经典竞赛几何题

经典竞赛几何题
经典竞赛几何题

绝密★启用前

2018年05月17日张朋松的初中数学组卷

试卷副标题

考试范围:xxx;考试时间:100分钟;命题人:xxx

题号一总分

得分

注意事项:

1.答题前填写好自己的姓名、班级、考号等信息

2.请将答案正确填写在答题卡上

第Ⅰ卷(选择题)

请点击修改第I卷的文字说明

评卷人得分

一.解答题(共50小题)

1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.

(1)如图1,求证:△AFB≌△ADC;

(2)请判断图1中四边形BCEF的形状,并说明理由;

(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.

3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;

(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.

4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.

5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.

6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.

7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.

8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.

9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)

10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.

提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.

11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.

(1)求证:PN=QN;

(2)求证:MN⊥BC.

12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;

②∠PAE=∠PBF.

13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.

14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.

15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD 的平分线于G,

求证:HF∥BC.

16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME 上,且满足CF=AD,MF=MA.

(1)若∠MFC=120°,求证:AM=2MB;

(2)试猜想∠MPB与∠FCM数量关系并证明.

17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.

求证:∠BAD=∠C.

18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.

19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E 点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.

20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,

求证:△AMN的周长等于2.

21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略 陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和 22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=- -y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-=-y y x y ,联立抛物线方程消去x 可得:22 00 22120-+-=y y y y (1), 由题意, 12,y y 是方程(1)的两个实根,且12≠y y ,所 以 22 00044(212)0?=-->?-<

数学竞赛《解析几何》专题训练(答案)

《解析几何》专题训练 一、选择题 1、(04福建)在平面直角坐标系中,方程 1(,22x y x y a b a b +-+ =为相异正数),所表示的曲线 是 A,三角形 B,正方形 C,非正方形的长方形 D,非正方形的菱形 1,D 令y x =,得y x a ==±,令y x =-得x y b =-=±,由此可见,曲线必过四个点:(,)a a , (,)a a --,(,)b b ,(,)b b --,从结构特征看,方程表示的曲线是以这四点为顶点的四边形,易知 它是非正方形的菱形. 2、若椭圆22 13620 x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐标为 A, B,(- C,(3, D,(3,- C 设00(,)P x y ,又椭圆的右准线为9x =,而122PF PF =,且1212PF PF +=, 得24PF =,又 20 2 93 PF e x == -,得03x =, 代入椭圆方程得0y =3、设双曲线22 221x y a b -= 的离心率 e 2?∈??? ,则双曲线的两条渐近线夹角α的取值范围是 ( ) C A. ,63ππ?????? B .,62ππ?????? C .,32ππ?????? D .2,33ππ?? ???? 4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5= AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条 共切线。正确答案为C 。 5、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别 以线段PF 1、A 1A 2为直径的两圆一定(B ) (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

初中数学经典几何题(难)及答案

经典难题 ( 一) 1. 已知:如图,O 是半圆的圆心,C.E 是圆上的两点 ,CD ⊥AB,EF ⊥AB,EG ⊥CO . 求证:CD =GF .( 初二) 3.如图,已知四边形 ABCD.A 1B 1C 1D 1都是正方形,A 2.B 2.C 2.D 2分别是 AA 1.BB https://www.360docs.net/doc/e95098846.html, 1.DD 1的中 点. 求证:四边形 A 2B 2C 2D 2是正方形. (初二) 4.已知:如图, 在四边形 ABCD 中,AD =BC,M.N 分别是 AB.CD 的中点,AD.BC 的延长线交 MN 于 E.F . 求证: ∠DEN =∠ F . 2. 已知: 如图,P 是正方形 ABCD 内点,∠PAD =∠PDA = 150. 求证: △PBC 是正三角形. (初二) 经 典 难 题( 二) D C B D

