考进名校小升初数学考前冲刺集训24---工程问题(精选各大名校历年招生真题,覆盖小升初所有考点)

考进名校小升初数学考前冲刺集训24---工程问题(精选各大名校历年招生真题,覆盖小升初所有考点)
考进名校小升初数学考前冲刺集训24---工程问题(精选各大名校历年招生真题,覆盖小升初所有考点)

考进名校数学--小升初考试冲刺集训二十四

工程问题

一、填空题

1、(嘉祥〈外地生)有一批货物,第一次运出了20%,第二次运出了26吨,这时余下的货物吨数与运出的货物吨数的比是3:4,则余下 吨货物。

2、(西川中学》甲、乙两名工人合作生产一批零件,6天可以完成任务。现甲先做了4天后,因事外出,由乙接着做6天,两人共完成了任务的5

4。那么乙单独生产这批零件需要 天。 3、(嘉祥)一件工作,甲每天做8小时30天能完成,乙每天做10小时22天就能完成。甲每做6天要休息一天,乙每做5天要休息一天。现两队合作,每天都做8小时,做了13天(包括休息日在内)后,由甲独自做,每天做6小时,那么完成这项工作共用了 。

4、(西川中学)一蓄水池有甲、乙两个进水管,如果单独开甲管需12小时注满水池,单独开乙管需18小时注满水池,现在同时打开甲、乙两个进水管,需要 小时注满水池。

5、(嘉祥<本地生>)一项工程,甲队单独做20天完成,乙队单独做30天完成。现在两队一起做,期间甲队休息了3天,乙队休息了若干天,从开始到完成共用了16天,则乙队休息了 天。

6、(西川中学)一项工程,甲队单独做需要20天完成,乙队单独做需要30天完成。现在先由甲队施工一天,然后由乙队接替甲队施工一天,第三天再由甲队接替乙队施工一天,如此交替,最后由乙队结束施工,那么共需 天完成任务。

7、(实外)完成一项工程原计划要10天,实际每天工作效率提高5%,实际用 天可以完成这项工程。

8、(嘉祥<本地生>)修一条水渠,计划每天修80m, 20天可以完成。如果要提前4天完成,那么每天要比原计划多修 米。

9、(实外<本地生>)为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 天。

10、(嘉祥<本地生>)过年了,同学们要亲手做一些工艺品送给敬老院里的老人。开始时艺术小组的同学们先做一天,随后有15个同学和他们一起又做了两天,恰好完成。假设每个同学的工作效率相同,且一名同学单独完成需要75天,那么艺术小组有 个同学。

11、(嘉祥<外地生>)甲、乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高了101,乙的工作效率比单独做时提高了

5

1,甲、乙合作6小时完成了这项工作。如果甲单独做需要11小时,那么乙单独做需要 小时。

12、(实外)某演唱会检票前若干分钟就有观众开始排队等候入场,而每分钟来的观众人数一样多。从开始检票到等候队伍消失,若同时开4个入场口需50分钟,若同时开6个入场口则需30分钟。如果同时开7个入场口,需 分钟。

二、选择题

1、(成外)修一条水渠,计划每天修80米,20天可以完成。如果要提前4天完成,那么每

天要比计划多修多少米?( )

A. 60

B. 20

C. 64

D. 100

2、(七中实验)仓库里的水泥要全部运走。第一次运走了全部的

21又21吨,第二次运走了余下的31又3

1吨,第三次运走了第二次余下的41又41吨,第四次运走了第三次余下的51又51吨,第五次运走了最后剩下的19吨。这个仓库原来共有水泥吨。( )

A. 780

B. 560

C. 990

D. 135

3、(成外)一匹布,可以做8件上衣或者10条裤子。现在已经做了一条裤子,剩下的布要成套地做,可以做套衣裤。( )

A. 2

B. 3

C. 4

D. 5

4、(实外西区<外地生>)三个工人加工3个零件要3分钟,三个工人加工100个零件要 分钟。( )

A. 1

B. 3

C. 100

D. 900

5、(西川中学)托尔斯泰曾经提出一个有趣的数学题:一组割草人去两块草地割草,大的一块比小的一块大一倍。上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚把草割完;另一半人去割小草地的草,到傍晚还剩下一夸,这一块由一个人再用一天时间刚好割完。这组割草人共有 人。( )

A. 6

B. 7

C. 8

D. 9

6、(西川中学)王老师打一份稿件,实际完成的时间由计划的10小时缩短为8小时,则他的实际工作效率比原计划提高了 %。( )

A. 20

B. 24

C. 25

D. 26

7、(师大一中)一件工程甲单独做需要20天完成,乙单独做需要30天完成。在两人合作的过程中,由于甲休息了2

12

天,乙休息了若干天,这样就比预期推迟了2天完工,乙休息了 天。( ) A. 45 B. 2 C .25 D.34 E. 56 F. 3 8、(成外)电扇厂4名工人5小时能安装电扇80台,现在要在12小时内安装384台,则需增加 名工人。( )

A. 4

B. 5

C. 6

D. 7.

9、(考进嘉样)一项工程,甲、乙两队合作10天可以完成,乙、丙两队合作12天可以完成,甲、丙两队合作15天可以完成。如果由一个队来完成,至少需要 天。( ) A. 7120 B. 7140 C. 7160 D. 7

100 三、解决问题

1、(实外<本地生>)工地上有一批土,如用2辆卡车3天可以运完,用4辆小货车6天可以运完,用10辆小板车9天可以运完。现在用1辆卡车、2辆小货车和5辆小板车共同运3天后,改用1辆小货车运,还需要多少天才能运完?

