某个量子 态的概率,例如能量的本征态。 配分函数 1E n n Z e k T ββ-== ∑ n E 为第n 个量子态的能量,对所有量子态求和 (不是对能级求和)。 平均值 1 E n n e Z β-O = O ∑ O 量子力学的平均值

第二节 密度矩阵 量子力学 波函数 ∑ψΦ=ψn n n C , 归一化 平均值 ∑ΦO Φ=ψO ψ=O *m n m n m n C C ,?? 统计物理 系综理论:存在多个遵从正则分布的体系 ∴ ∑ΦO Φ= O *m n m n m n C C ,? 假设系综的各个体系独立,m n C C m n ≠=* ,0 理解:m n C C * 是对所有状态平均,假设每个状态出现的概率为 ...)(...m C ρ,对固定m ,-m C 和m C 以相同概率出现,所以 ∑ΦO Φ=O *n n n n n C C ? 如果选取能量表象,假设n n C C *按正则分布,重新记n n C C * 为n n C C * 1E n n n C C e Z β-*= 这里 n n n E H Φ=Φ? 引入密度矩阵算符ρ ? [ ]n n n C H Φ=Φ=2 ?0?,?ρ ρ 显然 ∑ΦΦ=n n n n C 2 ?ρ , ??,0H ρ??=??

大学 物理学 第五版 马文蔚 答案上下册第十五章

第十五章量子物理 1、(1)在室温(20℃)下,物体的辐射能强度之峰值所对应的波长是多大?(2)若使一物体单色辐射本领的峰值所对应的波长在红光谱线范围内,m m 7 105.6-?=λ则温度为多少?(3)上述(1) ,(2)中,总辐射本领的比值为多少? 解 (1)将室温下的物体近似看作绝对黑体,由维恩位移定律,得: T b m = λ,将k m b ??=-3 10 898.2,T=273+20=293K 代入上式,则得: m T b m 6 3 10 89.9293 10 898.2--?=?= = λ (2) 由维恩位移定律,得K b T m 3 7 3 1046.410 50.610898.2?=??= = --λ (3)由斯特潘—波尔兹曼定律 4 0)(T T M σ=得: 4 1 01 )(T T M σ= 4 2 02)(T T M σ= 由此得 4 43 4 1 201 021037.5)293 10 46.4( )( ) ()(?=?==T T T M T M 2、天狼星的温度大约是11000℃,试由维恩位移定律计算其辐射峰值的波长。 解 由维恩位移定律可得天狼星单色辐出度峰值所对应的波长 nm m T b m 25710 57.27 =?== -λ,该波长属紫外区域,所以天狼星呈紫色。 3、 估测星球表面温度的方法之一是:将星球看成黑体,测量它的辐射峰值波长m λ,利用维恩位移定律便可估计其表面温度。如果测得北极星和天狼星的m λ分虽为0.35m μ和0.29m μ,试计算它们的表面温度。 解 根据维恩位移定律 b T m =λ 可算得北极星表面温度K K b T m 3 6 3 1028.810 35.010897.2?=??= = --λ 天狼星表面温度K K b T m 3 6 3 1099.910 29.010897.2?=??= = --λ 4、在加热黑体过程中,其单色辐出度的峰值波长是由0.69m μ变化到0.50m μ,求总辐出度改变为原来的多少倍? 解 当m m μλ69.01=时,根据维恩位移定律,黑体的温度为 K K b T m 3 6 3 1 11020.410 69.010897.2?=??= = --λ 根据斯特潘—玻尔兹曼定律,黑体的总辐出度

相关文档
最新文档