分数阶傅里叶变换讲解

分数阶傅里叶变换讲解
分数阶傅里叶变换讲解

分数阶傅里叶变换的MATLAB 仿真计算以及几点讨论

在Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》中给出了一种快速计算分数阶傅里叶变换的算法, 其MATLAB 计算程序可在https://www.360docs.net/doc/e93088424.html,.tr/~haldun/fracF.m 上查到。现在基于该程序,对一方波?????<=其它

,01,1)(t t x 进行计算仿真。

注:网上流传较为广泛的FRFT 计算程序更为简洁,据称也是Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》使用的算法。但是根据Adhemar Bultheel 和 Hector E. Martnez Sulbaran 的论文《Computation of the Fractional Fourier Transform 》中提到,Ozaktas 等人的分数阶傅里叶变换的计算程序仅有上述网站这一处,而两个程序的计算结果基本相符。本文使用较为简洁的计算程序,Ozaktas 等人的计算程序在附表中给出。

程序如下:

clear

clc

%构造方波?????<=其它

,01,1)(t t x dt=0.05;

T=20;

t=-T:dt:T;

n=length(t);

m=1;

for k=1:n;

% tt=-36+k;

tt=-T+k*dt;

if tt>=-m && tt<=m

x(k)=1;

else

x(k)=0;

end

end

%确定α的值

alpha=0.01;

p=2*alpha/pi

%调用计算函数

Fx=frft(x,p);

Fx=Fx';

Fr=real(Fx);

Fi=imag(Fx);

A=abs(Fx);

figure,

subplot(2,2,1);

plot(t,Fr,'-',t,Fi,':');title(' α=0.01时的实部和虚部π'); axis([-4,4,-1.5,2]);

subplot(2,2,2);

plot(t,A,'-');title('α=0.01时的幅值');

axis([-4,4,0,2]);

分数阶傅里叶变换计算函数如下:

function Faf = frft(f, a)

% The fast Fractional Fourier Transform

% input: f = samples of the signal

% a = fractional power

% output: Faf = fast Fractional Fourier transform

error(nargchk(2, 2, nargin));

f = f(:);

N = length(f);

shft = rem((0:N-1)+fix(N/2),N)+1;

sN = sqrt(N);

a = mod(a,4);

% do special cases

if (a==0), Faf = f; return; end;

if (a==2), Faf = flipud(f); return; end;

if (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end if (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end

% reduce to interval 0.5 < a < 1.5

if (a>2.0), a = a-2; f = flipud(f); end

if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end if (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end

% the general case for 0.5 < a < 1.5

alpha = a*pi/2;

tana2 = tan(alpha/2);

sina = sin(alpha);

f = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)];

% chirp premultiplication

chrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)'.^2);

f = chrp.*f;

% chirp convolution

c = pi/N/sina/4;

Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)'.^2),f);

Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi);

% chirp post multiplication

Faf = chrp.*Faf;

% normalizing constant

Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1);

function xint=interp(x)

% sinc interpolation

N = length(x);

y = zeros(2*N-1,1);

y(1:2:2*N-1) = x;

xint = fconv(y(1:2*N-1), sinc([-(2*N-3):(2*N-3)]'/2)); xint = xint(2*N-2:end-2*N+3);

function z = fconv(x,y)

% convolution by fft

N = length([x(:);y(:)])-1;

P = 2^nextpow2(N);

z = ifft( fft(x,P) .* fft(y,P));

z = z(1:N);

从图中可见,当旋转角度0→α时,分数阶Fourier 变换将收敛为方波信号)(t x ;当2

πα→时,收敛为c sin 函数。 对于线性调频chirp 信号X k =exp(-j0.01141t 2),k=-32,-31……32,变换后的信号波形图如下

几点讨论

一,目前的分数阶傅里叶变换主要有三种快速算法:

1,B. Santhanamand 和 J. H. McClellan 的论文《The discrete rotational Fourier transform 》中,先计算离散FRFT 的核矩阵,再利用FFT 来计算离散FRFT 。 2,本文中采用的在Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》所述的算法,是将FRFT 分解为信号的卷积形式,从而利于FFT 计算FRFT 。

3,Soo-Chang Pei 和 Min-Hung Yeh 等人在《Two dimensional discrete fractional Fourier transform 》和《Discrete frac-tional fourier transformbased on orthogonal projections 》中,采用矩阵的特征值和特征向量来计算FRFT 。

