聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)教学提纲

聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)教学提纲
聚碳酸酯(PC)的各种性能及其成型特性(个人总结含图表)教学提纲

聚碳酸酯(P C)的各种性能及其成型特性(个人总结含图表)

?聚碳酸酯(PC)的性能

聚碳酸酯(PC)是一种线型碳酸聚酯,分子中碳酸基团与另一些基团交替排列,这些基团可以是芳香族,可以是脂肪族,也可以两者皆有。双酚A型PC 是最重要的工业产品。双酚A型PC是一种无定形的工程塑料,具有良好的韧性、透明性和耐热性。碳酸酯基团赋予韧性和耐用性,双酚A基团赋予高的耐热性。而PC的一些主要应用至少同时要求这两种性能。表2-30列出了通用级聚碳酸酯的性能。

表2-30 通用级聚碳酸酯的性能

力学性能

聚碳酸酯的缺点是耐疲劳强度较低,耐磨性较差,摩擦因数大。聚碳酸酯制品容易产生应力开裂,内应力产生的原因主要是由于强迫取向的大分子间相互

作用造成的。如果将聚碳酸酯的弯曲试样进行挠曲并放置一定时间,当超过其极限应力时便会发生微观撕裂。在一定应变下发生微观撕裂时间与应力之间的关系依赖于聚碳酸酯的平均相对分子质量。如果聚碳酸酯制品在成型加工过程中因温度过高等原因发生分解老化,或者制品本身存在缺口或熔接缝,以及制品在化学气体中使用,那么,发生微观撕裂的时间将会大大缩短,其极限应力值也将大幅度下降。

热性能

聚碳酸酯的耐热性较好,未填充聚碳酸酯的热变形温度大约为130℃,玻璃纤维增强后可使这个数值再增加10℃。长期使用温度可达120℃,同时又具有优良的耐寒性,脆化温度为-100℃。低于100℃时,在负载下的蠕变率很低。聚碳酸酯没有明显的熔点,在220-230℃呈熔融状态。由于其分子链刚性大,所以它的熔体粘度较高。

电性能

聚碳酸酯由于极性小,玻璃化转变温度高,吸水率低,因此具有优良的电性能。表2-31列出了通用级聚碳酸酯的电性能。

表2-31 通用级聚碳酸酯的电性能

耐化学药品性能

聚碳酸酯对酸性及油类介质稳定,但不耐碱,溶于氯代烃。PC有较好的耐水解性,但长期浸入沸水中易引起水解和开裂,不能应用于重复经受高压蒸汽的制品。PC易受某些有机溶剂的侵蚀,虽然它可以耐弱酸、脂肪烃、醇的水溶液,但可以溶解在含氯的有机溶剂中。遇到丙酮等酮类溶剂时会发生应力开裂现象。

聚碳酸酯的性能

聚碳酸酯是一种无定形、透明的热塑性聚合物,无味、无臭、无毒,具有综合均衡的机械性能、热性能及介电性能,是一种性能优良的工程塑料。

1.力学性能

聚碳酸酯具有优良的力学性能,其突出特点是冲击强度高,在热望性树脂中名列前茅。蠕变性小,尺寸稳定性好,在低温下仍能保持较高的机械强度。缺点是耐疲劳强度较低,容易产生应力开裂,耐磨性较差。表2-3-1示出了通用级聚碳酸酯的机械性能。

图2-3-3示出了聚碳酸酯的应力-应变曲线。图2-3-4~2-3-7分别示出了聚碳酸酯的拉伸强度、弯曲强度、弯曲弹性模量、冲击强度与温度的关系。

聚碳酸酯的耐蠕变性在热塑性工程塑料中优于尼龙和聚甲醛,这是聚碳酸酯尺寸稳定性好的重要标志。表2-3-2和表2-3-3分别示出了聚碳酸酯在室温和100℃下的蠕变情况。图2-3-8为聚碳酸酯的蠕变曲线。

聚碳酸酯与其它大多数工程塑料相比,耐磨性较差,摩擦因数较大。表2-3-4列举了不同条件下聚碳酸酯的摩擦因数。

聚碳酸酯制品的内应力和应力开裂是个较为突出的问题。内应力产生的原因主要是由于强迫取向的人分子间相互作用造成的。

如果将聚碳酸的弯曲试样进行挠曲并放置一定时间,当超过其极限应力时便会发生微观撕裂。图2-3-9示出了在一定应变下,发生微观撕裂时间与应力之间的关系。从图中可知,当聚碳酸酯的平均分子量在2.4×104以上时,其可承受30MPa以上的应力;而当平均分子量为2.2×104时,则为20MPa左右。当残留应力或制品所承受的应力在此数值以下时,一股不会发生应力开裂。但是,如果聚碳酸酯制品在成型加工过程中因温度过高等原因发生分解老化,或者制品本身存在缺口或熔接缝,以及制品在化学气体中使用,那么,发生微观撕裂的时间将会大大缩短,其极限应力值也将大幅度下降。表2-3-5示出了聚碳酸酯在不同载荷条件下的容许应力。

2.热性能

聚碳酸酯的耐热性较好,长期使用温度可达120℃,同叫又具有优良的耐寒性,脆化温度为-100℃。表2-3-6示出了通用级聚碳酸酯的热性能。

聚碳酸酯没有明显的熔点,在220~230℃呈熔融状态,由于其分子链刚性大,所以它的熔体粘度较高。表2-3-7列举了聚碳酸酯熔体粘度与平均分子量的关系。

图2-3-10和2-3-11分别示出了聚碳酸酯的热导率、比热容与温度的关系。

3.电性能

聚碳酸酯由于极性小,玻璃化温度高,吸水率低,因此具有优良的电性能。表2-3-8示出了通用级聚碳酸酯的电性能。图2-3-12示出了聚碳酸酯的体积电阻率与温度的关系。图2-3-13示出了聚碳酸酯的介电强度与温度及试样厚度的关系。

4.耐化学药品性能

聚碳酸酯对酸性及油类介质稳定,但不耐碱,溶于氯代烃,长期浸入沸水中易引起水解和开裂。表2-3-9示出了聚碳酸酯在室温下的耐化学药品性。

5.老化性能

聚碳酸酯在波长为290nm附近的紫外线作用下,会发生光氧化反应而逐渐老化。老化先从表面黄变开始,由于分支主链的断裂,导致分子量降低以及机械强度下降,最终发生龟裂。因此,通常需要加入紫外线吸收剂以捉高聚碳酸酯的防老化性能。另外,在聚碳酸酯树脂中,常含自少量未反应的裂酚A及副产物氯化钠等无机盐,它们的存在也会加速聚碳酸醋的光化过程。在高温下,酸性介质中,游离裂酚A不稳定,它叫分解产生醌类化合物和苯酚,并使树脂变色。

