电化学法研究金属防腐蚀新进展

电化学法研究金属防腐蚀新进展
电化学法研究金属防腐蚀新进展

电化学法研究金属防腐的新进展

白煜磊(201450039)

摘要:金属腐蚀是指在各种环境条件下发生的破坏和变质。腐蚀问题带来巨额经济损失,阻碍国民经济的发展,金属腐蚀的防治工作始终占居着电化学领域重要位置。本文简单介绍金属的电化学腐蚀主要类型机理,并针对不同的机理归纳出国内外电化学法研究金属腐蚀的新进展。

关键词:电化学;金属防腐;新进展

Research Progress of New Techniques on Zinc Plating

Bai Y ulei(201450039)

Abstract:Because of the simple process,low price and obvious anti-corrosion effect,zinc plating is widely used as a well protective coating.The production account for 60-70 percent of the whole electroplating industry.In this essay,zinc plating bath are divided into two parts,acid zinc plating bath and base zinc plating bath.The essay is also given a progress of the new techniques on zinc plating in recent years and described the advantages disadvantages of it.

Keywords :zinc ; electroplating ; new techniques

1.前言

金属材料的腐蚀,是指金属材料和周围介质接触时发生化学或电化学作用而引起的一种破坏现象。从热力学的观点来看,除了少数贵金属(如金、铂等)外,各种金属都有转变成离子的趋势[1]。因此,金属元素比它们的化合物具有更高的自由能,必然有自发地转回到热力学上更稳定的自然形态——氧化物的趋势,所以说金属腐蚀是自发的普遍存在的一种现象,是不可避免的。据统计,全世界现存的钢铁及金属设备大约每年腐蚀率为10%,全世界每年因腐蚀损失约高于7000亿美元。世界各发达国家每年因金属腐蚀而造成的经济损失约占其国民生产总值3.5%~4.2%,超过每年各项大灾(火灾、风灾及地震等)损失的总和。有人甚至估计每年全世界腐蚀报废和损耗的金属约为1亿吨![2]对于金属而言,在自然界大多是以金属化合物的形态存在。

电化学保护是指在电化学腐蚀系统中,通过施加外加电流将被保护金属的电位移向免蚀

区或钝化区,以降低金属腐蚀程度,这是一项经济而有效的腐蚀控制措施。研究金属材料的腐蚀机理,弄清腐蚀发生的原因及采取有效的防护措施,对于延长设备寿命、降低成本、提高劳动生产力都具有十分重大的意义。本论文主要综合讲述了金属的电化学腐蚀的基本原理和分类,以及讨论了有关现实生产生活中具体的防护措施,以更好的指导现实实践。

2、基本原理:

2.1、金属材料的腐蚀机理

2.1.1化学腐蚀

是指金属与介质之间直接发生纯化学作用而引起的破坏。其腐蚀过程是一种纯氧化和还原的纯化学反应,即腐蚀介质直接同金属表面的原子相互作用而形成腐蚀产物,电子的传递是在它们之间直接进行的,因而反应进行过程中没有电流产生,其过程符合化学动力学规律。实际上单纯化学腐蚀的例子是较少见到的,例如金属因高温氧化而引起的腐蚀,曾一直作为化学腐蚀的典型实例。但是瓦格纳根据氧化膜的近代观点提出,在高温气体中,金属氧化过程的开始,虽然是由化学反应引起的,但后来膜的成长过程则属于电化学机理。

2.1.2 电化学腐蚀

是金属与介质之间发生电化学作用而引起的破坏。反应过程同时有阳极失去电子的阳极反应,阴极获得电子的阴极反应以及电子的流动(电流),其历程服从电化学动力学的基本规律。绝大多数情况下,由于金属表面组织结构不均匀,上述的一对电化学反应分别在金属表面的不同区域进行在。例如当把碳钢放在稀盐酸中时,在钢表面铁素体处进行的是阳极反应(即Fe→Fe2++2e-),而在钢表面碳化铁处进行的则是阴极去极化反应(即2H++2e-→H2↑)。与这一对电化学反应进行的同时,则有电子不断地从铁素体流向碳化铁。我们把发生阳极反应的区域叫做阳极区,铁素体是阳极;把发生阴极反应的区域叫做阴极区,碳化铁是阴极;而在阳极与阴极之间不断地有电子流动。这种情况和电池的工作情况极为类似,只不过这里的阳极(铁)和阴极(碳化铁)的数目极多,面积极小,靠的极近而已,所以通常称它为腐蚀微电池。金属的电化学腐蚀之所以采取腐蚀微电池的形式,一方面是由于金属表面存在着各种各样的电化学不均匀性,为电化学反应的空间分离准备了客观条件;另一方面则是由于这两个反应分地区进行时遇到的阻力较小,因而在能量消耗上对反应的进行有利。但是从防止和减少腐蚀的观点看,这当然是不利的,我们应当设法尽量减少或消除金属表面的电化学不均匀性[3]。电化学腐蚀又根据其电解质溶液酸碱度的不同分为析氢腐蚀和吸氧腐蚀。