二,Ozaktas 在《Digital computation of the fractional Fourier transform 》所述的算法,其实不是“离散”分数阶傅里叶变换的算法,而是对连续分数阶傅里叶变换

的数值计算。在C. Candan和M.A. Kutay等人的论文《The discrete Fractional Fourier Transform》中介绍了离散分数阶傅里叶变换的算法,并给出了计算仿真图形(错误!未找到引用源。)二者吻合得很好。

图1 C. Candan和M.A. Kutay等人离散分数阶傅里叶变换的算法与连续分数阶傅

里叶变换的比较

三,在Luis B. Almeida 的论文《The Fractional Fourier Transform and Time Frequency Representations》中给出了方波的分数阶傅立叶变换图形(图2)

图 2 Almeida 的论文中给出的方波的分数阶傅立叶变换图形

该图形与讲义中的图形相符。本文中的仿真结果大致与该图形也相符合,但是令人困惑的是无论用那种算法程序,怎样调整输入信号,在2

πα→时,虚部都不为零,这与Almeida 和讲义中的图形并不一致。而在Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》中只给出了幅值的绝对值的图形,并没有给出实部与虚部的结果,因此尚需进一步讨论

图 3 本文中计算的2

πα→时,实部与虚部分布

附:

Haldun M. Ozaktas 和Orhan Arikan等人的论文《Digital computation of the fractional Fourier transform》所述的算法程序

%FAST COMPUTATION OF THE FRACTIONAL FOURIER TRANSFORM

%by M. Alper Kutay, September 1996, Ankara

%Copyright 1996 M. Alper Kutay

%This code may be used for scientific and educational purposes

%provided credit is given to the publications below:

%

%Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde Bozdagi, %Digital computation of the fractional Fourier transform,

%IEEE Transactions on Signal Processing, 44:2141--2150, 1996.

%Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay,

%The Fractional Fourier Transform with Applications in Optics and

%Signal Processing, Wiley, 2000, chapter 6, page 298.

%

%The several functions given below should be separately saved

%under the same directory. fracF(fc,a) is the function the user

%should call, where fc is the sample vector of the function whose

%fractional Fourier transform is to be taken, and `a' is the

%transform order. The function returns the samples of the a'th

%order fractional Fourier transform, under the assumption that

%the Wigner distribution of the function is negligible outside a

%circle whose diameter is the square root of the length of fc. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function[res]=fracF(fc,a)

% This function operates on the vector fc which is assumed to

% be the samples of a function, obtained at a rate 1/deltax

% where the Wigner distribution of the function f is confined

% to a circle of diameter deltax around the origin.

% (deltax^2 is the time-bandwidth product of the function f.)

% fc is assumed to have an even number of elements.

% This function maps fc to a vector, whose elements are the samples % of the a'th order fractional Fourier transform of the function f. % The lengths of the input and ouput vectors are the same if the

% input vector has an even number of elements, as required.

% Operating interval: -2 <= a <= 2

% This function uses the `core' function corefrmod2.m

N = length(fc);

% if fix(N/2) ~= N/2

% error('Length of the input vector should be even'); % end;

fc = fc(:);

fc = bizinter(fc);

fc = [zeros(N,1); fc ; zeros(N,1)];

flag = 0;

if (a>0) && (a<0.5)

flag = 1;

a = a-1;

end;

if (a>-0.5) && (a<0)

flag = 2;

a = a+1;

end;

if (a>1.5) && (a<2)

flag = 3;

a = a-1;

end;

if (a>-2) && (a<-1.5)

flag = 4;

a = a+1;

end;

res = fc;

if (flag==1) || (flag==3)

res = corefrmod2(fc,1);

end;

if (flag==2) || (flag==4)

res = corefrmod2(fc,-1);

end;

if (a==0)

res = fc;

else

if (a==2) || (a==-2)

res = flipud(fc);

else

res = corefrmod2(res,a);

end;

end;

res = res(N+1:3*N);

res = bizdec(res);

res(1) = 2*res(1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function[res]=corefrmod2(fc,a)

% Core function for computing the fractional Fourier transform.