PC料的特性及注塑工艺

PC料的特性及注塑工艺 围宽,PC的工艺特性是:熔融粘度对剪切率的敏感性小,而对温度的 敏感性大,无明显熔点,熔融体粘度较高,高温下树脂易水解,制品易 开裂。针对这些特性,我们特别要注意区别对待:要增加熔体的流动性, 不是用增大注射压力而应采用提高注射温度的办法来达到。要求模具的 流道、浇口短而粗,以减少流体的压力损失,同时要较高的注射压力。 树脂在成型加工之前需进行充分的干燥处理,使其含水量控制在0.02% 以下,此外,在加工过程中对树脂还应采取保温措施,以防重新吸湿。 不仅需要合理的制品设计,还应正确掌握成型工艺,如提高模具温度, 对制品进行后处理等可以减少或消除内应力。视产品的不同状况及时调 正工艺参数。 下面谈谈成型工艺 1、注射温度必须综合制品的形状、尺寸,模具结构。制品性能、要求 等各方面的情况加以考虑后才能作出。一般在成型中选用温度在 270~320℃之间,过高的料温如超过340℃时,PC将会出现分解,制 品颜色变深,表面出现银丝、暗条、黑点、气泡等缺陷,同时物理机械 性能也显著下降。

2、注射压力对PC制品的物理机械性能,内应力、成型收缩率等有一定的影响对制品的外观及脱模性有较大的影响,过低或过高的注射压力都会使制品出现某些缺陷,一般注射压力控制在80-120MPa之间,对薄壁,长流程,形状复杂,浇口较小的制品,为克服熔体流动的阻力,以便及时充满模腔,才选用较高的注射压力(120-145MPa)。从而获得完整而表面光滑的制品。 3、保压压力及保压时间保压压力的大小及保压时间的长短对PC制品的内应力有较大的影响,保压压力过小,补缩作用小易出现真空泡或表面出现缩凹,保压压力过大,浇口周围易产生较大的内应力,在实际加工中,常以高料温,低保压的办法来解决。保压时间的选择应视制品的厚薄,浇口大小,模温等情况而定,一般小而薄制品不需很长的保压时间,相反,大而厚的制品保压时间应较长。保压时间的长短可通过浇口封口时间的试验予以确定。 4、注射速度对PC制品的性能无十分明显的影响,除了薄壁,小浇口,深孔,长流程制品外,一般采用中速或慢速加工,最好是多级注射,一般采用慢-快-慢的多级注射方式。 5、模具温度一般控制在80-100℃就可以,对形状复杂,较薄,要求较高的制品,也可提高到100-120℃,但不能超过模具热变形温度。

国内外聚碳酸酯市场发展状况

国内外聚碳酸酯市场发展情况 高利平,中国化工信息中心咨询事业部 聚碳酸酯(PC)是一种线型聚合物,可分为脂肪族、脂肪-芳香族、芳香族 3种类型。在实验室里虽已合成出了许多种类的PC,但是到目前为止,大规模工业化生产的PC品种仍以双酚A型为主,因此,我们一般所说的PC为双酚A型PC。PC无味、无臭、无毒,是一种综合性能优良的热塑性工程塑料。PC具有一定的耐化学腐蚀性,室温下耐无机和有机稀酸溶液、食盐溶液和饱和的溴化钾溶液,耐脂肪烃、环烷烃及大多数醇类和油类;PC溶于二氯甲烷、间甲酚、环己酮、吡啶和二甲基甲酰胺;在乙酸乙酯、四氢呋喃和苯中只能溶胀;可与其他树脂共混形成PC共混物或PC合金,改善其抗溶剂性和耐磨性;PC具有突出的抗冲击、耐蠕变性能,较高的拉伸强度、弯曲强度、断裂伸长率和刚性,并具有较高的耐热性和耐寒性,可在-100~140℃温度范围内使用。PC的电性能优良,吸水率低,透光性好,可见光的透过率可达90%,是五大通用工程塑料中唯一具有良好透明性的品种,广泛应用于电子电器、数据载体、汽车部件、医疗设备、建筑、纺织和包装等领域。 1. 生产工艺 PC工业化生产方法有溶液光气法、界面缩聚光气法、酯交换熔融缩聚法、非光气酯交换熔融缩聚法4种。前3种为光气法,第4种为非光气法。目前,世界上约80%左右的PC采用界面缩聚光气法生产;其次是非光气法;传统酯交换熔融缩聚法工业化装置较少;溶液光气法基本被淘汰。 (1)界面缩聚光气法 界面缩聚光气法是目前工业上应用最为广泛的工艺。双酚A首先与氢氧化钠溶液反应生成双酚A钠盐;然后加入二氯甲烷,通入光气,使物料在界面上聚合,生成低分子量PC,然后经缩聚、分离得到高分子量PC。主要的专利商有SABIC、拜耳、日本三菱化学、日本帝人、斯泰隆公司(Styron,原为Dow 化学的合成树脂子公司,2010以16.3亿美元出售给Bain Capital Partners公司)。 (2)非光气酯交换熔融缩聚法 该法是在酯交换熔融缩聚法工艺的基础上开发成功的,因工艺过程中彻底不使用光气,又称“全非光法”。该工艺分为两步:首先,以甲醇羰基化法或碳酸乙烯酯(或碳酸丙烯酯)与甲醇酯交换生产碳酸二甲酯(DMC);其次,苯酚和DMC反应生成甲基苯基碳酸酯(MPC),MPC和苯酚进一步反应生成碳酸二苯酯(DPC),同时MPC发生歧化反应也生成DPC;然后DPC在熔融状态下与

聚碳酸酯PC

聚碳酸酯PC 聚碳酸酯是在分子链中含有碳酸酯的一类高分子化合物的总称。聚碳酸酯是一种新型的热塑性塑料,透明度达90%,被誉为透明金属。刚硬而有韧性,具有高抗冲击性,高度的尺寸稳定性和范围很宽的使用温度,良好的绝缘性及耐热性和无毒性。聚碳酸酯燃烧特性:慢燃,离火后慢熄,火焰呈黄色,黑烟碳束。燃烧后塑料熔融,起泡,发出特殊的花果臭气味。聚碳酸酯比重1.20,透明,本色呈微黄。 聚碳酸酯性能:聚碳酸酯树脂通过共聚,共混,增强等途径发展了很多改性品种。聚碳酸酯是抗冲击韧性为一般热塑料之冠,尺寸稳定性很好.耐热性教好,可在-60~120度下长期使用,热变温度130~140玻璃化温度149度热分解大于310度.聚碳酸酯极性小,玻璃温度高,吸水率低,收缩率小,尺寸精度高,对光稳定,耐候性好.熔融粘度和注射温度降低,因而易于加工成形。聚碳酸酯与此20~ 40%的ABS树脂共混后,具有优良的综合性能,它既有聚碳酸酯树脂的高机械强度和耐热性,又具有ABS的流动性好,便于加工的特点,各项性能指标大都介于聚碳酸酯和ABS之间。 用途:聚碳酸酯主要用于生产工业制品,用来代替金属及其它合金,在机械工业上作耐冲击及高强度的零部件。玻璃纤维增强聚碳酸酯具有类似金属的特性,可代替铜,锌,铝等压铸件。聚碳酸酯可以进行注射成形,挤出成形,吹塑成形,旋转成形,真空成形和溶剂铸造膜片等技术。制件还可以机械加工,常温冲孔,锯切及焊接和粘合。聚碳酸酯树脂的注射成形,一般采用螺杆式注射机进行。料筒温度:250~320℃,注射压力:50~80MPa,模具温度:85~120℃,螺杆转速:40~60次/min,成品热处理:先在100~105℃的烘箱中烘烤10分钟,然后在120~125℃再烘烤30分钟,自然冷却到常温即可。 聚碳酸酯(PC)介绍,聚碳酸酯是分子主链中含有—[O-R-O-CO]—链节的热塑性树脂,按分子结构中所带酯基不同可分为脂肪族、脂环族、脂肪一芳香族型,其中具有实用价值的是芳香族聚碳酸酯,并以双酚A型聚碳酸酯为最重要,分子量通常为3 -10万。 聚碳酸酯,英文名Polycarbonate, 简称PC。PC是一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高;蠕变性小,尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在-60~120℃下长期使用;无明显熔点,在220-230℃呈熔融状态;由于分子链刚性大,树脂熔体粘度大;吸水率小,收缩率小,尺寸精度高,尺寸稳定性好,薄膜透气性小;属自熄性材料;对光稳定,但不耐紫外光,耐候性好;耐油、耐酸、不耐强碱、氧化性酸及胺、酮类,溶于氯化烃类和芳香族溶剂,长期在水中易引起水解和开裂,缺点是因抗疲劳强度差,容易产生应力开裂,抗溶剂性差,耐磨性欠佳。 PC可注塑、挤出、模压、吹塑、热成型、印刷、粘接、涂覆和机加工,最重要的加工方法是注塑。成型之前必须预干燥,水分含量应低于0.02%,微量水份在高温