A O H E B C M D G E O · C M E C A M N P O B ( 初二 ) G E F B D A 经 典 难 题( 三) 1.如图,四边形 ABCD 为正方形,DE ∥AC,AE =AC,AE 与CD 相交于 F 求证:CE =CF .( 初二) 2.设 MN 是圆 O 外一直线,过 O 作 OA ⊥MN 于 A,自 A 引圆的两条直线 ,交圆于 B.C 及 D.E 直线 EB 及 CD 分别交 MN 于 P.Q 求证:AP =AQ .( 初二) 3. 如果上题把直线 MN 由圆外平移至圆内 , 则由此可得以下命题 : 设MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC.DE,设CD.EB 分别交 MN 于P.Q 求证:AP =AQ .( 初二) (1) 求证 :AH =2OM ; (2) 若∠BAC =600 , 求证:AH =AO . (初二) 4.如图,分别以△ ABC 的 AC 和 BC 为一边,在△ ABC 的外侧作正方形 D 点 P 是 EF 的中点. 求证:点 P 到边 AB 的距离等于 AB 的 1.已知: △ABC 中,H 为垂心(各边高线的交点 ),O 为外心,且OM ⊥BC 于M . P A N Q B P Q C ACDE 和正方形 CBFG

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

【竞赛】解析几何3——曲线系

高二数学竞赛——曲线系 曲线系是具有某种性质的曲线集合,利用曲线系解题体现了参数变换的数学思想,整体处理的钥匙策略,以及“基本量”和“待定系数”等重要的解题方法. 曲线系:如果两条曲线方程是 f 1(x ,y )=0和 f 2(x ,y )=0, 它们的交点是P (x 0,y 0),则方程 f 1(x ,y )+ f 2(x ,y )=0的曲线也经过点P (x 0,y 0) (是任意常数). 证明:由方程?? ?f 1(x ,y )=0·······①f 2(x ,y )=0·······② 得到 f 1(x ,y )+ f 2(x ,y )=0·······③ 只须 将(x 0, y 0)代入证明. ◆ 设圆C 1∶x 2 +y 2 +D 1x +E 1y +F 1=0和圆C 2∶x 2 +y 2 +D 2x +E 2y +F 2=0.若两圆相交,则过交点的圆系 方程为x 2+y 2+D 1x +E 1y +F 1+ (x 2+y 2 +D 2x +E 2y +F 2)=0 ( 为参数,圆系中不包括圆C 2, =-1为两圆的公共弦所在直线方程). ◆ 设圆C ∶x 2 +y 2+Dx +Ey +F =0与直线l :Ax +By +C =0,若直线与圆相交,则过交点的圆系方程为 x 2+y 2+Dx +Ey +F + (Ax +By +C )=0( 为参数). 曲线系方程③不能包含过两曲线公共点的所有曲线,那么使用时怎么知道所求方程在不在方程③中呢? ——m ·f 1(x ,y )+n ·f 2(x ,y )=0 由直线生成的二次曲线系: 设f i =A i x +B i y +C i (i =1,2,3,···) (1)若三角形三边的方程为:f i =0(i =1,2,3),则经过三角形三个顶点的二次曲线系为: f 1·f 2+ f 2·f 3+ f 3·f 1=0( 、 为参数) (2)若四边形四条边的方程为:f i =0(i =1,2,3,4),则经过四边形四个顶点的二次曲线系为: f 1·f 3+ f 2·f 4=0( 为参数), 其中f 1=0与f 3=0、f 2=0与f 4=0分别为四边形的对边所在直线方程. (3)与两条直线f 1=0、f 2=0分别相切于M 1、M 2的二次曲线系为: f 1·f 2+ f 3·f 3=0( 为参数), 其中f 3=0是过M 1、M 2的直线方程. (3)过直线f 1=0、f 2=0与一个二次曲线F (x ,y )=0的4个交点的二次曲线系为: F (x ,y )+ f 1·f 2=0( 为参数). 【例题选讲】 例1. 求经过两圆x 2+y 2+6x -4=0和x 2+y 2 +6y -28=0的交点,并且圆心在直线x -y -4=0上的圆 的方程. 解: 构造方程 x 2+y 2+6x -4+ (x 2+y 2 +6y -28)=0 即:(1+ )x 2 +(1+ )y 2 +6x +6 y -(4+28 )=0 此方程的曲线是过已知两圆交点的圆,且圆心为(-3 1+ ,-3 1+ ) 当该圆心在直线x -y -4=0上时,即 -3 1+ +3 1+ -4=0,解得: =-7. ∴ 所求圆方程为 x 2 +y 2 -x +7y -32=0 例2. 求与圆x 2 +y 2 -4x -2y -20=0切于A (―1,―3),且过B (2,0)的圆的方程. 解法一:视A (―1,―3)为圆(x +1)2+(y +1)2=r 2,当r →0时,极限圆(x +1)2+(y +3)2 =0 构造圆系:(x 2+y 2-4x -2y -20)+ [(x +1)2+(y +3)2 ]=0