% Valid only when 0.5 <= abs(a) <= 1.5

% Decomposition used:

% chirp mutiplication - chirp convolution - chirp mutiplication deltax = sqrt(length(fc));

phi = a*pi/2;

N = fix(length(fc));

deltax1 = deltax;

alpha = 1/tan(phi);

beta = 1/sin(phi);

x = [-ceil(N/2):fix(N/2)-1]/deltax1;

fc = fc(:);

fc = fc(1:N);

f1 = exp(-1i*pi*tan(phi/2)*x.*x); %multiplication by chirp!

f1 = f1(:);

fc = fc.*f1;

x = x(:);

clear x;

t =[-N+1:N-1]/deltax1;

hlptc =exp(i*pi*beta*t.*t);

clear t;

hlptc = hlptc(:);

N2 = length(hlptc);

N3 = 2^(ceil(log(N2+N-1)/log(2)));

hlptcz = [hlptc;zeros(N3-N2,1)];

fcz = [fc;zeros(N3-N,1)];

Hcfft = ifft(fft(fcz).*fft(hlptcz)); % convolution with chirp clear hlptcz;

clear fcz;

Hc = Hcfft(N:2*N-1);

clear Hcfft;

clear hlptc;

Aphi = exp(-i*(pi*sign(sin(phi))/4-phi/2))/sqrt(abs(sin(phi))); xx = [-ceil(N/2):fix(N/2)-1]/deltax1;

f1 = f1(:);

res = (Aphi*f1.*Hc)/deltax1; % multiplication by chirp!

if (fix(N/2) ~=N/2)

res2(1:N-1) = res(2:N);

res2(N) = res(1);

res = res2;

end;

res = res(:);

clear f1

clear Hc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xint=bizinter(x)

N=length(x);

im = 0;

if sum(abs(imag(x)))>0

im = 1;

imx = imag(x);

x = real(x);

end;

x2=x(:);

x2=[x2.'; zeros(1,N)];

x2=x2(:);

xf=fft(x2);

if rem(N,2)==1 %N = odd

N1=fix(N/2+1); N2=2*N-fix(N/2)+1;

xint=2*real(ifft([xf(1:N1); zeros(N,1) ;xf(N2:2*N)].'));

else

xint=2*real(ifft([xf(1:N/2); zeros(N,1) ;xf(2*N-N/2+1:2*N)].')); end;

if ( im == 1)

x2=imx(:);

x2=[x2.'; zeros(1,N)];

x2=x2(:);

xf=fft(x2);

if rem(N,2)==1 %N = odd

N1=fix(N/2+1); N2=2*N-fix(N/2)+1;

xmint=2*real(ifft([xf(1:N1); zeros(N,1) ;xf(N2:2*N)].'));

else

xmint=2*real(ifft([xf(1:N/2); zeros(N,1) ;xf(2*N-N/2+1:2*N)].')); end;

xint = xint + i*xmint;

end;

xint = xint(:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xdec=bizdec(x)

k = 1:2:length(x);

xdec = x(k);

xdec = xdec(:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function F2D=fracF2D(f2D,ac,ar)

[M,N] = size(f2D);

F2D = zeros(M,N);

if ac == 0

F2D = f2D;

else

for k = 1:N

F2D(:,k) = fracF(f2D(:,k),ac);

end;

end;

F2D = conj(F2D');

if ar ~= 0

for k = 1:M

F2D(:,k) = fracF(F2D(:,k),ar);

end;

end;

F2D = conj(F2D');

离散傅里叶变换的分析与研究

XXXX大学 2012届学士学位论文 离散傅里叶变换的分析与研究 学院、专业物理与电子信息学院 电子信息工程 研究方向数字信号处理 学生姓名XX 学号 XXXXXXXXXXX 指导教师姓名XXX 指导教师职称讲师 2012年4月26日

离散傅里叶变换的分析与研究 XX 淮北师范大学物理与电子信息学院 235000 摘要离散傅里叶变换是连续傅里叶变换在时域和频域上都离散的形式,是对连续时间信号频谱分析的逼近。离散傅里叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 本文首先介绍了离散傅里叶变换的定义及性质,然后介绍了离散傅里叶变换的应用,主要包括对线性卷积的计算和对连续信号的谱分析。在理解理论的基础上,在matlab环境下实现了线性卷积和对连续信号频谱分析的仿真。仿真结果表明:当循环卷积长度大于或等于线性卷积长度时,可利用循环卷积计算线性卷积;利用DFT对连续信号进行频谱分析必然是近似的,其近似的结果与信号带宽,采样频率和截取长度都有关。 关键词离散傅里叶变换;线性卷积;谱分析