A、析氢腐蚀:(腐蚀过程中有氢气放出)

腐蚀过程中的阴极上有氢气析出的腐蚀。它常发生在酸洗或用酸浸蚀某种较活泼金属的加工过程中。Fe作为腐蚀电池的阳极,钢铁中较Fe不活泼的其他杂质作阴极,H+在阴极上获得电子发生还原反应。反应方程式如下:

阳极(Fe):Fe-2e-=Fe2+

阴极(杂质):2H+十2e-=H2(g)

总反应:Fe十2H+=Fe2++H2(g)

B、吸氧腐蚀(腐蚀过程中消耗氧)

在腐蚀过程中溶解于水膜中的氧气在阴极上得到电子被还原生成OH-的腐蚀。它常常是在中性、碱性或弱酸性的介质中发生的。大气中钢铁等金属的腐蚀主要形式是吸氧腐蚀。反应方程式如下:

阳极(Fe):Fe-2e-=Fe2+

阴极(杂质):O2十2H2O十4e-=4OH-

总反应:2Fe十O2十2H2O=2Fe(OH)2

Fe(OH)2将进一步被O2所氧化,生成Fe(OH)3并部分脱水为疏松的铁锈。

4Fe(OH)2十O2十2H2O=4Fe(OH)3=Fe2O3·XH2O(铁锈)

析氢腐蚀的水膜常呈酸性,而吸氧腐蚀水膜呈中性或酸性很弱或碱性。通常两种腐蚀同时存在,但后者更为普遍,吸氧腐蚀比析氢腐蚀严重得多[4]。

3金属电化学腐蚀的防护

3.1、电化学保护法

电化学保护是指在电化学腐蚀系统中,通过施加外加电流将被保护金属的电位移向免蚀区或钝化区,按其保护原理可分为阴极保护和阳极保护[5]。

3.1.1阴极保护

阴极保护技术广泛应用于埋地管网、码头船舶、军用车辆、建材、石油及化工等领域中,对相关金属构件的防腐具有重要的作用,是一种经济有效的电化学保护技术[6-14]。因电流来源的不同,阴极保护技术可分为牺牲阳极保护法和外加电流保护法。相对于外加电流保护法,牺牲阳极法具有无需外加辅助电源;对临近建筑物产生的杂流干扰很小,甚至无干扰;适用范围广等优点[15~17]。牺牲阳极法需满足的相关技术要求:阳极电位需足够负且稳定;有较高的电流效率;电化学当量高;阳极极化率较小且易活化;合金溶解均匀,不产生局部腐蚀,腐蚀产物松软易脱落且无公害;阳极材料来源充足,便于加工,价格低廉等[9-14]。

3.1.2阳极保护

阳极保护法是在被保护金属表面通入足够大的阳极电流,使电位变正进入钝化区、腐蚀速度大大降低的方法。从热力学和动力学上讲,任何金属都具有一个可使金属处于钝化状态的电位,阳极保护就是创造条件使金属表面维持一稳定的钝化膜。金属从活化腐蚀溶解状态到钝化的转变过程称为钝化过程,一些重要的结构材料均具有钝化转变行为。阳极保护主要用于一些贮罐、塔设备、换热器等的腐蚀防护,对浓硫酸贮罐的阳极保护常用的辅助电极有镀铂电极、高硅铸铁、银等,对稀硫酸可用铝青铜、石墨等。致钝是实施阳极保护的第一步,金属致钝后,会使被保护金属表面在与腐蚀介质接触后的电流密度高于体系的致钝电流密度,使金属转入钝化状态。为使金属快速进入钝化区,减少在活化区的溶解腐蚀损失,可增大局部表面电流密度使整个金属表面逐步实现钝化,或设法降低体系的致钝电流密度,如低温致钝、化学致钝、脉冲致钝等。

3.2、缓蚀剂法

在腐蚀介质中添加一种在很低的浓度下能抑制金属在腐蚀介质中破坏过程的物质(称缓蚀剂)的防蚀方法叫做缓蚀剂法。把少量的缓蚀剂(如万分之几)加到腐蚀性介质中,就可使金属腐蚀的速率显著的减慢。这种用缓蚀剂来防止金属腐蚀的方法是防腐蚀中应用得最广泛的方法之一。电化学腐蚀的速率是由阳极过程和阴极过程的极化特征所决定的。只要加入的缓蚀剂能够抑制上述过程中的一种或二种,腐蚀速率就会降低。根据缓、蚀剂所能抑制的过程,我们可以把缓蚀剂分为阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。加入缓蚀剂,加快极化程度,降低腐蚀电流。作用的机理主要是在电极表面形成钝化膜、吸附膜、沉积膜。