聚碳酸酯(PC)加工工艺

加工工艺: 1、加工特性 PC是无定形材料,它的熔体粘度对温度敏感。由于PC在高温下易发生水解,制品质量对原料的含湿量很敏感,在成型前必须将原料须干燥至小于0.02%。PC 可采用注塑、挤出、吹塑、流延等分法加工,也可进行粘合、焊接和冷加工。2、注塑工艺 (1)塑料的处理 PC的吸水率较大,加工前一定要预热干燥,纯PC干燥120℃,改性PC一般用110℃温度干燥4小时以上。干燥时间不能超过10小时。一般可用对空挤出法判断干燥是否足够。再生料的使用比例可达20%。在某些情况下,可100%的使用再生料,实际份量要视制品的品质要求而定。再生料不能同时混合不同的色母粒,否则会严重损坏成品的性质。 (2)注塑机的选用 现在的PC制品由于成本及其它方面的原因,多用改性材料,特别是电工产品,还须增加防火性能,在阻燃的PC和其它塑料合金产品成型时,对注塑机塑化系统的要求是混合好、耐腐蚀,常规的塑化螺杆难以做到,在选购时,一定要预先说明。 (3)模具及浇口设计 常见模具温度为80~100℃,加玻纤为100~130℃,小型制品可用针形浇口,浇口深度应有最厚部位的70%,其它浇口有环形及长方形。浇口越大越好,以减低塑料被过度剪切而造成缺陷。排气孔的深度应小于0.03~0.06mm,流道尽量短而圆。脱模斜度一般为30′~1°左右。 (4)熔胶温度 可用对空注射法来确定加工温度高低。一般PC加工温度为270~320℃,有些改性或低分子量PC为230~270℃。 (5)注射速度 多见用偏快的注射速度成型,如打电器开关件。常见为慢速→快速成型。 (6)背压 10bar左右的背压,在没有气纹和混色情况下可适当降低。 (7)滞留时间 在高温下停留时间过长,物料会降质,放也CO2,变成黄色。勿用LDPE、POM、ABS或PA清理机筒。应用PS清理。 (8)注意事项 有的改性PC,由于回收次数太多(分子量降低)或各种成分混炼不均,易产生深褐色液体泡。 结构与性能: PC是一种无定形的热塑性塑料,由于主链由柔软的碳酸酯链与刚性的苯环相连接,使之具有许多优良的工程性能。 (1)力学性能 PC具有均衡的刚性和韧性,拉伸强度高达(6l~70)MPa。有突出的冲击强度,在一般工程塑料中居首位,抗蠕变性能优于聚酰胺和聚甲醛。 (2)热性能与聚酰胺和聚甲醛不同,PC是非结晶性塑料,但由于主链上存在苯环。使PC具有较高的耐热性,它的玻璃化转变温度和软化温度分别高达150℃

聚碳酸酯的技术发展及国内外市场分析

聚碳酸酯的技术发展及国内外市场分析 摘要:介绍了聚碳酸酯(PC)技术进展现状,特别介绍了中国聚碳酸酯研发历程和研发现状,并对改性技术方向做了介绍。对世界聚碳酸酯市场进行了深度分析,对中国市场进行了展望,指出了存在的问题和解决方法。 关键词:聚碳酸酯技术进展 聚碳酸酯(PC)是具有高强度、高韧性、高抗热性、抗震及加工性能好、有极好的形状和颜色稳定性的透明树脂。它既可单独使用,也可以掺混物和合金方式使用,在六大工程塑料中消费量仅次于聚酰胺(P A)。 在50多年的发展历程中,PC的应用领域不断拓展。近年来由于生产工艺和技术的提高,PC材料在性能完善和个性化设计方面取得了更快的进展,PC制品的应用已渗透到建筑、医学、服装、光盘片、汽车材料、建筑材料、包装材料、宽波透光的光学器械等行业之中,正在迅速改善和提升着人们的生活质量。 关于PC新用途的研究报告也不断问世,如,原美国GE全球研究公司推出了一种新的基片技术,可用于柔性有机光发射二极管(OLED);英国塑料电子产品开发商Plastic Logic公司开发了25.4cm的柔性有机基体显示器材;用于太阳能电池板的光伏发电是聚碳酸酯又一个增长中的应用领域;随着首支耐高压的PC针剂管的问世,PC的应用领域更加广阔了。PC可制成用于心脏搭桥手术的充氧器外壳,PC 还被用于做肾透析时的贮血池及过滤器外壳,其高透明度可以保证血液流通的快速检查,这使透析变得简单实用。 除此之外,游泳池底部的自照明系统、太阳能采集系统、高清晰大型电视屏幕、纺织品中可进行织物材料识别的芯片标记纤维等一些全新的领域都少不了PC材料的身影,PC制品正在为各行各业作出贡献,其应用潜力还将得到进一步的开发。 1 技术进展 目前,国际上聚碳酸酯工业化生产技术主要有三种:光气化界面缩聚法(简称光气法)、酯交换熔融