The Analysis and Research of Discrete Fourier Transform XX School of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract The discrete Fourier transform is the form that the continuous Fourier transform are discrete both in the time domain and frequency domain,it is a approach to the analysis of continuous time signal spectrum . The discrete Fourier transform not only has important significance in theory, but also plays a central role in all kinds of signal processing . This paper introduced the definition and properties of the discrete Fourier transform first of all.Then introduced the application of the discrete Fourier transform, which mainly including the calculation of linear convolution and analysis of continuous signal the spectral. On the basement of understanding theory, we realized the linear convolution and analysis of continuous signal spectrum on the Matlab environment . The simulation results show that when the length of the cyclic convolution is equal to or greater than linear convolution,we can use cyclic convolution to calculate linear convolution;It is approximately use continuous DFT spectrum to analyze the frequency domain of continuous time signal, the approximation of the results is related to the signal bandwidth, sampling frequency and intercept length. Keywords The discrete Fourier transform; Linear convolution; Spectrum analysis

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

深入浅出的讲解傅里叶变换

深入浅出的讲解傅里叶变换 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… 一、嘛叫频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

离散傅里叶变换和快速傅里叶变换

实验报告 课程名称: 信号分析与处理 指导老师: 成绩:__________________ 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 基础实验 同组学生姓名: 第二次实验 离散傅里叶变换和快速傅里叶变换 一、实验目的 1.1掌握离散傅里叶变换(DFT )的原理和实现; 1.2掌握快速傅里叶变换(FFT )的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。 1.3 会用Matlab 软件进行以上练习。 二、实验原理 2.1关于DFT 的相关知识 序列x (n )的离散事件傅里叶变换(DTFT )表示为 n j n j e n x e X Ω-∞ -∞ =Ω ∑= )()(, 如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为 n j N n j e n x e X Ω--=Ω ∑=1 )()(, x (n )的离散傅里叶变换(DFT )表达式为 )1,...,1,0()()(21 -==--=∑N k e n x k X nk N j N n π, 序列的N 点DFT 是序列DTFT 在频率区间[0,2π]上的N 点灯间隔采样,采样间隔为2π/N 。通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。X (k )的幅度谱为 )()()(22k X k X k X I R += ,其中下标R 和I 分别表示取实部、虚部的运算。X (k )的相位谱为 ) () (arctan )(k X k X k R I =?。 离散傅里叶反变换(IDFT )定义为 )1,...,1,0()(1)(21 -==∑-=N n e k X N n x nk N j N n π 。 2.2关于FFT 的相关知识 快速傅里叶变换(FFT )是DFT 的快速算法,并不是一个新的映射。FFT 利用了n N j e π2-函数的周期性 和对称性以及一些特殊值来减少DFT 的运算量,可使DFT 的运算量下降几个数量级,从而使数字信号处 装 订 线

分数傅里叶变换

分数傅里叶变换 分数傅里叶定义: 分数傅里叶变换的物理意义即做傅里叶变换次,其中不一定要为整数(比傅里叶变换更加广泛);通过分数傅里叶变换之后,图像或信号便会同时拥有时域与频域两者的特征。 1.1(维基百科) 第一种定义: 第二种定义: 1.2 从数学上分数傅立叶变换定义了积分形式: Wigner分布函数相空间定义的分数傅立叶变换 A.W.Lohmann在1993 年利用傅里叶变换相当于在Wigner分布函数相空间中角度为π/2的旋转这一性质,说明分数傅里叶变换在Wigner分布函数空间中相当于角度是pπ/2的旋转,这里,p是分数傅里叶变换的级次。

分数傅里叶变换的定义在数学上是等价的。当分数傅里叶变换的幂次p从0 连续增长到达1 时,分数傅里叶变换的结果相应地从原始信号的纯时间(空间)形式开始逐渐变化成为它的纯频域(谱)形式,幂次p在0到1之间的任何时刻对应的分数傅里叶变换采取了介乎于时(空)域和频域之间的一个过渡域的形式,形成一个既包含时(空)域信息同时也包含频(谱)域信息的混合信号。因此,这样定义的分数傅里叶变换确实是一种时(空)-频描述和分析工具 分数傅里叶的分类: 1.一维分数傅里叶变换 分数傅里叶变换的数学表达式有积分形式和级数表达式两种等价形式, 1.积分形式 2级数表达式形式 其中 2.二维分数傅里叶变换 其中C为相应常系数。当a=b时, 上式就是二维分数傅里叶变换的表 达式; 当a=b=1时, 上式转化为常规二维傅里叶变换; 当a与b不相等时, 我们称这种情况的二维分数傅里叶变换为不对称分数傅里叶变换。此时在x、y 方向实施的变换级次是不同的。 分数傅里叶变换的性质 1周期性:(k为整数) 2线性:(c1和c2是复常数)

