5V电源电路设计

5V电源电路设计
5V电源电路设计

5v电源电路的设计

本设计是要设计一个+5V直流电源供电,这里没有直接的+5V电压,而直流电源的输入电压为220V的电网电压,在正常情况下,这一电网电压是远远的高于本设计所需的电压值,因而需要先使用变压器,将220V的电网电压降低后,再进行下一阶段的处理[4]。

变压器是这一电源电路起始部分,将220V的电网电压转变为本设计所需的较低的电压,就可以进行下一阶段的整流部分。一般规定v1为变压器的高压侧,v2为变压器的低压侧,v1侧的线圈要比v2侧的线圈要多,这样就可以将220V 的电网电压降低,如图1所示:

图1变压器

单相桥式整流电路,就是将交流电网电压转换为所需电压,整流电路由四只整流二极管组成。下面简单介绍一下单相桥式整流电路的工作原理,为简便起见,这里所选的二极管都是理想的二极管,二极管正向导通时电阻为零,反向导通时电阻无穷大。在v2的正半周,电流从变压器副边线圈的上端流出,经过二极管D1,再由二极管D4流回变压器,所以D1、D4正向导通,D2、D3反向截止,产生一个极性为上正下负的输出电压。在v2的负半周,其极性正好相反,电流从变压器副边线圈的下端流出,经过二极管D2,再由二极管D3流回变压器,所以D1、D4反向截止,D2、D3正向导通。桥式整流电路利用了二极管的单向导电性,利用四个二极管,是它们交替导通,从而负载上始终可以得到一个单方向的脉动电压[6]。单相桥式整流电路如图2所示:

图 2 单相桥式整流电路

本设计的滤波电路采用的是电解电容和二极管并联方式滤波,简单的讲就是电容两端电压升高时,电容充电,电压降低时,电容放电,让电压降低时的坡度变得平缓,从而起到滤波的作用。这里选用电解电容是因为电解电容单位体积的电容量非常大,能比其它种类的电容大几十到数百倍,并且其额定的容量可以做到非常大,价格比其它种类相比具有相当大的优势,因为其组成材料都是普通的工业材料,比如铝等等。电解电容并联二极管,有效防止了电压反相。滤波电路如图3所示:

图 3 滤波电路

三端稳压器MC78M05CT将输出电压稳定在+5V上,三端稳压器如图4所示:

图 4 三端稳压器总设计图:

防反接保护电路

防反接保护电路 防反接保护电路 1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。 图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路 图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示

直流稳压电源设计模拟电子技术

课程设计说明书 题目:直流稳压电源设计 课程名称:模拟电子技术 学院:电子信息与电气工程学院学生姓名: 学号: 专业班级: 指导教师: 2015年 6 月6日

课程设计任务书

固定直流稳压电源设计 摘要: 通过模拟电子技术设计固定直流稳压电源,主要运用变压器,整流二极管,电解电容,稳压器等器件.该固定直流稳压系统先通过将220V市电降压,再经过整流二极管1N4007进行整流,通过电容滤波之后,采用稳压芯片7805,7905分别对其进行稳压,从而输出的稳定电压(+5V/-5V)。 关键词:变压;整流;滤波;稳压;

目录 1.设计背景 (1) 1.1设计背景 (1) 1.2设计目的 (1) 2.设计方案 (1) 2.1电路概述 (1) 2.2整流电路 (3) 2.3稳压电路 (4) 2.4固定直流稳压电源电路设计 (5) 3.方案实施 (6) 3.1电路仿真设计与仿真 (6) 3.2Altium Designer设计原理图及PCB设计 (7) 3.3电路板的制作与调试 (8) 3.4相关数据测量 (8) 4.结果与结论 (9) 5.收获与致谢 (9) 6.参考文献 (10) 7.附件 (10) 7.1电路实物图 (10) 7.2元器件清单 (11)