PC成型工艺分析

PC成型工艺分析 1、聚集态特性属于无定型非结晶性塑料,无明显熔点,熔体黏度较高。玻璃化温度140°~150℃,熔融温度215℃~225℃,成型温度250℃~320℃。 2、在正常加工温度范围内热稳定性较好,300℃长时停留基本不分解,超过340℃开始分解,粘度受剪切速率影响较小。 3、流变性接近牛顿性液体,表观黏度受温度的影响较大,受剪切速率的影响较小,相对分子质量的增大而增大。PC分子链中有苯环,所以分子链刚性大。 4、PC的抗蠕变性好,尺寸稳定性好;但内应力不易消除。 5、PC高温下遇水易降解,成型时要求水分含量在0.02%以下。 6、制品易开裂。 PC树脂的成型工艺控制在成型加工上,水分控制及成型加工条件之选择是影响成型品质最重要的两个因素,兹分述如下: A、水分控制 PC类塑胶即使用遇到非常低之水分亦会产生水解而断键、分子量降低和物性强度降低之现象,因此在成型加工前应严格地控制PC树脂之水分在0.02%以下,以避免成型品的机械强度降低或表面产生气泡、银纹等异常外观。为避免水分所产生异常之情况,聚碳酸脂在加工前,应先经热风干燥3~5h 以上,温度定为120℃,或者用除湿干燥机来处理水分。 B、原料选择为满足各种成型工艺的需求,PC树脂有不同熔体流动速率的规格。通常熔体流动速率介于5~25g/10min都可适用于注塑成型。但是其最佳加工条件因注塑机种类、成型品之形状以及PC树脂规格不同而有相当之差异,应根据实际情况加以调整。 C、注塑机选择要点锁模压力:以成品投影面积每cm2*0.47~0.48T(或每平方寸*3~5T)机台大小:成品重量约为注塑机容量的40~60%为最佳,如机台以PS来表示容量(盎斯)时,需减少10%,始为使用PC之容量,(1盎斯=28.3公克)。螺杆:螺杆长度最少应有15个直径长,其L/D为20:1最佳,压缩比宜1.5:1至30:1。螺杆前端之止流阀应采用滑动环式,其树脂流动间隙最少应有3.2mm。喷嘴:尖端开口最少有4.5mm直径。若成品重量为5.5kg以上,则喷嘴直径应为9.5mm以上,另外,尖端开口需比浇口直径少0.5~1mm,且段道愈短愈好,约为5mm。 D、成型条件要点:熔融温度与模温:最佳的成型温度设定与很多因素有关,如注塑机大小,螺杆组态、模具及成型品的设计和成型周期等。一般而言,为了让塑料渐渐在熔融,在料管后断/进料区设定较低的温度,而在料管前段设定较高的温度。但若螺杆设计不当或L/D值过小。

浅谈聚碳酸酯行业发展情况以及最新应用

浅谈聚碳酸酯行业发展情况以及最新应用 本刊讯我国聚碳酸酯的研制始于1958年,并于1965年实现工业化生产。先后有上海天原集团申聚化工厂、江苏常隆化工有限公司、重庆长风化工厂等从事生产,产品大部分自用。但由于装置规模小、技术水平落后、产品质量差、生产成本高,产品竞争力低,无法与国外产品相抗衡。2005年之后,我国掀起聚碳酸酯投资热潮,世界级聚碳酸酯生产商帝人化成和拜耳先后在我国投资建厂,到2012年我国聚碳酸酯产能达44.1万吨/年。 作为全球著名的聚合物制造商之一,拜耳材料科技公司早在2001年就在上海创建了聚合物研发中心,并在上海一体化基地投运了一条年产量为10万吨/年的聚碳酸酯工厂和4条其他聚碳酸酯分级掺混材料厂,为生产线提供了强大的技术支撑。另外,帝人化学公司投资9亿日元830万美元在其上海聚碳酸酯混配料工厂内新建的装置已于2009年建成投产,此次扩能完成后,该工厂成为世界级的聚碳酸酯混配料工厂。未来仍有内资、外资新扩建聚碳酸酯装置在我国陆续建成投产。 三菱瓦斯化学公司在上海漕泾化学工业区新建8万吨/年聚碳酸酯产能,于2013年底建成投产,该聚碳酸酯树脂联合项目的总投资约为300亿日元。中石化与沙特基础工业公司沙伯签署的26万吨/年聚碳酸酯项目预计于2015年投产,该项目是中国石化与沙伯在天津现有100万吨/年乙烯合资项目中新增的合作内容,采用世界上最先进的非光气法生产工艺,总投资约110亿元人民币,双方股比50%:50%,将生产包括混合级、挤出级、光学级及注塑级四大类聚碳酸酯。拜耳材料科技公司于2010年已经宣布计划到2016年使其在上海漕泾生产联合装置的聚碳酸酯产能翻一番以上,将达到50万吨/年,拜耳材料科技公司也将大大增强在漕泾的研发能力,并将其聚碳酸酯业务部从德国Leverkusen迁往上海,此举将使其业务更贴近迅速发展的亚洲聚碳酸酯市场。另外,拜耳材料科技公司位于广州经济技术开发区永和经济区的聚碳酸酯单层板工厂已于2011年10月开建,设计生产能力1.2万吨/年已于今年投产,到2015年,这家工厂聚碳酸酯总产能将翻番达到2.4万吨/年。 现如今,聚碳酸酯的应用领域日渐广泛,据悉,牙医用其新型探照灯检测病人牙齿时,健康牙齿会显示绿色,而含有大量细菌及新陈代谢残余物的龋齿则变为红色,牙医可以轻松找到病人的龋齿,并进行处理。研发人员表示,探照灯效果显著主要是其内置的PC过滤器采用了拜耳Makrolon LQ3187 PC生产而成的灯光过滤器,它能切断一些可见光谱,将注意力集中于红光和绿光身上,可以辨别龋齿和健康牙齿。Makrolon LQ3187是一种高透明性PC材料,其光学性能十分优异,并具备良好的抗冲击性和抗断裂性。化工厂1万吨/年PC装置也将于未来两年内投产。 是金子总会发光的,聚碳酸酯拥有良好的透光性,抗冲击性,耐紫外线辐射及其制品的尺寸稳定性和良好的成型加工性能,使其比建筑业传统使用的无机玻璃具有明显的技术性能优势。同样的在医疗领域聚碳酸酯以其良好的性质得到了

PC树脂

PC树脂的材料特性和成型工艺聚碳酸酯(PC)树脂是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变和尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。 目前广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。PC树脂的应用与发展:70年代PC多用作连接器、开关等电气、电子零件,到80年代前半期应用扩展至精密机械(照相机、钟表)、电动工具和光学机械上,成为PC的第一发展期。80年代后半期PC的应用进一步扩大到办公设备、汽车、激光唱片(CD),需求量大增而成为第二个发展期。进入90年代以后受经济影响速度放缓,但在1992~1994年间仍有10%~15%的增长率。 PC之所以有大的市场容量是由于它具有比较全面平衡的性能——优良的耐冲击性、耐热性、尺寸稳定性、透明及自熄性等,因此在电气、电子、精密机械、汽车、保安、医疗等领域成为可广泛使用的工程塑料。90年代中期又开发出PC/ABS 合金的复合化技术,更扩大了应用领域。 目前PC广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。PC合金改性PC/ABS合金:PC与ABS共混物可以综合PC和ABS 的优良性能,提高ABS的耐热性、抗冲击和拉伸强度,降低PC成本和熔体粘度,改善加工性能,减少制品内应力和冲击强度对制品厚度的敏感性。目前PC/ABS 合金发展迅速,全球产量约为80万吨/年左右,世界各大公司纷纷开发推出PC /ABS合金新品种,如阻燃、玻纤增强、电镀、耐紫外线等品种,尤其是在汽车工业中得到广泛应用,另外还广泛应用于计算机、复印机和电子电气部件等。我国近年来也开始一定研究和生产,如上海杰事杰公司的PC/ABS合金材料已应用于汽车装饰件、灯壳和耐热电器壳体;中科院长春应用化学所开发的高耐热、高耐热高抗冲、高耐热阻燃三个品级的PC/ABS合金材料已被国内数家汽车制造公司使用,用做前装饰板、仪表板及物品箱盖专用料等。 兰州大学研究在PC/ABS共混体系中加入高压聚乙烯进行增容改性,得到混合物流动性好且低温韧性与模量几乎不受影响,适用于制作薄壁板材;国内研究人员为了降低PC/ABS两相之间的界面能,在PC和ABS中加入抗冲击剂MBS,合金的空冲击度可以达到极高值,PC/ABS/MBS外观呈象牙白、质地均匀、手感极佳。PC/PS合金:该合金为部分兼容、非晶/非晶体系。在PC中加入PS可以降低PC粘流活化能,从而改善PC的加工流动性,加入少量的PS可使PC熔体粘度大幅度下降,PS在PC中还可以起到刚性有机填料的作用,PC与PS均为透明材料,二者折射率非常接近,因此PC/PS合金透明,具有良好的光学特性。PC /PS合金组成对合金力学性能、热性能和加工性能影响较大,随着PS含量的增加,PC/PS体系的流动性增加,硬度、拉伸强度和冲击强度提高,而热变形温度下降。当PS含量在某一值时候,冲击强度和拉伸强度出现极大值。因此选择合适的PC和PS配比,可以制得高性能的PC/PS合金。另外增容剂对PC/PS共混体系的性能有较大影响,通常选用苯乙烯,通过在PC末端引发双键接枝苯乙烯,得到接枝聚合物对PC/PS共混体系有增容作用,可以大大提高PC与PS兼容性,这种材料适合制作光盘等。 近年来PC/PS合金应用范围不断扩大,新品种不断涌现,如日本推出的PC/PS 合金Novally x 7000,同ABS一样,易上漆及进行油墨印刷;日本出光石化推