由中海油天津化工研究设计院开发的多种TS系列缓蚀药剂根据腐蚀介质的特点及设备的工艺条件,开发出了成套缓蚀剂技术,工业循环冷却水高浓缩倍率(5倍以上)无磷缓蚀药剂已经在惠州炼化成功应用。

3.2.1、无机缓蚀剂

大多用在中性介质体系,缓蚀剂主要影响金属的阳极过程和钝化状态,在金属表面形成氧化膜或钝化膜,使腐蚀受到抑制。通常在中性介质中使用的无机缓蚀剂有NaNO2、K2Cr2O7、Na3P04等。在碱性介质中使用的NaNO2、NaOH、Na2CO3、Ca(HCO3)2等。生成的难溶盐层覆盖于阳极表面,成为具有保护性的薄膜,阻滞了阳极反应,降低了金属的腐蚀速率。有些无机缓蚀剂使阳极过程变慢,称为阳极型缓蚀剂,如促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、Fe3+)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐);另一类无机缓蚀剂是促进阴极极化,称为阴极缓蚀剂,如Ca2+、Zn2+、Mg2+、Cu2+、Cd2+、Mn2+、Ni2+等,能与在阴极反应中产生的OH-形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧

扩散到阴极,增大浓差极化。也有同时阻滞阳极过程和阴极过程的混合型缓蚀剂。有些溶液中的杂质,如S、Se、As、Sb、Bi等化合物,能阻抑阴极放氢过程,使阴极极化增大,减缓腐蚀。缓蚀剂的用量一般要先通过试验才能确定。

3.2.2、有机缓蚀剂

通常在酸性介质中使用, 有机缓蚀剂属于吸附型缓蚀剂,它们吸附在金属表面形成几个分子厚的不可见膜,一般同时阻滞阳极和阴极反应,但阻滞效果并不相同。常用品种有含N、含S、含O、含P的有机化合物,如胺类、杂环化合物、长链脂肪酸化合物、硫腺类、醛类、有机磷类等。缓释剂的吸附类型有静电吸附、化学吸附。静电吸附剂有苯胺及其取代物,吡啶、丁胺、苯甲酸及其取代物如苯磺酸等;化学吸附剂有氮和硫杂环化合物;有些化合物同时具有静电和化学吸附作用。此外,有些螯合剂能在金属表面生成一薄层金属有机化合物。近年来,有机缓蚀剂发展很快,应用广泛,使用这些缓蚀剂也会产生缺点,如可能污染产品,可能对生产流程产生不利影响等。

3.2.3 气相缓蚀剂

气相缓蚀剂多是挥发性强的物质,也属于吸附型缓蚀剂。它的蒸气被大气中水分解出有效的缓蚀基团,吸附在金属表面使腐蚀减缓,一般用于金属零部件的保护、贮藏和运输。它必须用于密封包装内,海洋油轮内舱也可用它来保护。常见的有效气相缓蚀剂有脂环胺和芳香胺;聚甲烯胺;亚硝酸盐与硫脲混合物;乌洛托品和乙醇胺;硝基苯和硝基萘等。

3.3、在金属表面添加保护层

3.2.1 非金属保护层

在金属表面涂上油漆、搪瓷、塑料、沥青、高分子材料等,使金属与腐蚀介质隔开,可达到防蚀的目的。用塑料(如聚乙烯,聚氯乙烯,聚氨脂等)喷涂金属表面,比喷漆效果更佳。塑料这种覆盖层致密光洁,色泽鲜艳,兼具防蚀与装饰的双重功能。

在众多导电高分子中,聚苯胺由于具有结构多样化、环境稳定性好、独特的掺杂机制以及优异的电化学性能、光化学性能而得到广泛关注,可应用在导电塑料、电子仪器、电子屏蔽、传感器、纳米复合材料等许多领域[聚苯胺在金属表面能形成均匀致密的聚苯胺膜,可以有效保护膜下的金属不被腐蚀和划伤.不仅如此,聚苯胺经氧化掺杂后,可以具有类似于金属的电导率,并且它在多种介质中有着良好的稳定性,所以用它作为防护涂层,还可保持电器元件或导电材料的导电性,省去使用如油脂、油漆等防护材料时,使用前必须进行清洗等麻烦,而且它没有任何的环境副作用,是一种符合时代和科技发展的绿色缓蚀剂和防腐蚀材料。