2、(嘉祥<外地生>)一项工程,甲、乙两人合做8天完成,甲单独做12天完成。现在两人合作几天后,余下的工程由乙独自完成,使乙前后两段所用时间的比是1∶3。这个工程实际工期是多少天?

3、(师大一中<外地生>)一项工程,甲队单独完成需要10天,乙队单独完成需要15天,丙队单独完成需要20天。开始时三个队一起工作,中途甲队撤走,由乙、丙两队一起完成剩下的工程,最后共用了6天完成该工程。甲队实际工作了多少天?

4、(实外<外地生>)一批零件平均分成三份,分别由甲、乙、丙三人单独完成,结果甲比乙早30分钟完成,乙比丙早30分钟完成。已知甲比乙每小时多做6个,乙比丙每小时多做3个,求这批零件的个数。

5、(实外西区)某蓄水池有甲、丙两根进水管和乙、丁两根排水管。要灌满一池水,单开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时。现在池中有61的水,如果按甲、乙、丙、丁的顺序循环开各水管,每次每管开1小时,则多长时间后水开始溢出水池?

6、(嘉祥<外地生>)现有A 、B 、C 三位老师参加阅卷,已知A 老师单独改阅需要10小时,B 老师单独改阅需要8小时,C 老师单独改阅需要6小时。

(1)如果三位老师同时改阅,需要多少时间?

(2)如果按照A, B, C, A, B, C, …|的顺序每人改阅1小时,则改阅完全部试卷需要多少时间?

【数学】小升初数学冲刺名校拓展——第15节一般行程问题

小升初数学冲刺名校拓展——第15节一般行程问题 模块一:基础知识 1、速度的定义:速度就是单位时间内所经过的路程。 2、速度、时间和路程是行程问题中最重要的三个量,它们的关系如下: 路程=速度×时间 速度=路程÷时间 时间=路程÷速度 3、行程问题中常用的数量单位 (1)常用的路程单位:米、千米。 (2)常用的时间单位:秒、分钟和小时。 (3)常用的速度单位:米/秒、米/分、千米/小时。 【例1】甲、乙两地相距360千米,一辆汽车原计划用8小时从甲地到乙地,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时.如果按照原定的时间到达乙地,汽车在后一半路程每小时应该行驶多少千米? 【例2】A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行如果甲每分钟走60米,乙每分钟走100米,请问: (1)甲从A走到B需要多长时间? (2)两个人从出发到相遇需要多长时间? 1、乐乐练习慢跑,12分钟跑了3000米,按照这个速度,跑25000米需要多少分钟?如果乐乐每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米? 2、兔子和乌龟赛跑,从A地跑到B地,全程共6000米.兔子计划5分钟跑完全程,结果比赛时兔子实际每分钟跑的路程比计划的要少200米.那么兔子实际跑完全程用了多长时间? 3、乐乐和轩轩从相距5000米的A、B两地同时出发,相向而行.如果乐乐每分钟走150米,轩轩每分钟走350米,那么两人从出发到相遇需要多长时间?

模块二:基本相遇问题 两个运动物体在一条直线上运动,行进的方向可能相同,也可能相反。当它们行进方向相反时,如果它们面对面地接近,我们称为“相向而行”;如果它们背对背远离,我们就称为“相背而行”。 相遇问题关心的是两个移动物体的“速度和”以及“路程和”。根据行程问题基本公式,我们可以类似得到相遇问题的三个基本公式: 路程和=速度和×相遇时间 相遇时间=路程和÷速度和 速度和=路程和÷相遇时间 使用上述公式的时候一定要注意,两个运动物体必须同时行进。如果相遇过程中并不是同时行进的,这个公式就不能直接用了,需要分段考虑。 对于一些复杂的行程问题,单靠凭空想象已经无能为力了,这时需要用一种形象的语言,把运动过程直观地表现出来,这就是我们解行程问题的最得力的助手——线段图。 画线段图时要特别注意: (1)专人专线:如果我们考虑的是两个或多个对象的运动,可以把它们的运动路线并排摆放, 要注意不同人的运动路线不同; (2)同时性:如果运动时间分为几个阶段,那么应该在运动路线上表示相应的时刻. 比如上图表示汽车A与汽车B分别从甲地、乙地同时出发,从开始①时刻到②时刻两车相遇,从②时刻到③时刻表示两车相遇后各自的运动情况.这样一来,我们就可以借助线段图把整个行程过程看得更清楚.画线段图是解行程问题最基本的方法.通过作图,可以将题目中的条件梳理清楚,还可以通过对图形的观察,挖掘出很多字面上看不出来的隐藏条件,进而找到解题的突破口. 【例1】甲、乙两人从相距46 千米的A、B 两地出发,相向而行,甲先出发1 小时,他们在乙出发后4 小时相遇,又知甲比乙每小时快2 千米。乙行完全程需要几小时? 【例2】甲、乙两人分别从A、B两地同时出发相向而行,匀速前进。如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。那么A、B两地的距离是多少千米?

成都名校小升初数学试题汇总4套含答案

成都名校小升初数学试题汇总1(附答案) 一、填空题: 2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______. 么回来比去时少用__小 时. 4.7点______分的时候,分针落后时针100度. 5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是_____. 7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人

8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆. 9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是_____ _. 10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做_____ _次能使6个学生都面向北. 二、解答题: 1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影 部分面积为多少个面积单位? 2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321), 则n是多少? 3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;

(2)数127应排在上起第几行,左起第几列? 4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.