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

分数傅里叶变换产生分数泰伯效应

*国家自然科学基金资助项目。收稿日期∶1996—02—06;收到修改稿日期∶1996—03—28第24卷 第2期 中 国 激 光V o l.A24,N o.2  1997年2月C HIN ESE J O U RN AL O F LASERS February ,1997 分数傅里叶变换产生分数泰伯效应* 华建文 刘立人 (中国科学院上海光机所 上海201800) 提要 讨论了如何使用分数傅里叶变换来产生分数泰伯效应,导出了要产生这种双重变换的光学 条件,变换后的周期、变换比例因子和级联运算法则,并进行了实验验证。这种双重变换有助于光 学系统的设计、分析和计算。最后给出了应用实例。 关键词 光学变换,傅里叶变换,泰伯效应 1 引 言 分数傅里叶变换的概念是Namias [1]首先提出的。后来由McBride 和Kerr [2] 把它发展成一个较为完整的数学理论。它是傅里叶变换的全族。后来,Lohm ann [3]在分析Wig ner 函数的基础上建立了光学领域中的分数傅里叶变换,并给出了光学实现的两种方案。Mendlovic 和Oza-ktas [4,5]研究了分数傅里叶变换的某些特性以及在光纤中的光学实现。文献[6~11]报道了一些分数傅里叶变换的应用。泰伯效应是光栅在相干光照明下在自由空间中某些特定的距离Z 处自成像的现象。分数泰伯效应或称分数泰伯自成像是指这种成像过程发生在Z 的分数距离上,如Z /2处,Z /3处等等。关于它的基本理论及许多应用的回顾可在文献[12]及[13]中找到。本文主要研究如何利用分数傅里叶变换使光栅产生分数泰伯像,或者说如何使分数傅里叶变换和分数泰伯自成像同时发生。这两种过程同时发生有一定的实用意义。利用这双重的分数变换(自成像也可看作一种变换)有助于一些光学系统的设计和分析,也有助于光路级联计算的简化。我们把它用于位相物体观察系统的光学设计,得到的装置比波面成像剪切干涉系统简单,尺寸又小。而且还能满足观察不同大小物体的要求。2 分数泰伯效应和分数傅里叶变换 泰伯效应是一相干波照明一光栅,在自由空间中距光栅的某些特定的平面上能出现一些准确泰伯像和更多的分数泰伯像[13]。一块周期为T ,开口比为h 的朗奇光栅可用下式描述 g (x ,y )=rect(x /h )* n W (x -n T )(1)符号“*”表示卷积。用单色平面波照明光栅,其菲涅耳衍射场在光栅后方自由空间中传播,在离光栅距离为Z 的平面上,光强分布为[13]

第二讲 Part3 离散傅里叶变换_难点

第三讲 Part3 DFT 的理论难点 1、抽样定理 连接离散信号与连续信号的桥梁。 ()(){ ()()j t a a j j n s n X j x t e dt X e x nT e ω ω∞ -Ω-∞ ∞ -=-∞ Ω== ?∑ 根据频域卷积定理推导 () ()()() {1()()()()()2j j j j j y n x n h n Y e X e H e X e H e d πωωωθωθπ θ π--==*=? 得到:1 ()()j a s k s X e X j jk T ω ∞ =-∞ = Ω-Ω∑ 2、FT 中的待研究的理论难点与关键之处 2.1 DFT 与DTFT 的关系 两种论述方法: 方法1:书P119-P120的论述;请同学看书后,上黑板叙述推演相关的过程。 方法2:书P121,连续频谱的抽样也必然使原来的时域信号变成周期的。 2.2 DFT 的()X k 是“()x n 的傅里叶变换”的某种程度上的近似。 用DFT 对连续信号和离散信号进行谱分析的基本原理和方法 2.2.1 怎样理解DFT 对FT 的近似? 由于用DFT 对连续信号做频谱分析的过程中隐含了频域和时域的两个周期延拓,又由于信号时宽和带宽的制约关系,因此,做DFT 得到的()N X k ,及由()N X k 做IDFT 得到的 ()N x n 都是对原()a X j Ω及()a x t 的某种近似。 如果s T 选得足够小,则式1 ()|()s j a T a s l s X e X j jl T ω ω∞ =Ω=-∞ = Ω-Ω∑ 中将避免或大大减轻 频域的混叠。 如果N 选得足够大,一方面可以减轻式()()*()j j j a X e X e D e ω ω ω =的窗口效应,另一方面也会减轻式()(),0,1, (1) l x n x n lN n N ∞ =-∞ = +=-∑的时域混叠。 结论:在这两个条件均满足的情况下,上述的近似误差将减小到可接受的程度,从而