空间解析几何数学竞赛辅导

空间解析几何数学竞赛辅导 一. 向量代数 1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量 ),,(12121221z z y y x x M M ---=→ 2、已知向量),,(321a a a a =→、),,(321b b b b =→ ,则 (1)向量→a 的模为232221||a a a a ++=→ (2)),,(332211b a b a b a b a ±±±=±→ → (3)),,(321a a a a λλλλ=→ 3、向量的内积→ →?b a (1)><→ →b a ,为向量→ → b a ,的夹角,且π>≤≤<→ →b a ,0 注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。 4、向量的外积→ → ?b a (遵循右手原则,且→ → → ⊥?a b a 、→ → → ⊥?b b a ) 3 2 1 3 21 b b b a a a k j i b a → → → → →=? (1)3 3 2211//b a b a b a b a b a ==? =?→ → → → λ (2)00332211=++?=??⊥→ →→ → b a b a b a b a b a (3)几何意义: ||a b ?代表以,a b 为邻边的平行四边形的面积S ;

平面上三点11(,,0)A x y ,22(,,0)B x y ,33(,,0)C x y 构成的三角形的面积为 212131 3111 |||0|22 ABC i j k S AB AC x x y y x x y y =?=---- 21 21 31 3112x x y y x x y y --=--的绝对值 也可以写成1 1223 31 1121 ABC x y S x y x y =的绝对值。 5. 混合积:(,,)()a b c a b c =??。 (1)注意:(,,)(,,)(,,)a b c b c a c a b == (2)坐标表示:1 11 2 223 3 3 (,,)()x y z a b c a b c x y z x y z =??=, 其中, ()111,,a x y z =,()222,,b x y z =, ()333,,c x y z =。 (3)几何意义:(,,)a b c 的绝对值表示以,,a b c 为三条邻边的平行六面体 的体积。 ,,a b c 共面的充要条件是(,,.)0a b c =。 空间不共面的四点111(,,)A x y z ,222(,,)B x y z ,333(,,)C x y z , 444(,,)D x y z 构成的四面体的体积为

初中物理竞赛浮力、压强经典题目大全

提高内容 一、 基本概念 1、 流体静压强:静止流体作用在单位面积上的力。p 设微小面积A ?上的总压力为P ?,则 平均静压强:A P p ??= 点静压强: A P p A ??=→?lim 0 即流体单位面积上所受的垂直于该表面上的力。 单位:N/m 2 (Pa) 2、 总压力:作用于某一面上的总的静压力。P 单位:N (牛) 3、流体静压强单位: 国际单位:N/m 2=Pa 物理单位:dyn/cm 2 1N=105dyn ,1Pa=10 dyn/cm 2 工程单位:kgf/m 2 混合单位:1kgf/cm 2 = 1at (工程大气压) ≠ 1atm (标准大气压) 1 at=1 kgf/cm 2 =9.8×104Pa=10m 水柱 1atm =1.013×105Pa =10.3 m 水柱 二、 流体静压强特性 1、 静压强作用方向永远垂直并指向作用面——方向特性。 2、 静止流体中任何一点上各个方向的静压强大小相等,而与作用面的方位无关,即p 只是位置的函数 ——大小特性。(各向相等) 3、静止流体中任一点的压强p 由两部分组成,即液面压强p 0与该点到液面间单位面积上的液柱重量h γ。 推广:已知某点压强求任一点压强 h p p ?+=γ12 4、静止流体中,压强随深度呈线性变化 用几何图形表示受压面上压强随深度而变化的图,称为压强分布图。 大小:静力学基本方程式 方向:垂直并且指向作用面(特性一) 例题: ΔA ΔP