成都名校小升初数学试题汇总2(附答案) 一、填空题: 1.29×12+29×13+29×25+29×10=______. 2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24._____ _. ______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数). 5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生. 6.掷两粒骰子,出现点数和为7、为8的可能性大的是______. 7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.

2015年苏教版小升初冲刺班数学名校模拟试卷

小升初冲刺班数学名校模拟试卷 姓名:得分: 一、选择题(用2B铅笔在答题卡上将正确答案代号涂黑)(每小题2分,共16分) 1.从东城到西城,甲需要10小时,乙需要15小时,甲的速度比乙的速度快()A.33.3% B.3.3% C.50% D.5% 2.下面四句话中,错误的一句是() A.0既不是正数也不是负数B.1既不是素数也不是合数 C.假分数的倒数不一定是真分数D.角的两边越长,角就越大 3.用一根52cm长的铁丝,正好可以焊成一个长为6cm,宽为4cm,高为()cm的长方体框架. A.2 B.3 C.4 D.5 4.甲仓货存量比乙仓多10%,乙仓货存量比丙仓少10%,那么货存量()A.甲仓最多B.乙仓最多C.丙仓最多 D.无法判断 5.若1>a>b>0,则下面4个式子中,不正确的是() A.1÷a<1÷b B.2a<2b C.a÷1 >b÷1 D.1﹣a3>1﹣b3 6.修一条水渠,计划每天修80m,20天可以完成,如果要提前4天完成,那么每天要比计划多修()米. A.20 B.60 C.64 D.100 7.把一个圆柱削成一个最大的圆锥,那么圆柱的体积和削去部分的体积比是()A.2:3 B.1:3 C.2:1 D.3:2 8.360的因数共有()个. A.26 B.25 C.24 D.23 二、判断题.(每题1分,共7分,将字母涂在答题卡上,对的涂A,错的涂B) 9.两个角是锐角的三角形不一定是锐角三角形.( ) 10.在一张图纸上,用5cm表示实际距离4km,所用的比例尺是.( ) 11.一个长方形的长增加50%,宽减少50%,长方形的面积不变.( ) 12.分母是9的最简真分数只有6个.( ) 13.用小于10的三个不同质数组成的同时是2和3倍数的最大三位数是972.( ) 14.如果x和y是两种相关联的量,并且x= y,那么x和y成正比例.( )

(完整)名校小升初数学真题附答案

1.05 年人大附中 有个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互 相同;它的每个数字 都能整除它本身。 2.05 年101 中学 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9 倍,问这个两位 数 是__。 3.05 年首师附中 1 202505 13131313 21 + 2121 + 212121 2121212=1__。 4.04 年人大附中 甲、乙、丙代表互 相同的 3 个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是。 5. 02 年人大附中下列数 是八进制数 的是( ) A、125 B、126 C、127 D、128 6. 06 年清华附中 甲、乙两种商品,成本共2200 元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131 元,甲商品的成本是元. 7 (05 年101 中学考题) 100 千克刚釆下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100 千克的蘑菇现在还有多少千克呢? 8(06 年实验中学考题) 有两桶水:一桶8 升,一桶13 升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是升。 9 (06 年三帆中学考题)

有甲、乙两堆煤,如果从甲堆运12 吨给乙堆,那么两堆煤就一样重。如果从乙堆运12 吨给甲堆,那么甲堆煤就是乙堆煤的 2 倍。这两堆煤共重()吨。

10 (03 年人大附中考题) 一堆围棋孑黑白两种颜色,拿走15 枚白棋孑后,黑孑与白孑的个数之比为2:1 ;再拿走45 枚黑棋孑后,黑孑与白孑的个数比为1:5 ,开始时黑棋孑,求白棋孑各有多少枚? 11 (06 年清华附中考题) 大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走 1.5 小时,小轿车出发后 4 小时后追上了大货车. 如果小轿车每小时多行 5 千米,那么出发后 3 小时就追上了大货车. 问:小轿车实际上每小时行多少千米? 12 (06 年西城实验考题) 小强骑自行车从家到学校去,平常只用20 分钟。由于途中有 2 千米正在修路,只好推车步行, 步行速度只有骑车的1/3 ,结果用了36 分钟才到学校。小强家到学校有多少千米? 13 (05 年101 中学考题) 4 7 小灵通和爷爷同时从这里出发回家,小灵通步行回去,爷爷在前的路程中乘车,车速是小灵通步行速度的10 倍.其余路程爷爷走回去,爷爷步行的速度只有小灵通步行速度的一半,您猜 一猜咱们爷孙俩谁先到家? 14 (06 年三帆中学考题) 客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶, 3 小时后,客车到达甲 3 4 城,货车离乙城还有30 千米.己知货车的速度是客车的,甲、乙两城相距多少千米? 15 (02 年人大附中考题) 小明跑步速度是步行速度的 3 倍,他每天从家到学校都是步行。有一天由于晚出发10 分钟,他 得 跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。那么小明每天步 行上学需要时间多少分钟? 16. 人大附中考题