全球聚碳酸酯(PC)产业概况

全球聚碳酸酯(PC)产业概况 加拿大政府宣布,禁止进口、销售及推广含有双酚A 的聚碳酸酯塑胶婴儿奶瓶,正式将此物质列为有毒化学物质。我国环保署2009年将双酚A列成第四类管制毒性化学物,属于毒性尚未明确确立的疑似毒性物质,在国际贸易同步进行前提下,目前仅有加拿大将双酚A列为毒物,「一旦双酚A毒理确立,台湾也会跟进。」卫生署指出,双酚A其化学结构类似雌性激素,因此被视为环境荷尔蒙;研究显示,暴露于过量双酚A,可能会引起过敏外,还会降低精虫数,影响生育,并增加与荷尔蒙有关的癌症发生率,如乳癌、睪丸癌及前列腺癌等。聚碳酸酯(Polycarbonate, PC)的原料是双酚A (bisphenol A, BPA),聚碳酸酯最大问题不在制造时添加该化学物质,而是材质本身会释出双酚A,某些高效清洁剂甚至会把聚碳酸酯中的双酚A 溶解出来,容器表面若有刮伤,双酚A 也会溶进饮料里,是聚碳酸酯食具最大的隐忧。本文将针对聚碳酸酯产业的应用领域及供需作一概况说明。 聚碳酸酯产业应用领域 聚碳酸酯(Polycarbonate),简称PC, ,是一种无定型、无臭、高透明无色或带微黄色的热塑性工程塑胶,聚碳酸酯目前是泛用工程塑胶生产规模最大者,聚碳酸酯产业近年来朝向高复合、高功能、专用化及系列化方向发展,大宗使用在汽车工业和电子电器零组件、工业机械零件、电脑和光碟以及玻璃配装等,为近年来高科技产业的重要原料,产能及需求量也随之快速成长,聚碳酸酯产业的应用领域大致可分为七大领域。 1.电子及电器领域 全球对聚碳酸酯的需求逐年成长,其中电子和电器产业对聚碳酸酯的需求占全球聚碳酸酯需求量1/3以上。除了原有聚碳酸酯良好的物化性,聚碳酸酯/ABS 合金更降低聚碳酸酯的成本和熔体黏度,改善聚碳酸酯加工性能,减少产品内应力和冲击强度对制品厚度的敏感性,聚碳酸酯/ABS 合金的这些优点,使得聚碳酸酯在电子领域应用范围更广阔,主要可应用于手机外壳、电脑外壳、仪表屏、电器工具外壳及线圈框架等。 2.建筑领域 聚碳酸酯是五大泛用工程塑胶中唯一具有良好透明性的塑胶,可见光透率高达90%以上,加上材质轻、隔热性能比无机玻璃高25%,抗冲击强度是无机玻璃250倍,特别适用于玻璃及板材,聚碳酸酯板材在建筑方面需用量占聚碳酸酯总需求量40%以上。聚碳酸酯板材可制成的各种复杂的板材,可用于建筑物大面积屋顶、走廊、楼梯护栏、阳台围墙等,具有安全可靠,坚固耐用及外观美丽等优点。 3.汽车领域 由于聚碳酸酯的冲击强度、硬度、耐候性和耐热性,汽车应用领域包括汽车的离合器系统、仪表板、照明灯具、内外部嵌板和轮胎盖子及汽车玻璃等。而聚碳酸酯的光学特性及其独特的耐冲击性、耐候性以及量轻、强度高等特性,越来越多应用在汽车灯罩,近年美国、日本、欧洲汽车制造厂也开始以聚碳酸酯作为灯罩的材料。全球最大聚碳酸酯生产厂商GE 公司和拜耳公司也联手研发汽车车窗玻璃用聚碳酸酯,期许车窗玻璃全部用聚碳酸酯代替。4.航太领域 在航空航太领域,聚碳酸酯最初只用于飞机座舱罩和挡风玻璃,随着航太技术发展,对飞机和航空器各零件品质要求不断提高,使得聚碳酸酯在该领域的应用也日渐增加。1架波音747飞机所用的聚碳酸酯零件约2公吨,太空船上也是由数百种玻璃纤维补强的聚碳酸酯零件组成。 5.食品包装领域 在食品包装领域,聚碳酸酯主要用于饮用水瓶及奶瓶家用食品容器等,但是由于原料双酚A 列为危险化学物质,因此聚碳酸酯应用在食品包装领域将受到严峻的挑战,聚碳酸酯将来是否应用在食品包装领域仍是一个未知数。 6.光学材料领域 由于具有优良的加工成型性及尺寸安定性,聚碳酸酯在光学领域最大的应用是生产CD/DVD 光碟,然而随着科技不断发展,特别是网路的普及,光学级聚碳酸酯在CD/DVD 应用领域的需求也逐渐减少。由于聚碳酸酯的高透光率,光学级聚碳酸酯还可替代玻璃用来制作摄像机、照相机、显微镜、望远镜的光学镜片及各种眼镜镜片,其抗冲性和成型加工性能,都是传统的玻璃和其他塑胶镜片无法相较的。 7.医疗器材领域 聚碳酸酯具有优良的耐高温和耐冲击性以及透明的外观,为多样化医疗应用领域的首选材料,聚碳酸酯可采用超高温蒸汽、高能辐射或环氧乙烷消毒,也可利用雷射消毒,可完全避免其他材料面临的褪色或变黄问题。 全球聚碳酸酯产业生产概况 全球聚碳酸酯生产始于1956年,首先在德国、日本、西欧和美国工业化生产,产业扩建潮开始于2005年,目前全球聚碳酸酯生产能力达到407.2万公吨,全球前五大聚碳酸酯生产厂商为德国Bayer120万公吨、Sabic102万公吨、三菱瓦斯/三菱化学30.2万公吨,帝人化成(Teijin)及陶氏化学(Dow Chemical)紧接于后,前五大厂商产能占全球聚碳酸酯总产能87.4%。2009年全球聚碳酸酯生产厂商产能统计如表一所示。 表一 2009年全球聚碳酸酯生产厂商产能统计 国家 生产商 产能 ( 万公吨 ) 备注 美国 Bayer AG 26 介面缩聚法 Dow 7.5 介面缩聚法 Sabic Innovative Plastics 55 介面缩聚法 巴西 Policarbonatos do Brasil S.A 2 介面缩聚法 德国 Bayer AG 33 介面缩聚法 Dow 13.4 介面缩聚法 荷兰 Sabic Innovative Plastics 20 介面缩聚法 西班牙 Sabic Innovative Plastics 27 熔融聚合法 比利时 Bayer AG 24 熔融聚合法 日本 Idemitsu Kosan Co Ltd 4.7 介面缩聚法 Sumitomo Dow Ltd 8 介面缩聚法 GE 日本公司 4.5 非光气法 Teijin 12 介面缩聚法 三菱化学 8 熔融聚合法 三菱瓦斯化学 11 熔融聚合法 韩国 LG Dow Polycarbonate Ltd 17 介面缩聚法 Samyang Kasei Co Ltd 11 日本三菱化学技术