5、 同种连续静止流体中,深度相同的点压力相同。连通器: 三、测压计 1、分类:根据适用范围、适用条件的不同,分为液式、金属式、电测式。 2、液式测压计 原理:h p p γ+=0 (p 、p 0的标准必须一致,用表压) 方法:找等压面 (性质5:两种互不相混的静止流体的分界面必为等压面) 特点:结构简单、使用方便、制造简单,常用于实验室中。 a. 液面计 b. 测压管

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略陈硕罡吴国建(浙江 省东阳中学 322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30 分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题函数是描 述客观世界中变量间依赖关系的重要数学模型。抓住问题 中引起变化的主变量,并用一个具体的量(斜率或点的坐 标等)来表示它,同时把问题中的的因变量用主变量表示 出来,从而变成一个函数的问题,这就是解决问题的函 数观点。在解析几何问题中,经常会碰到由于某个量 (很多时候是线或点)的变化,而引起图形中其它量(面 积或长度等)的变化的情况,所以函数观点成为了解决解 析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线y2 6x上的

两个动点和B(X2,y2),其中人x?且人x? 4.线段AB的垂直平分线与x轴交于点C ,求厶ABC面积的最大值. 【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把ABC 的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB的中点M坐标为((2, y o),贝I」则直线AB的斜率:k 7 42 —- X i X2 、亘y y2 y o 6 6 线段AB的中垂线方程:八。鲁(X 2),易知线段 AB的中垂线与x轴的交点为定点C(5,0)直线AB的方程:y y o 2(x 2),联立抛物线方程消 y o 去x可得:y2 2y o y 2y2 12 0 ( 1 ), 由题意,y1,y2是方程(1 )的两个实根,且y1 y2,所以4y; 4(2 y2 12) o 2.3 y 2 3 弦长|AB| ..1 (;)2|% y2| (1 ?)[(% y2)2 4^2〕21(9 S)(12 y;) 点C(5,o)到直线AB的距离:h |CM|十

解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何 1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36, 【解析】设()9A a a -, ,则圆心M 到直线AC 的距离sin 45d AM =?,由直线AC 与圆M 相交,得 d 36a ≤≤. 2、(2009一试5)椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ?的最小值为. 【答案】22 222a b a b + 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ??????±± ? ? ?????? ?,. 由P ,Q 在椭圆上,有 222221 cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得222211 11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22 222a b a b +. 3、(2010一试3)双曲线12 2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】9800 4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,?=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(- 即0)(24)(21212212214=?++-+?++-y y t y y t x x t x x t ,

解析几何竞赛题求解的几种常见策略

陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且 124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=--y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-= -y y x y ,联立抛物线方程消去x 可得:22 0022120-+-=y y y y (1), 由题意,12,y y 是方程(1)的两个实根,且12≠y y ,所以22 00044(212)0?=-->?-<

高中数学竞赛与自主招生专题全套精品讲义:解析几何(教师版)

高中数学竞赛与自主招生专题全套精品讲义 第十五讲 解析几何一(教师版) 从2015年开始自主招生考试时间推后到高考后,政策刚出时,很多人认为,是不是要在高考出分后再考自主招生,是否高考考完了,自主招生并不是失去其意义。自主招生考察了这么多年,使用的题目的难度其实已经很稳定,这个题目只有出到高考以上,竞赛以下,才能在这么多省份间拉开差距. 所以,笔试难度基本稳定,维持原自主招生难度,原来自主招生的真题竞赛真题等,具有参考价值。 在近年自主招生试题中,解析几何是高中数学内容的一个重要组成部分,也是高考与自主招生常见新颖题的板块,各种解题方法在解析几何这里得到了充分的展示,尤其是平面向量与解析几何的融合,提高了综合性,形成了题目多变、解法灵活的特色。 一、知识精讲 1.点到直线的距离 : d =(点00(,)P x y ,直线l :0Ax By C ++=). 2.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θ θ =+??=+?. (4)圆的直径式方程 1212()()()()0x x x x y y y y --+--= (圆的直径的端点是11(,)A x y 、22(,)B x y ). 3.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若 d = d r >?点P 在圆外;d r =?点P 在圆上;d r

经典竞赛几何题

绝密★启用前 2018年05月17日朋松的初中数学组卷 试卷副标题 考试围:xxx;考试时间:100分钟;命题人:xxx 题号一总分 得分 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一.解答题(共50小题) 1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF. (1)如图1,求证:△AFB≌△ADC; (2)请判断图1中四边形BCEF的形状,并说明理由; (3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE. 3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O, (1)如图1,若AB=BC,求证:OE=OF; (2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由. 4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由. 5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD. 6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD. 7.如图△ABC,D是△ABC的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.