历年名校小升初考试经典数学真题汇集

历年名校小升初考试经典数学真题汇集 1 (人大附中考题) 小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。那么小明每天步行上学需要时间多少分钟? 2 (07清华附中考题) 大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车。如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车。问:小轿车实际上每小时行多少千米? 3 (08年清华附中考题) 已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离时多少? 4 (08年十一中学考题) 甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是?米。 5 (07年西城实验考题) 甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60米。当乙从A处返回时走了l0米第二次与甲相遇。A、B相距多少米? 6 (08年首师大附考题) 甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次 7 (08年清华附中考题) 从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是_________平方厘米. 8 (07年三帆中学考试题)

小升初名校招生数学考试题(附解析、思路分析).doc

小升初名校招生数学考试题(附解析、思路分析)【一】填空〔每题4分,共40分〕 3用循环小数表示,小数点后第2018位上旳数字是()。 1、2 7 2、有一个数,被3除余2,被4除余1,那么那个数除以12余()。 3、一个真分数旳分子和分母相差102,假设那个分数旳分子和分母 1,那个真分数是()。 都加上23,所得旳新分数约分后得 4 4、4时10分,时针和分针旳夹角是()度。 5、从1开始2018个连续自然数旳积旳末尾有个连续()旳零。 11,假如从甲筐取出7.5千克放入乙6、有两筐苹果,甲筐占总数旳 20 3,甲筐原来有()千克苹果。 筐,这时乙筐占总数旳 5 7、一个三角形旳三个内角之比为1:2:3,那么那个三角形是()三角形。 1 8、蕾蕾读一本252页旳书,已读旳页数等于还没有读过页数旳2 2倍,蕾蕾读过()页。 9、2个篮球旳价钱能够买6个排球,6个足球旳价钱能够买3个篮球,买排球、足球、网球各1个旳价钱能够买1个篮球,那么,买1个篮球旳价钱能够买()个网球。 10、某班有60人,他们着装白色或黑色上衣,黑色或蓝色裤子,其中有12人穿白色上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子旳有()人?

【二】计算题〔每题5分,共20分〕 1、0.125×7.37+8 1 ×3.63-12.5×0.1 2、1174×〔232-43〕+1211÷2117 3、7131314268161674 ??-+÷? ???4、345345345345246123123123123? 【三】应用题〔每题8分,共40分〕 1、果果和妈妈一起去超市,买洗漱用品花了总钱数旳5 1多100元,买小食品花了余下旳31少20元,又买了一个600元旳饮水机,正好花完所带旳钱,果果妈妈一共带了多少钱? 2、甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人旳下山旳速度是各自上山速度旳1.5倍。而且甲比乙速度快,甲到达山顶时,乙离山顶180米,当乙到达山顶时,甲恰好下到半山腰,那么山脚到山顶多少米? 3、一项工作,甲、乙两人合作8天完成,乙、丙两人合作9天完成。丙、甲两人合作18天完成,那么丙一个人来做,完成这项工作需要多少天? 4、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就占25%,那么,这堆果糖中有奶糖多少块? 5、如图,求阴影部分旳周长是多少厘米? 30厘米

最新冲刺名校小升初数学模拟密卷附详细答案( 1)

一、填空。(每空 分,共 分) 我国实施西部大开发所指的西部地区的面积大约是 平方千米,这个数读作 ( )平方千米, 还可写作()万平方千米, 约占全国总面积的 () %。 吨=( )吨( )千克 立方分米=( )升( )毫升 每次任意摸一个球,摸到红球的可能性是 ( ) () ;保证摸出两个同色的球, 至少一次摸出( )个;保证摸出两个黑色的球,至少一次摸出( )个。 我国已成功举办了 年的第二十九届奥运会,按每四年举行一次,则第五 十届奥运会将在( )年举办。 一个分数,分子、分母的和是 ,如果分子、分母都加上 ,所得分数约分后是 ,原 来的分数是( ) 。 数学兴趣小组的同学在一次数学竞赛中的成绩统计如右图。显然得 优良和及格的同学都算达标,则数学兴趣小组的同学这次竞赛的达标率是( )。若全体同学的平均成绩是分,达标同学的平均成绩是 分, 则不及格同学的平均成绩是( )分。 优良 35% 及格 40 %不及格 25% 规定 =+ ,如果 x ( ) =,那么 x =() 。 某厂去年上半年盈利 万元,记作+ 万元,下半年亏损 万元,记作( ) ,全 年记作( ) 。 把一个棱长 的正方体切削成一个最大的圆锥,它的体积是( ) 。 一件商品,按现在的价格,利润是成本的 %,若成本降低 %,按现在的价格,利 润是成本的( )%。 二、判断。 (对的打“√” ,错的打“”) ( 分) 相邻的两个自然数的积一定是的倍数。 () 大于 而小于 的分数只有 。 ( ) 长、宽、高分别是 、 、 的长方体木块,一定能装入容积是 的长方体盒中。 ( )由同一平面上的两个圆组成的图形一定是轴对称图形。 ( )冲刺名校小升初数学模拟密卷(1)