傅里叶变换公式

第2 章信号分析 本章提要 ?信号分类 ?周期信号分析--傅里叶级数 ?非周期信号分析--傅里叶变换 ?脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段 §2 -1 信号的分类 ?两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。

质量-弹簧系 统的力学模型x(t) = A cos k t +0 非确定性信号(随机信号:给定条件下取值是不确定的 ?按取值情况分类:模拟信号,离散信号数字信号:属于离散信号,幅值离散,并用二进制表示。 ?信号描述方法 时域描述如简谐信号

简谐信号及其三个要素 频域描述 以信号的频率结构来描述信号的方法: 将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式?周期信号时域表达式 x(t) = x(t +T) = x(t + 2T) = = x(t + nT) (n = 1, 2 ,)

T :周期。注意n 的取值:周期信号“无始无 终” # ? 傅里叶级数的三角函数展开式 x (t ) = a + (a cos n t + b sin n t ) n =1 (n =1, 2, 3 ,…) 傅立叶系数: T a 0 = 1 x (t )dt - 2 T x (t )cos n tdt 2 T 2 x (t ) sin n tdt 2 式中 T--周 期;0--基频, 0=2/T 。 ? 三角函数展开式的另一种形式: 2 a n = b n =2

详解FFT(快速傅里叶变换FFT.

kn N W N N 第四章 快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。 快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。 DFT 的定义式为 N ?1 X (k ) = ∑ x (n )W N R N (k ) n =0 在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。算出全部 N 点 X (k ) 共需 N 2 次复数乘法 和 N ( N ? 1) 次复数加法。即计算量是与 N 2 成正比的。 FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。 W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT 运算: (1) 周期性: ( k + N ) n N = W kn = W ( n + N ) k (2) 对称性:W ( k + N / 2 ) = ?W k N N 利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。例子: 求当 N =4 时,X(2)的值

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

离散系统分析和离散傅里叶变换讲解

第四章 离散系统分析和离散傅里叶变换 4-1概述 在上一章中我们已经介绍了连续时间信号(周期的或非周期的)的傅里叶变换。在第一、二章中介绍了离散信号和离散系统的概念,在这一章中主要讨论离散信号的傅里叶变换。 4-2离散信号的傅里叶变换 时域抽样定理告诉我们,连续时间信号可以由它的样本值恢复出来,即 ]2 ) ([ )()(∑ ∞ -∞ =-Ω= n s nT t Sa nT f t f 当抽样频率s Ω给定时,抽样函数]2 ) ([ nT t Sa s -Ω就确定了,唯一与信号相关的是信号的样本值)(nT f ,换句话说传载)(t f 中信息的是样本值)(nT f 。因此研究连续时间信号)(t f 中的信息,就转 变为研究样本值)(nT f 中的信息。当抽样频率s Ω给定时,T 也就一定了,样本值)(nT f 就可以抽象为序列)(n f ,也就是说离散信号的数学抽象是序列。以后我们就用序列)(n f 表示离散信号(样本值)。 由于序列的变量是整数变量,与连续信号的变量不同,因此对序列的处理方法与连续时间变量的处理方法也必定不同。先来看看序列的傅里叶变换,连续非周期时间信号)(t f 的傅里叶变换为 ? ∞ ∞ -Ω-= =Ωdt e t f t f F t j )(])([)(F ? ∞ ∞ -ΩΩΩ= Ω=d e F F t f t j -)(21 )]([)(1 π F 假定)(n f 是非周期的,仿照连续时间信号的傅里叶变换形式可以定义序列的傅里叶变换: ∑∞ -∞ =-= n jn j e n f e F ω ω )()( (4-1) ?- = π πωω ωπ d e e F n f jn j )(21 )( (4-2) 式中ω为数字角频率。(4-1)式和(4-2)式构成了序列的傅里叶变换对,前者称为序列的傅里叶正变换,后者称为序列的傅里叶逆变换。注意到序列傅里叶正变换公式是个和式,这是因为序列)(n f 的变量是离散的整数,序列的傅里叶逆变换公式是个积分式,由此也说明序列的傅里叶变换是ω的连续函数,也就是说,离散信号的傅里叶变换是频域中连续的函数。此外因