大学生数学竞赛空间解析几何练习题

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。 解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以 '223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=?=为基本向量 建立一个新的坐标系''''O X Y Z ,则坐标变换公式为 '' 2222 ''2222'/B A x x z A B A B A B y D B x z A B A B z y ?=+?++? ?=-- +?++? ?=?? 在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2'''' 22 22 2 2 2 2 6( )(/)1 B A A B y x z D B x z A B A B A B A B ++ -- + =+++ + 所以交线的方程为: '2' '''22 22 22 22 '6()(/)1 B A A B y x z D B x z A B A B A B A B z ?++--+ =?++++? ?=? 化简得: '2' '22 22 '6()(/)1 0B A y x D B x A B A B z ?+--=?++? ?=? 因为交线是圆,所以 226AB A B -=+ 解得 322A B =-.

试题2:求过点)0,1,0(P 并且和两条直线 ? ? ?=+=+++?? ?=+=++020 13:,0201:21y x z y x l y x y x l 均相交的直线的方程。 解:把直线的方程化为点向式方程为: ,1 11 2 :,1 20 1:21-+==-=+=-z y x l z y x l 设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=, 试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程. 解:设所求的直线的方程为:141x lt y mt z nt =+??=-+??=+? ,又因为所求的直线在二次曲 面上,所以对任意的,t 有 2222(1 )(4)(1) 3(1)( 4)(1)(1 )6(1) l t m t n t l t m t l t n t n t ++--+++-+++-+=, 化简得; 2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以 222230 (1)7570l m n ml nl l m n ?+-++=? ++=? 由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得 220 (1)570 m n m n ?-=? +=?

高一数学竞赛培训《解析几何部分》

高一上期数学竞赛培训资料(16) ——解析几何部分(4)——与圆有关的点的轨迹问题 一、知识要点——求点的轨迹方程的基本步骤: (1)建:建立直角坐标系; (2)设:设立动点坐标P (x ,y ); (3)现:将动点的等量关系呈现出来; (4)代:代入点的坐标; (5)化:化简上述等式。 应注意:所求方程的完备性! 二、题型示例: 1、ABC ?的两顶点A 、B 的坐标分别为(0,0)A 、(6,0)B ,顶点C 在曲线23y x =+上运动,求ABC ?重心的轨迹方程。 2、过原点作曲线2 1y x =+的割线12OPP ,求弦12PP 中点的 P 的轨迹方程。 3、已知两点(2,2)P -、(0,2)Q 以及一直线:l y x =,AB 在直线l 上移动,试求直线PA 和QB 的交点M

4、已知ABC ?的顶点A 是定点,边BC 在定直线上滑动,且||4BC =,BC 边上的高为3,求ABC ?的外心M 的轨迹方程。 5、设定点(6,0)P ,圆229x y +=上一点Q ,M 是PQ 上一点,满足 12 PM MQ =,当点Q 在圆上运动时,试求点M 的轨迹方程。 6、ABC ?中,边||6BC =,且0135B C ∠+∠=,试求顶点A 的轨迹方程。 7、过定点(,)M a b 任作两条互相垂直的直线1l 和2l ,分别与x 轴、y 轴交于A B 、两点,试求线段AB 的中点P 的轨迹方程。

8、已知圆222:O x y r +=,点M 为圆O 上任意一点,又点(,0)A r -、(,0)B r ,过B 作BP ∥OM 交AM 的延长线于点P ,试求点P 的轨迹方程。 9、过圆22:4O x y +=与y 轴的交点A 作圆的切线l ,M 为直线l 上任意一点,过M 作圆O 的另一条切线,切点为Q ,试求MAQ ?垂心的轨迹方程。 10、已知点P 是圆22 :4O x y +=上一动点,定点(4,0)Q 。 (1)试求线段PQ 中点的轨迹方程; (2)设POQ ∠的角平分线交PQ 于点R ,求点R 的轨迹方程。