塑料材料-聚碳酸酯(PC)的基本物理化学特性及典型应用介绍(精)

聚碳酸酯(PC)的介绍 聚碳酸酯是分子主链中含有—[O-R-O-CO]—链节的热塑性树脂,按分子结构中所带酯基不同可分为脂肪族、脂环族、脂肪一芳香族型,其中具有实用价值的是芳香族聚碳酸酯,并以双酚 A型聚碳酸酯为最重要,分子量通常为3-10万。 聚碳酸酯,英文名Polycarbonate, 简称PC。PC是一种无定型、无臭、无毒、高度透明的无色或微黄色热塑性工程塑料,具有优良的物理机械性能,尤其是耐冲击性优异,拉伸强度、弯曲强度、压缩强度高;蠕变性小,尺寸稳定;具有良好的耐热性和耐低温性,在较宽的温度范围内具有稳定的力学性能,尺寸稳定性,电性能和阻燃性,可在 -60~120℃下长期使用;无明显熔点,在 220-230℃呈熔融状态;由于分子链刚性大,树脂熔体粘度大;吸水率小,收缩率小,尺寸精度高,尺寸稳定性好,薄膜透气性小;属自熄性材料;对光稳定,但不耐紫外光,耐候性好;耐油、耐酸、不耐强碱、氧化性酸及胺、酮类,溶于氯化烃类和芳香族溶剂,长期在水中易引起水解和开裂,缺点是因抗疲劳强度差,容易产生应力开裂,抗溶剂性差,耐磨性欠佳。 PC可注塑、挤出、模压、吹塑、热成型、印刷、粘接、涂覆和机加工,最重要的加工方法是注塑。成型之前必须预干燥,水分含量应低于0.02%,微量水份在高温下加工会使制品产生白浊色泽,银丝和气泡,PC在室温下具有相当大的强迫高弹形变能力。冲击韧性高,因此可进行冷压,冷拉,冷辊压等冷成型加工。挤出用PC分子量应大于3万,要采用渐变压缩型螺杆,长径比1:18~24,压缩比1:2.5,可采用挤出吹塑,注-吹、注-拉-吹法成型高质量,高透明瓶子。PC合金种类繁多,改进PC熔体粘度大(加工性)和制品易应力开裂等缺陷, PC与不同聚合物形成合金或共混物,提高材料性能。具体有PC/ABS合金,PC/ASA合金、 PC/PBT合金、PC/PET

2018-2020年中国聚碳酸酯(PC)行业发展前景分析报告

中国聚碳酸酯(PC)行业发展前景分析报告

内容目录 1. 聚碳酸酯(PC)材料价格持续攀升,景气度提高 (4) 1.1. PC是一种抗冲击、透明、耐热耐寒的工程塑料 (4) 1.2. PC价格持续上行,盈利大幅提升 (4) 2. 需求端:我国PC需求增速高于全球,电子电气与汽车领域的发展是动力 (5) 2.1. 全球PC行业处于成熟期,我国成为最大的PC消费市场 (5) 2.2. 电子电气、板材和汽车领域是未来PC主要的消费增长点 (6) 3. 供应端:产能高度集中在海外巨头企业,我国处于行业发展初期 (8) 3.1. 目前全球供应端呈现寡头格局,巨头扩产谨慎 (8) 3.2. 我国PC产能集中在外资企业,国内企业处于发展初级阶段 (8) 4. 未来两年PC国产化企业有望享受高盈利时期 (10) 4.1. 目前我国PC需求量大自给率低,严重依赖进口 (10) 4.2. 全球PC供需紧平衡,产能增量开始向中国转移,短期利好具备技术的国产化企业 . 11 4.3. 废塑料禁止进口的禁令助推国内PC行业景气上行 (12) 4.4. 高端化、差异化和产业链一体化建设是我国PC产业的未来发展重点 (14) 5. PC产业附加值较高,国内企业正依靠自主创新加快布局 (15) 5.1. 光气法是目前PC生产路线的主流,非光气法因绿色环保成为发展趋势 (15) 5.2. 国内PC产能在两大工艺路线中齐头并进 (16) 5.3. PC产品毛利较高,光气法壁垒较低但投资与成本高于非光气法 (17) 6. 重点关注标的 (17) 6.1. 鲁西化工(000830.SZ) (17) 6.2. 江山化工(现更名为浙江交科,002061.SZ) (17) 6.3. 万华化学(600309.SH) (18) 7. 风险提示 (18) 图表目录 图1:聚碳酸酯颗粒 (4) 图2:双酚A型PC化学分子结构 (4) 图3:PC市场价(华东地区)与价差 (5) 图4:全球PC消费量及增速 (5) 图5:我国PC消费量及增速 (5) 图6:2010年全球聚碳酸酯消费结构组成 (6) 图7:2015年全球聚碳酸酯消费结构组成 (6) 图8:2007年国内聚碳酸酯消费结构组成 (6) 图9:2014年国内聚碳酸酯消费结构组成 (6) 图10:PC材料的iPhone 5C、魅族魅蓝Note的外壳 (7) 图11:中国最大公共交通车辆制造商中国南车采用PC板材 (7) 图12:奔驰迈巴赫汽车车窗使用PC涂膜以起到防弹保护作用 (7) 图13:消防头盔使用耐高温PC材料 (7) 图14:全球5大PC龙头份额高达80% (8) 图15:我国PC产能、产量(万吨)及增速 (9) 图16:我国主要PC生产企业分布示意图 (10) 图17:我国PC供需情况汇总 (11) 图18:2014-2016年废塑料进口数量(吨) (12)