1. 设计背景 1.1设计背景 随着科技日新月异的发展,越来越多的小型电子产品出现在我们身边,它们一般都需要稳定的直流电源供电,电池作为低效率,高污染的产品不能得到广泛的使用,而我们最常见到的电源就是220V的交流电源,再次情况下,我们设计了一个转换装置,从而可以使其给小型电子设备供电,达到及节能又环保,既方便有快捷的目的。 1.2设计目的 设计这个固定直流稳压电源是为了锻炼学生的动手能力,理论与实践相结合,更有利于同学们在学习中积极的思考,培养同学们对学习的兴趣;而且,检验了同学们对电路仿真软件和DXP这些软件的熟悉程度,进一步加深了对这些软件的理解,提高了应用能力;另外,让同学们看到,理论知识在现实生活中的应用,知道了这些知识的重要性,要更加努力的学习。本次课程设计就是在这样的一个背景下而进行的一次十分重要的实习安排。 2. 设计方案 2.1电路概述 根据电路的特点和性质,电路可有这几部分组成,变压器电路部分,整流电路部分,滤波电路部分,稳压电路部分。 变压器电路可以使电压达到设备可以使用的一个电压范围,如下图所示。 整流电路使用来把变压器副边通过的交流电压转换为直流电压,满足设备需要直流电源供电的要求。即将正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如下图所示。但实际情况是整流后还含有较大的交流分量,会影响负载电路的正常工作。 滤波电路是用来进一步的减少电路中的交流分量,增加电路中的直流分量,使输出电压平滑。理想情况下,应将交流分量全部滤掉,使滤波电路的输出电压仅为

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

单端反激开关电源原理与设计

单端反激开关电源原理与设计

单端反激开关电源原理与设计 林晓伟 (国电南瑞科技股份有限公司,江苏省南京市210061) 0 引言 近年来随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、继承化的方向发展,高效率的开关电源已经得到越来越广泛的应用。单端反激式变换器以其电路简单、可以高效提供直流输出等许多优点,特别适合设计小功率的开关电源。 本文简要介绍了Unitorde公司生产的电流型脉宽调制器UC3842,介绍了该芯片在单端反激式开关电源中的应用,对电源电路进行了具体分析。利用本文所述的方法设计的小功率开关电源已经应用在国电南瑞科技股份有限公司工业控制分公司自主研发的分散控制系统GKS-9000

中,运行状况良好,各项指标均符合实际工程的要求。 1 反激式开关电源基本原理 单端反激开关电源采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。这种反馈控制电路的最大特点是:在输入电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。反激电路适应于小功率开关电源,其原理图如图1所示。

下面分析在理想空载的情况下电流型PWM的工作情况。与电压型的PWM比较,电流型PWM 又增加了一个电感电流反馈环节。 图中:A1为误差放大器;A2为电流检测比较器;U2为RS触发器;Uf为输出电压Uo的反馈取样,该反馈取样与基准电压Uref通过误差放大器A1产生误差信号Ue(该信号也是A2的比较箝位电压)。 设场效应管Q1导通,则电感电流iL以斜率Ui /L线性增长,L为T1的原边电感,电感电流在无感电阻R1上采样u1=R1iL,该采样电压被送入电流检测比较器A2与来自误差放大器的Ue进行比较,当u1>Ue时,A2输出高电平,送到RS触发器U2的复位端,则两输入或非门U1输出低电平并关断Q1;当时钟输出高电平时,或非门U1始终输出低电平,封锁PWM,在振荡器输出时钟下降的同时,或非门U1的两输入均为低电平,则Q1被打开。

一个5v直流稳压电源设计报告

直流稳压电源设计 姓名:_ 学号:_ 专业: 班级:_______ 2012年3月12号 课题: 220v交流电转5v直流电的电源设计

一.电路实现功能 该电路输入家用220v交流电,经过全桥整流,稳压后输出稳定的5v直流电。 二.特点 方便实用,输出电压稳定,最大输出电流为1A,电路能带动一定的负载 设计方案 设计思路: 考虑到直流电流电源。我们用四个1N4007四个晶体管构成桥式整流桥。,将220V50Hz的交流电转换为直流电。以电容元件进行整流。因为我们要输出5V的电压,所以选用7805。 设计原理连接图: 一、变压器变压 220V交流电端子连一个降变压器把电压值降到8V左右

二、 单项桥式全波整流电路 根据图,输出的平均电压值0()201sin ()AV U d π ωτωτπ=?