两道经典的小学几何题

两道经典的小学几何题 一、趣题:正方形的边长是多少? 今天在某小学数学竞赛真题上看到了这么一个问题:图中阴影部分是一个正方形,求它的边长。当然,题目本身并不难,大家一看就知道答案;问题的关键在于,这个问题是一道小学竞赛题,这意味着这个题目一定有一个异常巧妙的傻瓜解。这个解法不用相似形,不用列方程,事实上几乎什么都不用,只需要用到最基本最显然的正方形长方形的性质。你能想到这个解法吗? 反正我是没想到,然后翻了翻答案,顿时感觉小学奥数思维之妙:把图形补充为一个长方形,则两个大的直角三角形面积相同,另外还有A的面积与B的面积相同,C的面积与D的面积相同。于是我们得到,阴影部分与右上角的那个小

长方形面积相同,而后者的面积应该是36。这就是说,正方形的边长应该等于6。 我不由得开始思考,中学数学的学习真的禁锢了我们的思维吗? 二、趣题:不用相似怎么办? 上面是一个经典的小学几何题。一个小学奥数老师曾经告诉我,当年带领学生参加这次竞赛时,领队老师们都没有想到这个问题的“小学生解法”,以至于开始质疑这道题是否超纲了。看到答案后,老师们大为折服——这个问题确实有一个无需任何几何知识的妙解。 今天,同样的事情发生了。今天临时去代一节小学奥数课,见到这么一道题:ABCD 是一个正方形,边长为 4 , DEFG 是一个矩形,其中 DG = 5 ,求 DE 的长度。还是那段话:题目本身并不难,大家一看就知道答案;问题的关键在于,这个问题是一道小学竞赛题,这意味着这个题目一定有一个异常巧妙的傻瓜解。这个解法不用相似形,不用列方程,事实上几乎什么都不用,只需要用到最基本最显然的正方形长方形的性质。你能想到这个解法吗?

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

高中数学竞赛专题讲座之解析几何

高中数学竞赛专题讲座之解析几何 一、选择题部分 1、(集训试题)过椭圆C :12 32 2=+y x 上任一点P ,作椭圆C 的右准线的垂线PH (H 为垂足) ,延长PH 到点Q ,使|HQ|=λ|PH|(λ≥1)。当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为( ) A .]3 3 , 0( B .]2 3,33( C .)1,3 3 [ D .)1,2 3( 解:设P(x 1, y 1),Q(x, y),因为右准线方程为x=3,所以H 点的坐标为(3, y)。又∵HQ=λPH ,所以 λ+-=11PQ HP ,所以由定比分点公式,可得:????? =-+= y y x x 11)1(3λ λ,代入椭圆方程,得Q 点轨迹为123)]1(3[222=++-y x λλ,所以离心率e=)1,33 [32132232 2∈-=-λλ λ。故选C 。 2.(2006年南昌市)抛物线顶点在原点,对称轴为x 轴,焦点在直线3x-4y =12上,则抛物线方程为(D) A .212y x =- B .212y x = C .216y x =- D .216y x = 3.(2006年江苏)已知抛物线2 2y px =,O 是坐标原点,F 是焦点,P 是抛物线上的点,使得△ POF 是直角三角形,则这样的点P 共有 ( B ) ()A 0个 ()B 2个 ()C 4个 ()D 6个 4.(200 6天津)已知一条直线l 与双曲线122 22=-b y a x (0>>a b )的两支分别相交于P 、Q 两 点,O 为原点,当OQ OP ⊥时,双曲线的中心到直线l 的距离d 等于( A ) (A )22a b ab - (B )22a b ab - (C )ab a b 2 2- (D )ab a b 22- 5. (2005全国)方程 13 cos 2cos 3 sin 2sin 2 2 =-+ -y x 表示的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线 解:),2 3cos()22cos(,22 322 0,32π ππ π π π->-∴< - <-< ∴>+ 即.3sin 2sin >又 ,03cos 2cos ,03cos ,02cos ,32 ,220>-∴<>∴<<< <ππ π方程表示的曲线是椭圆。 ) ()4 232sin(232sin 22)3cos 2(cos )3sin 2(sin *++-=--- π

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

初中数学经典几何题及答案

4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 N F E C D

P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E

相关文档
最新文档