东北大学材料成型课程设计

1.9吨直径30mm7075铝合金挤压棒材 生产工艺设计及成本核算 授课教师 学生 班级 学号

目录 摘要 (1) 1 合金概况及总体工艺流程制定 (2) 1.1 订单信息 (2) 1.2 合金成分及合金概况 (2) 1.2.1 合金的名义成分 (3) 1.2.2 合金的用途 (3) 1.2.3 合金的工艺特点 (3) 1.3 工艺流程制定 (4) 1.4 变形过程中各段定尺计算 (4) 1.4.1变形过程各段已知条件 (4) 1.4.2 定尺计算 (5) 1.5 成品率计算 (5) 1.6 熔铸投料量计算 (6) 2 具体工艺安排及操作步骤 (7) 2.1 熔铸工艺安排及计算 (7) 2.1.1 熔铸工艺的工艺流程 (7) 2.1.2 铸次分配 (7) 2.1.3 合金的成分计算 (8) 2.1.4 配料计算 (8) 2.1.5 熔炼工艺参数 (12) 2.1.6铸造工艺条件 (14) 2.1.7铸造过程中损耗率计算 (14) 2.1.8成品铸锭计算 (14) 2.2 锯切定尺安排 (15) 2.3车削工艺安排 (15) 2.4均火工艺 (15) 2.4.1 均匀化退火 (15)

2.4.2均匀化退火工艺设计 (16) 2.5挤压工艺 (16) 2.5.1挤压比 (16) 2.5.2挤压工艺参数确定 (16) 2.5.3挤压工艺设计 (16) 2.6固溶淬火工艺 (17) 2.7矫直工艺 (17) 2.8锯切 (17) 2.9包装 (17) 3成本核算 (18) 3.1成品率计算 (18) 3.2各工序工时及成本计算 (18) 3.2.1熔铸工时及成本计算 (18) 3.2.2锯切工时及成本计算 (19) 3.2.3车皮工时及成本计算 (19) 3.2.4均匀化退火工时及成本计算 (20) 3.2.5挤压工时及成本计算 (20) 3.2.6拉伸矫直工时及成本计算 (21) 3.2.7淬火工时及成本计算 (21) 3.2.8辊式矫直工时及成本计算 (21) 3.2.9锯切工时及成本计算 (22) 3.2.10包装工时及成本计算 (22) 3.3总成本核算 (22) 参考文献 (24)

PC成型加工工艺

P C成型加工工艺 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在成型加工上,水份控制及成型加工条件之选择是影响成型品质量最重要的两个因素,兹分述如下: 水份控制 PC类塑胶即使遇到非常低之水份亦会产生水解而断键、分子量降低和物性强度降低之现象。因此在成型加工前,应严格地控制聚碳酸酯之水份在0.02%以下,以避免成型品的机械强度降低或表面产生气泡、银纹等之异常外观。为避免水份所产生异常之情况,聚碳酸酯在加工前,应先经热风干燥机干燥三至五小时以上,温度设定为120℃,或者经除温干燥机来处理水份,但除湿空气在漏斗入口处应有-30℃之露点。 注塑成型 为满足各种注塑成型工艺的需求,聚碳酸酯有不同熔融指数的规格。通常熔融指数介于5至25g/10min皆可适用于注塑成型。但是其最佳加工条件因注塑机种类、成型品之形状以及聚碳酸酯规格之不同,而有相当之差异,应依据实际情形加以调整。 注塑机选择要点 锁模压力: 以成品投影面积每平方公分乘0.47至0.78吨(或每平方寸乘3至5吨)。 机台大小: 成品重量约为注塑机容量的40至60%为最佳,如机台以聚苯乙烯来表示其容量(盎斯)时,需减少10%,始为使用GUANG DA之容量。1盎斯=28.3公克。 螺杆:

螺杆长度最少应有15个直径长,其L/D为20:1最佳。压缩比宜为1.5:1至30:1。螺杆前端之止流阀应采用滑动环式,其树脂可流动间隙最少应有3.2MM。 喷嘴: 尖端开口最少应有4.5MM(直径),若成品重量为5.5KG以上,则喷嘴直径应有9.5MM以上。另外,尖端开口需比浇口直径少0.5至1MM,且段道愈短愈好,约为5MM。 成型条件要点: 熔融温度与模温: 最佳的成型温度设定与很多因素有关,如注塑机大小、螺杆组态、模具及成型品的设计和成型周期时间等。一般而言,为了让塑料渐渐地熔融,在料管后段/进料区设定较低的温度,而在料管前段设定较高的温度。但若螺杆设计不当或L/D值过小,逆向式的温度设定亦可。 模温方面,高温模可提供较佳的表面外观,残留应力也会较小,且对较薄或较长的成型品也交易填满。而低模温则能缩短成型周期。 螺杆回转速度: 建议40至70rpm,但需视乎机台与螺杆设计而调整。 注塑压力:而最高为了尽速填满模具,注塑压力愈大愈好,一般约为850至1,400KG/CM2,可达2,400KG/CM2。 背压: 一般设定愈低愈好,但为求进料均匀,建议使用3至14KG/CM2。 注塑速度:

聚碳酸酯的合成与制备

聚碳酸酯的合成与制备 摘要:主要介绍了聚碳酸酯在工业生产中常用的几种工艺合成路线和新的合成方法,并在其发展趋势中总结了各种制备方法的优点和缺点,对当前国际国内形势作出相应的展望 关键词:聚碳酸酯;合成;光气法;酯交换法;开环聚合法;固相缩聚法 1 引言 聚碳酸酯(PC)是一种无味、无毒、透明的无定形热塑性材料,是分子链中含有碳酸酯链一类高分子化合物的总称,可分为脂肪族、脂环族、芳香族等几大类, 目前仅有双酚A型的芳香族聚碳酸酯投入工业化规模生产和应用。 聚碳酸酯是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变,尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,被广泛用于电子电气、电动工具、交通运输、汽车、机械、仪表、建筑、信息存储、光学材料、医疗器械、体育用品、民用制品、保安、航空航天及国防军工等领域,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。 2 聚碳酸酯的合成与制备 在聚碳酸酯的合成工艺发展历程中,出现的合成方法颇多,如低温溶液缩聚法、高温溶液缩聚法、吡啶法和部分吡啶法等等,至今仍不断有新的合成方法报道,但已工业化、形成大规模生产的工艺路线并不多,这些方法或者不成熟,或者因成本较高而制约了实际应用m。目前世界上大部分生产厂家普遍采用界面缩聚法或熔融酯交换法,其中80%的生产厂家采用界面缩聚法[1]。 聚碳酸酯工业化生产工艺按照是否使用光气作原料可主要分为两大类。第一类是使用光气的生产工艺。第二类是完全不使用光气的生产工艺。 2.1 光气法 2.1.1 溶液光气法[2] 以光气和双酚A为原料,在碱性水溶液和二氯甲烷(或二氯乙烷)溶剂中进行界面缩聚,得到的聚碳酸酯胶液经洗涤、沉淀、干燥、挤出造粒等工序制得聚碳酸酯产品。此工艺经济性较差,且存在环保问题,缺乏竞争力,已完全淘汰。