即:0()20.9AV U U 三、 电容滤波 本设计我们使用电容滤波,滤波后,输出电压平均值增大,脉动变小。 C 越大, RL 越大,τ越大,放电越慢,曲线越平滑,脉动越小。 四、 直流稳压 因为要输出5V 的电压,所以选用LM7805三端稳压器件 五、 总电路

如图所示电路为输出电压+5V、输出电流1.5A的稳压电源。它由电源变压器B,桥式整流电路D1~D4,滤波电容C1、C3,防止自激电容C2、C3和一只固定式三端稳压器(7805)极为简捷方便地搭成的。 220V交流市电通过电源变压器变换成交流低压,再经过桥式整流电路D1~D4和滤波电容C1的整流和滤波,在固定式三端稳压器LM7805的Vin和GND两端形成一个并不十分稳定的直流电压(该电压常常会因为市电电压的波动或负载的变化等原因而发生变化)。此直流电压经过LM7805的稳压和C3的滤波便在稳压电源的输出端产生了精度高、稳定度好的直流输出电压。本稳压电源可作为TTL电路或单片机电路的电源。三端稳压器是一种标准化、系列化的通用线性稳压电源集成电路,以其体积小、成本低、性能好、工作可靠性高、使用简捷方便等特点,成为目前稳压电源中应用最为广泛的一种单片式集成稳压器件。 六、实验所需元器件 万用板一个,1N4007晶体管四个,(220伏至8伏) 交流变压器一个,电解电容2200μF一个,电解电容 100μF一个,电容0.1F两个,LM7805三端稳压器一 个。电烙铁一个,松香若干,锡丝若干~~

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

5v直流稳压电源设计资料

新疆工程学院 实训报告 实训科目电子技术实训 系部机械系 专业 班级 姓名 实训地点教室及电子实验室指导教师李积芳 完成日期 新疆工程学院教务处

新疆工程学院 电气与信息工程系电子实训任务书

新疆工程学院电子实训成绩表 (注意:旷课一票否决)目录

摘要 第一章引言 (3) 1.1硬件电路设计要求电路设计 (4) 1.11元件选取电源变压器 (6) 1.12整流二极管的选择滤波电容的C的确定 (6) 第二章网站导航概述 总结 (8) 致谢 参考文献 (9)

内容摘要 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现±5V电压稳定输出。 关键词:±5V,变压器,整流,滤波,稳压器

引言 关于稳压电源的分类,首先就应该清楚电源的输出是什么,是输出直流电还是输出交流电。第二个层次的分类可以根据调整管的工作状态来分类。第三个层次的分类就是根据稳压电路与负载的连接方式来分类。再往下面细分由于各种不同的电路特性相差太大,就不好一概而论,应该根据每一个具体类别的特性进行分类区分了。当然这里所谈的分类只是根据直流稳压电源的特点给出一个大致的分类思路,图1是根据上面的思路划分的稳压电源种类。 图1 稳压电源分类 根据调整管的工作状态,我们常把直流稳压电源分成两类:线性稳压电源和开关稳压电源[1]。线性稳压直流电源的特点是:输出电压比输入电压低;反应速度

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

直流稳压电源电路设计

模拟电子技术课程设计报告 题目名称:直流稳压电源电路设计姓名: 学号: 班级: 指导教师: 成绩:

目录 1课程设计任务和要求 2 2方案设计 2 3单元电路设计与参数计算 4 4总原理图及元器件清单9 5安装与调试 11 6性能测试与分析12 7结论与心得14 8参考文献 14

课程设计题目: 直流稳压电源电路设计 一、课程设计任务和要求: 1)用桥式整流电容滤波集成稳压块电路设计固定的正负直流电源(±12V)。 2)输出可调直流电压,范围:1.5∽15V; 3)输出电流:IOm≥1500mA;(要有电流扩展功能) 4)稳压系数Sr≤0.05;具有过流保护功能。 二、方案设计: 稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如下图1所示,其整流与稳压过程的电压输出波形如图2所示。 图1稳压电源的组成框图 图二整流与稳压过程波形图 电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。