名校小升初数学试卷及答案

小升初模拟试题 数 学 (考试时间:90分钟 满分150分) 一、选择(30103=?分) 1.从1840年到2014年,共有( )个闰年。 A .39 B .40 C .41 D .43 2.笑笑做100次投币实验,正面朝上的有62次,反面朝上的有38次。继续做第101次实验的可能性是( ) A .正面朝上。因为从前面100次的情况分析,正面朝上的可能性大。 B .反面朝上。因为正面朝上的出现次数够多了,该出现反面朝上了。 C .正面朝上和反面朝上的可能性各占一半。 3.用棱长1厘米的正方体木块,摆成底面积是12平方厘米,高是2厘米的长方体,可以摆成( )种不同的形状。 A .1 B .2 C .3 D .4 4.万达商场以100元的价格卖出两套不同的服装。老板一算,结果一套赚20%,一套亏本20%。你帮他算一算,这个商场是( )。 A .亏本 B .赚钱 C .不亏也不赚 D .无法确定 5.商品甲的定价打九折后和商品乙的定价相等,下面说法不正确的是( )。 A .乙的定价是甲的90% B .甲的定价比乙多10% C .乙比甲的定价少10% D .甲的定价是乙的 9 10 倍 6.甲、乙、丙、丁四人参加某次电脑技能比赛。甲、乙两人的平均成绩为a 分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为( )分。 A .a +6 B .4a +1.5 C .4a +6 D .a +1.5 7.把一张足够大的报纸对折32次厚度约( ) A .3米 B .3层楼高 C .比珠穆朗玛峰还高 8.如下图,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N ,剪掉三角形MBN ,得五边形AMNCD 。则将折叠的五边形AMNCD 纸片展开铺平后的图形是( ) A . B . C . D . 9.一根彩绳和A 、B 、C 三个钉子围成如图的三角形,如果将三角形一角顶点处的 C 第9题图

最新小升初数学试题(名校招生)

小升初数学试卷 一、填空题(共10道小题,每小题6分,共60分)⒈计算:(1)53×53-47×47= ⒉ ⒊ = ? ? ? ? ? + ÷ ? ? ? ? ? + 5 2 4 7 3 2 5 4 7 7 6 5 ⒋ ⒌有三个数0.2,67 333,20 101 ,请将它们从小到大用“<”排列出 来:________________. ⒍从数码0,1,2,3,4,5中选出两个数码(不能相同)组成两位数,其中偶数有________个.(注:偶数即双数,也就是2的倍数) ⒎如图所示,每个小正方形的边长都是2厘米,那么图中的阴影部分的面积是________平方厘米. ⒏某校有甲、乙两班学生参加数学竞赛,其中甲班平均每人

得70分,乙班平均每人得60分,该校总分为740分,则甲班参赛的人数是________. ⒐ 如图,竖式中的每个字母都表示一个数字, 而且A 、B 、C 、D 、E 是从小到大排列的,则 五位数ABCDE 表示的数是________. ⒑ ⒒ 一次考试有20个选择题,每题答对得5分,答错或不答得0分,某班50名同学的平均分恰好是95分.其中得100分的有20人,得75分、80分和85分的各有1人,其他同学都得了90或95分,那这个班得95分的同学有________人. ⒓ 已知三位数aba 和四位数aabb 的最大公约数是22,那么 ________a b +=. ⒔ 在某肯德基餐厅里,一个汉堡包的价格是20元,一杯可乐 C E E C C D A A B C

的价格是8元.现在该餐厅有两种优惠方案:一个汉堡包与两杯可乐合在一起买只需要26元,两个汉堡包和一杯可乐合在一起买只需要44元.姚老师要去该餐厅买9杯可乐和11个汉堡包,那么他至少要花________元. ⒕小吉和小刘各有一些糖果,小吉先给了小刘一些糖果,使小刘的糖果数增加到 3倍;小刘再给小吉一些糖果,使小吉的糖果数增加了1倍,此时两人的糖果数一样多.已知最开始的时候小吉比小刘多52颗糖,那么两人原来一共有________颗糖果. 二、解答题(请写出详细推理、演算过程。共4道小题,每小题10分,共40分) ⒈老师分别告诉轻声的甲、乙、丙每人一个正整数a、b、c,且大声告诉他们这3个数之和为18,下面为这三人的一段对话:甲说:我知道你们两个的数不同; 乙说:我早就知道我们三个的数互不相同; 丙说:我现在知道我们三的数分别是多少了。 请问:他们三人的数分别是几?

小升初数学名校考前冲刺试卷

小升初数学名校考前冲刺试卷 (20052005× 2006-20062006× 2005)÷ 908 200612004 × 20042005 (12113 +517 )-(9113 -31217 +17 ) 1.瓶内装满一瓶水,倒出全部水的12 ,然后再灌入同样多的酒精,又倒出全部溶液的13 ,又用酒精灌满,然后再倒出全部溶液的14 ,再用酒精灌满,那么这时的酒精占全部溶液的 %. 2.有三堆火柴,共48根.现从第一堆里拿出与第二堆根数相同的火柴并入第 二堆,再从第二堆里拿出与第三堆根数相同的火柴并入第三堆,最后,再从第三 堆里拿出与第一堆根数相同的火柴并入第一堆,经过这样变动后,三堆火柴的根 数恰好完全相同.原来第一、二、三堆各有火柴 、 、 根. 3.三边均为整数,且最长边为11的三角形有 个.

4.钱袋中有1分、2分、5分3种硬币.甲从袋中取出3枚,乙从袋中取出2枚,取出的5枚硬币仅有2种面值,并且甲取出的3枚硬币面值的和比乙取出的2枚硬币面值的和少3分,那么取出的钱数的总和最多是多少分? 5.甲走一段路用40分钟,乙走一段路用30分钟.从同一地点出发,甲先走5分钟,乙再开始追,乙分钟才能追上甲. 6.有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管? 7.老师在黑板上写了从11开始的若干个连续自然数,后来擦掉了其中一个数, 剩下的数的平均数是309 13 ,那么擦掉的那个自然数是.