聚碳酸酯(PC)材料简介

聚碳酸酯材料简介 聚碳酸酯 3.1 简介聚碳酸酯是一种无味、无臭、无毒、透明的无定形热塑型材料,是分子链中含有碳酸酯的一类高分子化合物的总称,简称PC。一般结构式可表示,由于R基团的不同,它可分为脂肪族类和芳香族类两种。但因制品性能、加工性能及经济因素等的制约,目前仅有双酚A型的芳香族聚碳酸酯投入工业化规模生产和应用。双酚A型聚碳酸酯是目前产量最大、用途最广的一种聚碳酸酯,也是发展最快的工程塑料之一。双酚A型聚碳酸酯(Bisphenol A type Polycarbonate,简称PC)的结构式因其具有优良的冲击强度、耐蠕变性、耐热耐寒性、耐老化性、电绝缘性及透光性等,广泛应用于电气电子零部件、机械纺织工业零部件、建筑结构件、航空透明材料及零部件、泡沫结构材料等。随着汽车行业和电子行业的迅猛发展,近年来对PC的需求空前高涨,世界消费能力已达l100kt/a,其中国内PC消费也已达60kt/a。目前PC的生产厂主要分布在美国、西欧和日本,其中,GE塑料公司、Bayer公司和Dow化学公司的生产能力占世界总生产能力的80%以上。我国PC的研制开发工作始于1958年,由沈阳化工研究院首先开发成功;发展至今,所有工艺路线均以光气为起始原料,生产规模较小。PC作为一类综合性能优越的工程塑料,应用范围越来越广。但它也存在一些缺点:如加工流动性差,易于应力开裂、对缺口比较敏感以及耐磨性欠佳等。但随着PC的生产工艺和改性技术的进步,这些方面逐步得到了改进,因此PC在越来越多的领域中得以应用。3.2 聚碳酸酯的合成技术PC的早期工业化生产方法有酯交换法和溶液光气法两种,这两种工艺现在基本不再使用。目前在工业生产中采用的主要是接口光气法。由于光气毒性大,同时二氯甲烷和副产品氯化钠对环境污染严重,故20世纪90年代以来非光气法工艺发展迅速,1993年第一套非光气法装置在日本投产。 3.2.1 接口光气法接口光气法工艺先由双酚A和50%氢氧化钠溶液反应生成双酚A钠盐,送入光气化反应釜,以二氯甲烷为溶剂,通入光气,使其在接口上与双酚A钠盐反应生成低分子聚碳酸酯,然后缩聚为高分子聚碳酸酯。反应在常压下进行,一般采用三乙胺作催化剂。缩聚反应后分离的物料、离心母液、二氯甲烷及盐酸等均需回收利用。该法工艺成熟,产品质量较高。 3.2.2 溶液光气法溶液光气法工艺是将光气引入含双酚A和酸接受剂(加氢氧化钙、三乙胺及对叔丁基酚)的二氯甲烷溶剂中反应,然后将聚合物从溶液中分出。GE公司曾在其美国的第一套装置中使用此工艺。此工艺经济性较差,与接口光气法相比缺乏竞争力。 3.2.3 普通熔融酯交换法熔融酷交换法工艺是以苯酚为原料,经接口光气化反应制备碳酸二苯酯(DPC)碳酸二苯酯再在催化剂(如卤化锂、氢氧化锂、卤化铝锂及氢氧化硼等)、添加剂等存在下与双酸A进行酯交换反应得到低聚物,进一步缩聚得到PC产品。酯交换法生产成本比接口光气法低,但该工艺存在的一些缺陷,阻碍了其工业化应用。如产品光学性能差、分子量范围有限、催化剂存在污染等。目前Bayer公司仍在对该工艺继续进行研究,试图用电解法从副产物氯化钠中回收氯,并将氯循环用于制光气。 3.2.4 非光气熔融法工艺由于光气法毒性大、污染严重,近年来不用光气法生产聚碳酸酯的新工艺已研究成功,并实现了工业化,这是聚碳酸酯工业生产的一大突破。与普通熔融酯交换法的不同之处是,非光气熔融法工艺不使用剧毒的光气生产碳酸二苯酯,而是用碳酸二甲酯(DMC)和苯酚进行酯交换反应生产碳酸二苯酯碳酸二苯酯再和双酸A缩聚得到聚碳酸酯。此工艺中的原料碳酸二甲酯的生产方法一般采用意大利埃尼公司的专利,以甲醇、一氧

高分子材料成型工艺课程设计

模具的设计过程 (一). 概述 1.注塑模设计的一般步骤如下: 1.确定型腔的数目。确定型腔的数目的方法有很多种,如根据锁模力、 最大注射量、根据制品的精度要求、根据经济性等等,在设计时应根据实际情况决定采用哪一种方法; 2.法定分型面。虽然在制品设计阶段分型面已经考虑或者选定,在模具设计阶段仍应再次校核。从模具结构及成型工艺的角度判断分型面的选择是否最为合适; 3.型腔的配置。这是模具结构总体方案的规划和确定。因为一旦型腔布置完毕,浇注系统的走向和类型便已确定。冷却系统和脱模机构在配置型腔时也必须给予充分的注意。若冷却通道不止与推杆孔、螺孔发生冲突时要在型腔配置中进行协调。当型腔、浇注系统、冷却系统、脱模机构的初步位置决定后,模板的外型尺寸基本上便已确定。在此基础上可以选择合适的标准模架。 4.确定浇注系统。浇注系统设计是模具设计中最重要的问题之一。浇注系统的合理性对制品质量和生产效率有着决定性的影响。 5.脱模方式。在确定脱模方式时首先要确定制品和流道凝料滞留在模具的哪一侧,必要时要设计强迫制品滞留的结构(如拉料杆等),然后再决定是采用推杆结构还是推件结构。 6.冷却系统与脱模机构的设计。冷却系统与脱模机构的同步设计有助于两者的很好协调,并体现出对冷却系统重要性的认识。 7.确定凹模和型心的结构和固定方式。当采用镶块式凹模或型心时,应合理的划分镶块并同时考虑到这些镶块及镶块固定板的强度、刚度、可加工性、紧固性及可更换性。 8.确定排气方式。由于在一般的注射模中注射成型的气体可以通过分型面和推杆处的空隙排出,因此,注射模的排气问题往往被忽视。对于大型和高速成型的注射模,排气问题必须引起足够的重视。 9.绘制模具的结构草图。在以上工作的基础上绘制注射模完整的结构草图。在总体结构设计时切忌将模具结构设计的过于复杂,应优先考虑采用简单的模具结构形式。因为在注射成型的实际生产中所出现的故障,大多是由于模具机构复杂化而引起的。结构草图完成后,应与工艺、产品设计及模具制造及使用人员共同研究讨论直至互相认可。 10.校核模具与注射机有关尺寸。因为每套模具只能安装在与其相适应的注射机上使用。因此,必须对模具上与注射机有关的尺寸进行校核,以保证模具在该注射机上正常工作。 11.校核模具有关零件的刚度与强度。因为注射模是承受很高型腔压力的耐压容器,对成型零件及主要受力的零件都应进行刚度与强度的校核。 12.绘制模具的装配图。装配图应尽量按照国家制图标准绘制。装配图中要清楚地表明各个零件的装配关系,以便于工人装配。当凹模与型心镶块较多时,为了便于测绘各个镶块零件,还有必要先绘制动模和定模部件装配图。在部件装配图的基础上再绘制总装图。装配图上应包括必要的尺寸(例如活动零件移动的起止点)。装配图上还应标注技术要求。技术要求内容是:

相关文档
最新文档