方案一、单相半波整流电路 半波单相整流电路简单,电路及其电压输出波形分别如图3、图4所示,使用元件少,它只对交流电的一半波形整流,其输出波形只利用了交流电的一半波形则整流效率不高,且输出波形脉动大,其值为:S= =≈1.57,直流成分小,= ≈0.45,变压器利用率低。 图3 单相半波整流电路 图 4 单相半波整流电路电压输出波形图 方案二、单相全波整流电路 使用的整流器件是半波电路的两倍,整流电压脉动较小,是半波的一半,无滤波电路时的输出电压=0.9,变压器的利用率比半波电路的高,整流器件所承受的反向电压要求较高。 方案三、单相桥式整流电路 单相桥式整流电路使用的整流器件较多,但其实现了全波整流电路,它将的负半周也利用起来,所以在变压器副边电压有效值相同的情况下,输出电压的平均值是半波整流电路的两倍,且如果负载也相同的情况下,输出电流的平均值也是半波整流电路的两倍,且其与半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求一样,还具有输出电压高、变压器利用率高、脉动小等优点。所以综合三种方案的优缺点决定用方案三。

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源设计教程—理论基础篇

前工程师讲解:开关电源设计教程—理论基础篇 2015-02-06 09:24 来源:电源网作者:铃铛 很多工程师都能回想起自己初学电源时的情景,从最基础的理论基础开始,大量的查阅资料。经历了迷茫和困惑,用时间一点点的积累。小编将为大家整理一系列有关开关电源设计的教程,几乎包含了开关电源的所有拓扑。这些教程由前工程师编写,根据自身的自学经验为大家量身打造,希望能够帮助大家走出迷茫,尽快迈上正轨。 对于初学者来说,最难的不是学习资料,而是找到并且区别哪些资料是有价值的,并且哪些是有必要的。为了新手能够快速找到学习的路子,快速入门,真的迈进开关电源这个世界,现在将常用的拓扑一个一个写出来,用最简单,通俗的语言,用工程实践检验过的最可靠的理论。 先说说做开关电源需要具备的理论基础,做电源的工程师,分两类,一类是搞研究的,一类是搞工程的。 所谓搞研究的,就是研究各种新的技术、新材料、新工艺、新的拓扑结构等等。这些人需要很高的理论底子,当然必须是高学历,数学、电磁学、电子学、自动控制等等。 还有一种就是我们最常见的电源工程师,就是在公司开发部做项目的电子工程师。本文面对的是第二类的,也就是面对应用阶层的电源设计工程师。 必须加一句,像陶显芳老师赵修科老师这一类的大神级别的大师写的书,新手完全没必要使劲啃的,很费时费力。大可囫囵吞枣看一下,能懂多少是多少。然后在慢慢成长的过程中,回头再看,就会有很大的收获。 我们是做工程的,他们搞理论基础的。大师写的书,一下子完全看懂,不大可能。那些书很多方面写得很详细,有完整的理论推导,包括的也非常全面。但是我还是奉劝新手不要在数学公式里面纠结。 那些书完全可以作为技术手册来使用。做技术都有一个成长的过程,到了一定的程度,那些书就很有用处了。 应用类的工程师需要必须具备的理论基础有:模拟电子技术基础。先说模拟电子技术的学习深度问题。刚毕业,一般都不可能把模电学好,谁要是真的觉得自己刚毕业就很棒,那就有两种可能,要么自己自高自大,不知天高地厚。要么就是跟导师真正实际做过项目,并且勤奋学习理论的人。对于我们做电源的工程师来说,模电必须懂的东西列举一下: 电阻:电阻是各种电子电路里面最基础的原件,电阻在开关电源里面的应用主要有各种控制返回电路的分压网络,然后就是吸收回路里面的功率耗散。我们设计中必须关注的有电阻的封装,功耗,耐压,精度。 三极管:三极管在开关电源中有两类用途:第一,做开关管。开关电源的开关管现在主要有Mos管,三极管,IGBT。第二,信号处理。三极管在开关电源的控制电路里面,用的最多的也就是做个保护电路里面简单的小信号开关,然后就是做线性稳压电源(主电路里面的辅助电源)。 需要懂什么呢,刚开始,知道三极管怎么打开,怎么关闭就好。然后知道什么是线性工作状态,什么是开关状态。书上那些乱七八糟的计算,先放下来,平时基本用不上,用到了,再去查,很快就看懂了。千万不要一头钻进理论里面去,浪费时间,浪费精力,用到的时候,第一参考元器件规格书,第二请教别人,然后再回头看书。 二极管:正向导通,反向截止。知道什么是二极管结电容,二极管的关断时间,反向耐压,正向导通电压,正向持续电流,脉冲电流这些概念就OK了,基本够用了。工作中遇到问题,然后再回头看书。