北京名校小升初考试数学真题及答案

xx名校xx考试数学真题及答案 汇编 1 (人大附中考题) 小明跑步速度是步行速度的3倍,他每天从家到学校都是步行。有一天由于晚出发10分钟,他不得不跑步行了一半路程,另一半路程步行,这样与平时到达学校的时间一样。那么小明每天步行上学需要时间多少分钟? 2 (08年人大附中考题) ABCD是一个边长为6米的正方形模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进,结果两车第三次相遇恰好是在B点,求乙车每秒走多少厘米? 3 (07年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。 (1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 4(人大附中考题) 如图所示,有边长为4厘米的49个小正方形,三角形DCE的面积是 ______。 5(07清华附中考题) 大货车和小轿车从同一地点出发沿同一公路行驶,大货车先走1.5小时,小轿车出发后4小时后追上了大货车。如果小轿车每小时多行5千米,那么出发后3小时就追上了大货车。问:小轿车实际上每小时行多少千米?

6(08年清华附中考题) 已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途径C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途径C地时甲车比乙车早到1个半小时,那么AB距离时多少?7(08年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 8(08年清华附中考题) 从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是_________平方厘米. 9(08年十一中学考题) 甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是?米。 10 (07十一中学考题) 小华玩某种游戏,每局可随意玩若干次,每次得分是8、a(自然数)、0这三个自然数中的一个,每局各次得分的总和叫做这一局的总积分。小华曾得到过这样的积分:103,104,105,106,107,108,109,110,又知道他不可能得到83分这个总积分,则a是______。 11 (08十一中学考题) 小明的两个衣服口袋中各有13张卡片,每张卡片上分别写着1,2,…,13,从这两个口袋中各拿出1张卡片并计算2两卡片上的数的乘积,可以得到许多不相等的乘积。那么,其中能被6整除的乘积共有______个。 12 (08年首师大附考题)

(完整版)小升初名校自主招生数学试卷

一、 选择。 下面各题给出的答案中,正确的不一定只有一个,请把正确答案的编号字母写在横线上 1. 下面的比中,能:52 7 4 与组成比例的是 A. 2:4 B.7:5 C.7:10 D.10:7 E. 21: 7 5 2. 一个真分数,把它的分子和分母同时加上同一个不为零的数,所得到的新分数与原分数比较大小是: A.原分数大; B.原分数小 C. 大小不变 D.大小没法确定 3. 下面五个数中,最接近1的是 A . 78 B. 98 C. 5 6 D. 1011 E. 3129 4. a 是质数,b 是合数。下面的式子中,值一定是合数的为: A.b a +3; B. ab ; C. a ab ÷; D. b a ÷ b 21 5. 已知:△+△+△=☆,☆+☆+☆=□+□,那么△:□是: A.2:9 B.1:6; C.9:2; D.3:2; E.1:3 6. 规定:b a b a 23-=?。已知7)14(=??x ,那么=?5x A.7; B.17; C.9; D.19; E.36 二、 计算下列各题,能巧算的要用简便方法计算,并写出主要的计算过程 1. 4 3 24154107÷??? ??-+ 2. 71 15216953?????? ???? ??-- 3. 172913059220935- - 4. 2 5 19235.7?+? 5. 13 1112 1211910109788756653443122??+??+??+??+??+?? 三、 填空 1.两个质数的倒数相加的和的分子是31,和的分母是( )

2.某地去年十二份得一天,最高温度是C o 12(摄氏度),最低温度是C o 4-,这一天最低与最高温度相差( )C o 3.右图平行四边形ABCD 中,AD=10cm ,直角三角形BCE 中,EC= 10 cm 。图中阴影部分面积比三角形EFG 的面积大82 cm ,EG 长( )厘米。 4.计算7532 200922011 ???得数是个( )位数。 5.箱子里放了许多同一种机器零件,其中五分之三是一等品,25%是二等品,其余51个是三等品,箱子中的零件一等品有( )个。 6.服装超市的一种衣服经过两次调价后又恢复到调价前的价格。第一次降价20%,第二次提价( )%。 7.一项工程,甲做完成任务所需天数比甲、乙合作所需的天数多5天,乙独做完成任务所需天数比甲乙合作完成任务所需时间多20天,甲、乙合作完成这项工程需要( )天。 8.一个环形的面积是602 cm ,已知外圆的半径等于内圆的直径。外圆的面积是( )2 cm 。 9.在一次数学竞赛中,男选手的人数比女选手多 5 4 ,而女选手得平均成绩比男选手高20%。已知这次竞赛的平均成绩是75分。男选手得平均成绩是( )分。 10.大街上竖着一块长10米,宽8米的长方形广告牌,A,B,C,D 四点分别在它的四条边上如右图,并且A 比C 高5米,B 比D 靠右2米,四边形ABCD 米面积占这个长方形面积的( )%。 11.小菊家有甲、乙两只闹钟,甲闹钟每小时慢2分钟,乙闹钟每小时快两分钟。上午11点时小菊把两只闹钟都调准。下午小菊从外边回来,看甲闹钟上指示的时刻是3:21,这时乙闹钟上指示的时刻是( )。 12.120的所有约数的倒数相加的和是( )。 13.把一根5米长的圆柱形木料锯成6段,表面积比原来增加了800平方厘米,这根木料的体积原来是( )立方分米。 14.三个连续自然数的和能被13整除,其中最大的数被7除余1.符合这个条件的最小的三个数是( )、( )、( ) 15. 319的分子分母都加上同一个数,约分后得到 7 5 。要加上的这个数是( ). 16.东风小学六年级有三个班,每班人数相同。已知六一班男生人数等于六二班女生人数,六三班男生人数占全年级男生人数的 5 2 。那么该六年级男生人数与女生人数的比是( ) 17.一堆草,可供3头牛和5只羊吃15天,或者5头牛和6只羊吃10天。那么这堆草可供4头牛18只羊吃( )天。【每头牛的食量相同,没只羊的食量也相同】 四、 凑24