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

分数阶傅里叶变换

分数阶傅里叶变换的MATLAB 仿真计算以及几点讨论 在Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》中给出了一种快速计算分数阶傅里叶变换的算法,其MATLAB 计算程序可在https://www.360docs.net/doc/e93088424.html,.tr/~haldun/fracF.m 上查到。现在 基于该程序,对一方波进行计算仿真。?????<=其它 ,01,1)(t t x 注:网上流传较为广泛的FRFT 计算程序更为简洁,据称也是Haldun M. Ozaktas 和 Orhan Arikan 等人的论文《Digital computation of the fractional Fourier transform 》使用的算法。但是根据Adhemar Bultheel 和 Hector E. Martnez Sulbaran 的论文《Computation of the Fractional Fourier Transform 》中提到,Ozaktas 等人的分数阶傅里叶变换的计算程序仅有上述网站这一处,而两个程序的计算结果基本相符。本文使用较为简洁的计算程序,Ozaktas 等人的计算程序在附表中给出。 程序如下: clear clc %构造方波?????<=其它 ,01 ,1)(t t x dt=0.05; T=20; t=-T:dt:T; n=length(t); m=1; for k=1:n; % tt=-36+k; tt=-T+k*dt; if tt>=-m && tt<=m x(k)=1; else

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT定义为: 可以看出,DFT需要计算大约N2次乘法和N2次加法。当N较大时,这个计算量是很大的。利用WN的对称性和周期性,将N点DFT分解为两个N/2点 的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。图1为FFT与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT算法的优越性。 将x(n)分解为偶数与奇数的两个序列之和,即

x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为: 上式的运算可以用图2表示,根据其形状称之为蝶形运算。依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。图3为8点FFT的分解流程。 FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。以256为基数、长度为N字节的数

离散傅里叶变换的分析与研究 开题报告

本科学生毕业论文(设计)开题报告题目离散傅里叶变换的分析与研究 姓名XX 专业电子信息工程 学号XXXXXXXXXX 学院物理与电子信息学院 指导教师XXX 淮北师范大学教务处制

一、本课题研究现状及可行性分析 离散傅里叶变换,其实质是有限长序列傅立叶变换的有限点离散采样,从而实现了频域离散化,使数字信号处理可以在频域采用数值运算的方法进行,这样就大大增加了数字信号处理的灵活性。更为重要的是,离散傅里叶变换有多种快速算法,统称为快速傅里叶变换,从而使信号的实时处理和设备的简化得以实现。所以说,离散傅立叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 离散傅里叶变换在数字通信、语音信号处理、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、医学、地震以及数值分析等各个领域都有着广泛的应用。 目前,我们已具备有关的大量参考文献和基本的原始程序,对本论文的开展不存在根本性的问题,我们的研究方法是可行的。 二、本课题研究的关键问题及解决问题的思路 关键问题: 线性卷积与循环卷积之间的关系,及对信号的频谱分析。并在MA TLAB环境下的编程实现。 解决思路: 在理解和掌握线性卷积,循环卷积以及信号频谱分析的基础上,用MA TLAB语言编写线性卷积,循环卷积以及频谱分析的设计程序,最后通过仿真结果验证理论的正确性。 三、论文纲要 1 绪论 1.1 DFT的定义 1.2 DFT与傅里叶变换和Z变换的关系 2 DFT的基本性质 2.1 线性性质 2.2 循环卷积性质 2.3循环卷积定理 3 DFT的应用 3.1 用DFT计算线性卷积 3.2 用DFT对信号进行谱分析 3.3 用DFT进行谱分析的误差问题

傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、 DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 第三章、复数 第四章、复数形式离散傅立叶变换 /********************************************************** *****************************************/ 这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。感谢原作者们(July、dznlong)的精心编写。 /********************************************************** ****************************************/ 前言:

“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

傅里叶变换 讲解最通俗易懂的一片

【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶 变换?来源:胡姬的日志 写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。在此 向多位原创作者致敬!!! 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.360docs.net/doc/e93088424.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,

相关文档
最新文档