压敏电阻保护电路设计讲解

??AUMOV????LV UltraMOV??? 儎???????????? ???? ???????? ????

2 https://www.360docs.net/doc/ea15392207.html, 3 AUMOV?系列压敏电阻介绍5 LV UltraMOV?压敏电阻系列介绍6 压敏电阻基础 8 汽车MOV 背景信息和应用例举 11 LV UltraMOV?背景信息和应用例举13 低压直流 MOV 选型16 瞬态浪潮抑制技术 18 金属氧化物压敏电阻(MOV )介绍18 压敏电阻串、并联 21 附件:技术规格和零件号相互参照 本文件的技术规格说明和说明性材料为出版时所知的最准确的描述,如有变更,恕不另行通知。 更多信息,请访问https://www.360docs.net/doc/ea15392207.html, 。

https://www.360docs.net/doc/ea15392207.html, 3 AUMOV TM 系列压敏电阻介绍 以上器件有以下规格: ? 磁盘大小: 5mm, 7mm, 10mm, 14mm, 20mm ? 额定工作电压:16–50VDC 额定浪涌电流:400-5000A (8/20ps )? ? 额定助推起动功率:6-100焦耳? 额定负载突降: 25–35 V AUMOV TM 系列特点 ? 符合AEC-Q200(表10)的规定? 强劲的负载突降和助推起动功率? 通过UL 认证(可选环氧树脂涂层) ? 较高的工作温度:最高达125°C (可选酚醛树脂涂层)? 较高的额定峰值浪涌电流和能量吸收能力 AUMOV TM 系列的优点 ? 符合汽车行业要求? 符合ISO 7637-2的规定 ? 有助于电路设计员符合UL1449标准? 适合高温环境和应用 ? 卓越的浪涌保护和能量吸收能力,提高了产品的安全性? 具有通过TS16949认证的生产器件 AUMOV?系列压敏电阻是专为保护低压(12VDC 、24VDC 和42VDC )汽车系统的电路而设计的。该系列压敏电阻有5种磁盘规格,径向引线可选择环氧树脂涂层或酚醛树脂涂层。汽车MOV 压敏电阻符合AEC-Q200(表10)的规定,能够提供强劲的负载突降、实现助推起动、产生额定峰值浪涌电流以及具有高能量吸收能力。

5V直流稳压电源

电子科技大学 《模拟电路基础》应用设计报告 设计题目: 5V直流稳压电源 学生姓名:李秘学号:2014070905021 教师姓名:张雅丽日期: 2015/12/22 一、设计任务 设计一个直流稳压电源,要求满足以下条件 1.输出电压:5V 2.最大输出电流:0.5A 3.电压调整率:≤4% 4.电流调整率:≤4% 5.纹波系数:≤5% 二、电路原理 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图1。

其中: (1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。 (2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流 电。(3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。 (4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 整流电路常采用二极管单相全波整流电路,电路如图2所示。在u2的正半周内,二极管D1、D3导通,D2、D4截止;u2的负半周内,D2、D4导通,D1、D3截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图3所示。 在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即电路中的每只二极管承受的最大反向电压为(U2是变压器副边电压有效值)。 在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以达到使输出波形基本平滑的目的。选择电容滤波电路后,直流输出电压:Uo1=(1.1~1.2)U2,直流输出电流I2是变压器副边电流的有效值。稳压电路可选集成三端稳压器电路。总体原理电路见图4。 图4 稳压电路原理图

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

相关文档
最新文档