私立名校小升初考试数学卷(本地生)-强力推荐

私立名校小升初考试数学卷(本地生) (时间:90分钟,满分:120分) A 卷 一、判断(每题2分,共12分) 1.全明星投球比赛中,詹姆斯投出101个球,命中100个,命中率为100%( ) 2.一个长方形的长增加50% ,宽减少1 3 ,面积不变( ) 3.一个奇数和一个偶数,它们的最大公约数一定是奇数,最小公倍数一定是偶数( ) 4.能把44颗糖分给10个小朋友,而且每人分到的糖的颗数都不一样( ) 5.在右图中,圆柱和圆锥的体积相等( ) 6.(顺水速度—逆水速度)2=÷水速( ) 二、选择(每题2分,共12分) 1.(如右图)一个棱长是4厘米的正方形,从它的一个顶点处挖去一个棱长是1厘米的正方形后,剩下物体表面积和原的表面积相比较,( ) A .大了 B .小了 C .不变 D .无法确定 2.下面的游戏( )是不公平的. A .掷骰子点数大于3甲赢,点数小于3乙赢. B .抛硬币,正面朝上甲赢,反面朝上乙赢. C .盒子里面有3红5黄2白.摸到黄球甲赢,摸到红球或白球乙赢. 3.小明班里的同学平均身高是1.4米,小强班里同学平均身高1.5米,小明和小强相比,( ) A .小明高 B .小明矮 C .一样高 D .无法确定 4.半圆的周长是这个半圆直径的( )倍 A .22+π B .2 π C .π D .2π 5.在1 37 、π、314%、3.14g g 这四个数中,最大的数是( ) A .1 37 B .π C .314% D .3.14g g 6.一列往返于成都和重庆之间的列车,全程停靠7个车站(包括起点终点站),共需准备( )种不 1 1 4 4 4

名校小升初招生考试(有答案的哦)

名校小升初招生考试 数学试题 1.2009年,我国在校的初中生一共有74650000人。写出用“亿人”作单位的近似数,保留两位小 数:。 C A.7.47亿人 B.7.5亿人 C.0.75亿人 D.0.74亿人 2.某旅行团共有29人,准备去上海参观世博,安排住宿:住2人间和3人间(每个房间不能有空床位),有种不同的安排。B A.4 B.5 C.6 D.7 3.一个半径为1厘米的圆形铁环围绕着一个直径为6厘米的圆无滑动滚动一周。则小铁环一 共转了圈。B A.3 B.4 C.6 D.7 4.把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重千克。D A.12 B.16 C.28 D.32 5.(5分)如图1是一个小正方体的展开图,小正方体从如图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上面的字是。D 图1 图2 A.和B.谐C.社D.会 6.(5分)如图是一个由数字组成的三角形,试研究它的组成规律,从而确定其中的x= 。A A.178 1 B.56 0 1 C.66 1 1 0 D.224 0 1 2 2 5 5 4 2 0 0 5 10 14 16 16 61 61 56 46 32 16 0 * * * x * * * * 7.鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,则鱼塘里大约有尾鱼。B A.2000B.4000C.5000 D.6000 8.小小通常让手机一直开着。如果她手机开着而不通话,电池可维持24小时。如果她连续使用手机通话,电池只能持续3小时。从她最后一次充满电算起,她手机已经持续开机9小时,在这段期间内,她已经用了60分钟来通话。如果她不再使用手机通话,而让手机持续开着,请问电池还能再持续个小时。B A.7 B.8C.11 D.14

最新小升初数学冲刺名校10套经典试卷汇编含参考答案

最新小升初数学冲刺名校10套名卷汇编 (含答案)

目录 冲刺名校考卷 小升初数学冲刺名校试卷(一) (1) 小升初数学冲刺名校试卷(二)...........................................................................5小升初数学冲刺名校试卷(三)........................................................................11小升初数学冲刺名校试卷(四) (15) 小升初数学冲刺名校试卷(五) (19) 小升初数学冲刺名校试卷(六) (23) 小升初数学冲刺名校试卷(七) (27) 小升初数学冲刺名校试卷(八) (31) 小升初数学冲刺名校试卷(九) (36) 小升初数学冲刺名校试卷(十) (41) 参考答案 小升初数学冲刺名校试卷(一) (47) 小升初数学冲刺名校试卷(二)........................................................................49小升初数学冲刺名校试卷(三)........................................................................51小升初数学冲刺名校试卷(四) (53) 小升初数学冲刺名校试卷(五) (55) 小升初数学冲刺名校试卷(六) (57) 小升初数学冲刺名校试卷(七) (59) 小升初数学冲刺名校试卷(八) (61) 小升初数学冲刺名校试卷(九) (64) 小升初数学冲刺名校试卷(十) (66)

名校小升初数学真题合集(66).pdf

小升初数学综合模拟试卷 一、填空题: 2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______. 3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题. 4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米. 5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和 千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走, 如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米. 7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______. 8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好 也是287.小红抽出的14张是从______月______日到______月______日的. 9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______. 10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时 工资______元. 二、解答题: 1.计算

小升初名校招生考试数学试题(含答案)

一、反复比较,慎重选择(共2x6=12分) 1.小强观察一个建筑物模型(由若干个相同的小正方体拼成),分别从前面,右面,上面观察,看到的图案如下图所示,那么该模型共由() 个小正方体拼成。前面 右面上面A 、8B 、9C 、10D 、11 2.右图中A 、B 都是中点,阴影部分的面积是 平行四边形面积的( )。A 、41 B 、52 C 、83 D 、 943.下面四个算式中,结果一定等于 41的是()。(其中□=2△,△≠0)A、(□+□)÷△ B、□×(△-△) C、△÷(□+□) D、□×(△+△) 4.今年高考的科目有语文、数学、外语、物理、化学、生物、历史、地理、政治。其中语文、数学、外语三科必考,其余6科中只要选考两科。一位学生今年参加高考,他将有()种不同的选择。 A 、5 B 、6 C 、15 D 、36 5.右图是几个相同小正方体拼成的大正方体,由AB 向C 点 斜切,没被切到的小正方体有( )个。A、3个B、4个C、5个D、6个 6.小青坐在教室的第3行第4列,用(4,3)表示,小明坐在小青的左边,应当表示为()。 A、(5,3) B、(3,5) C、(6,3) D、(3,6)二、认真思考,细心填空(共2x8=16分) 1.某市电话号码由7位升至8位。由于特殊需要,电信部门一直有这样的规定:普通市内电话号码的首位数字不使用0、1、9 这三个数字。升位后该市电话号码容量为小升初招生考试数学卷 时间:60分钟 满分80分

()万门。 2.一本书定价30元,售出后可获利50%,如果按定价的八折售出,可获利()元。 3.下面是小亮设计的一个计算程序: 输入一个数乘b 减去1.5输出结果 当笑笑输入的数字是12时,输出的数是1.5;如果笑笑输入一个数后,显示输出的数是3,笑笑输入的那个数是()。 4.王大妈想在一个长为20米的长方形地里,先画出一个最大的正方形地种菜,剩下的地用篱笆围起来养鸡。共需篱笆()米。 5.把24按照“先减去10,再加上8”两步运算的顺序,依次不断重复计算,一共要经过()步运算,最后的计算结果恰好为0。 6.如图所示,在一个等腰直角三角形中,削去一个三 角形后,剩下一个上底长5厘米,下底长9厘米的等腰梯形, 9 这个梯形的面积是()平方厘米。57.为了解决用电矛盾,决定在某小区试点实施居民分时电价,具体通知如下:1.时段划分:居民分时电价分为高峰时段和低谷时段。高峰时段指每日早8时至晚9时,低谷时段指每日晚9时至次日早8时。 2.电价标准:高峰时段电价0.55元/千瓦时;低谷时段电价0.30元/千瓦时。 3.本次更换电能表的费用由供电部门承担。 我们知道居民用电原标准为0.52元/千瓦时。当某居民家在高峰时段的用电量与低谷时段的用电量的比是( ):()时,执行原电价标准和实施分时电价标准的费用一样多。 8.一组图形按下面规律排列:△□□○○○△□□○○○…… 第50个图形是( ),前100个图形中○有()个,当□有20个时,这组图形至少有( )个。三、巧思妙想、正确计算(共20分) 1.下面各题怎样算简便就怎样算。(共2x4=8) 2515)251154(??-12+34+78+1516+3132+6364+127128

小升初数学冲刺名校拓展——第12节工程问题

小升初数学冲刺名校拓展——第12节工程问题 1. 工程问题基本公式: 工作量=工作效率×工作时间; 工作时间=工作量÷工作效率; 工作效率=工作量÷工作时间 2理解“单位1"的概念并灵活应用. 3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔梳理工作过程、灵活运用基本数量关系. 4工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量. 【例1】如图表示甲、乙、丙三个工人单独完成一项工程 各自所需的天数,若选择两位效率较高的合作()天 可以完成那个全部工程的 7 10 。 【例2】单独把水池的水注满,甲水管要用2小时,乙水 管要用3小时。如果两水管同时注水()小时可以注 满水池的 2 3 。 A. 4 5 B. 2 3 C. 5 6 D. 6 5 【例3】一项工程,甲队独做10天完成,已知甲队2天的工作等于乙队3天的工作量,两队合作()天完成. 1.判断题 (1)做同一工作,甲单独做要 1 4 小时,乙单独做要 1 5 小时,则甲比乙做得慢。()(2)一项工程,20人去做,15天完成;如果30人去做,10天就可以完成。()(3)做一批零件,甲单独做要4小时完成,乙要5小时完成,乙与甲的工作效率的最简整数比是5:4。() 2.一项工程,甲、乙合作6天完成,甲独做10天完成,乙独做()天完成。 3.生产一个零件,甲用5分钟,乙用8分钟,他们同时开工,合作生产零件78个,其中甲做了()个。 A.40 B.44 C.48 4.一项工程,甲单独做要a小时,乙单独做要b小时,则甲、乙合作需要时间为()A. 11 a b + B. 1 ab C. ab a b + 模块一:基本公式应用

相关文档
最新文档