3.2.2 金属保护层

这是以一种金属镀在被保护的另一种金属制品表面上所形成的保护镀层,前一种金属称为镀层金属。常用的形成金属保护层的方法包括电镀、热镀、热喷渡、化学镀、渗渡等。电镀是用直流电从电解液中析出金属,并在物件表面沉积而获得金属覆盖层的方法。金属覆盖层多为纯金属铬、镍、金、铂、银、铜、锡、铅、钴、锌、镉等以及某些合金如锡青铜、黄铜等。热镀又称热浸镀,是将被保护金属制品浸在熔融金属中,使其表面形成一层保护性金属覆盖层,选用的金属一般是低熔点耐蚀耐热的金属,如Al、Zn、Sn、Pb等。热镀锌主要用于钢管、钢板、钢带和钢丝,应用最广;热镀锡用于薄钢板和食品加工等的贮存容器;热镀铅主要用于化工防蚀和包覆电缆;热镀铝则主要用于钢铁零件的抗高温氧化等。热喷镀是利用气体燃烧、爆炸或电能做热源,将丝状或粉状金属加热至融化或半融化状态,并以高速喷向零件表面,从而形成一层具有特殊性能的涂层,常用的材料是Al、Zn、Sn、Pb、不锈钢等。4.结束语

本文综述了近年来电镀锌新技术的研究进展,对电镀锌技术进行了分类,并加以总结。随着环境污染的日益加剧,环保的历年越来越受人重视,因此在电镀锌领域新技术层出不穷,替代氰化物镀锌方法势在必行。我相信随着科学技术的发展,把一些先进的电镀工艺和表面处理手段应用到电镀锌上已经完全可以变为现实。相信在金属制品行业的共同努力下,电镀锌的质量在不久的将来一定可以提高到一个新的水平。

参考文献:

[1]曹楚南·悄悄进行的破坏一金属腐蚀[M]·北京:清华大学出版社.2000.

[2]李义田,浅谈金属的腐蚀与防护[J].价值工程, 2013,25:301-302.

[3]成纯赞,金属管道的腐蚀及防腐对策[J]给水排水,2004,30(11),95-96.

[4]陶琦,李芬芳,邢健敏,金属腐蚀及其防护措施的研究进展[J],湖南有色金属,2007,23(2):43-46.

[5]魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 2004: 1-5.

[1]曹浪,左正忠,田志斌等.电镀锌镍合金的研究现状与展望[J].材料保护,2010,04(1.1):33-37+50+116.

[2]王爱华,朱久发.我国电镀锌板发展趋势的探讨[J].轧钢,2008,5(4):39-42.

[3]周宁雅,陆萍.镀锌钢丝防腐蚀涂层液应用[J].金属制品,2012,06:25-26+30.

[4]李雪,裴和中,张国亮,龙晋明.锌镀层钝化处理的研究现状及展望[J].热加工工艺,2012,16(3):144-147.

[5]R Munz, G K Wolf, L.Guzman, et al. Zincy manganese multilayer coatings for corrosion protection[J]. Thin solid films,2004,459:297-302.

[6]吴雪颖.碱性无氰电镀锌—镍合金工艺的研究[D].华南理工大学,2010.

[7]Qibo Zhang, Yixin Hua. Kinetic investigation of zinc electrodeposition from sulfate electrolytes in the presence of impurities and ionic liquid additive [BMIM]HSO4[J]. Materials Chemistry and Physics,2012,(134);333-339.

[8]冯拉俊,同培茹,沈文宁,雷阿利.氯化物镀锌光亮剂对镀层性能的影响[J].电镀与精饰,2013,10:39-43.

[9]梁新中.硫酸盐镀锌和氯化物镀锌的通用光亮剂[J].电镀与涂饰,2012,06:16-18.

[10] Manuela D. Machadoa, Eduardo V. Soaresa. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents[J].Journal of Hazardous Materials,2010,(184);357-363.

[11]袁诗璞. 氯化钾镀锌的生产应用现状[J].材料保护,2008,41(3):71-74,83.

[12]孙洪彬,郭振良,唐清华,杨迎霞.新型氯化钠(钾)镀锌光亮剂的研究[J].化学工程师,2004,08(107):17-18+48.

[13]冯玉树,王立生.高耐蚀无氰镀锌新工艺[C].2004北京推动电镀与精饰清洁生产技术论坛论文集.2004:9.

[14]Z. Zhang, W.H. Leng, H.B.Shao.et al. Study on the behavior of Zn–Fe alloy electroplating[J]. Journal of Electroanalytical Chemistry,2001,1(516):127-130.

[15]L Wing. A solution to reducing the cost of acid zinc platting[J]. Metal fishing,2009,46:26-30.

[16]万仁荣,陈永言.高速硫酸盐镀锌工艺及镀层性能[J].材料保护,2007,04(11):65-66+76.

[17]张馥,石磊,张明晓等.电镀锌铁合金工艺及光亮剂的研究[J].表面技术,2013,04(42):79-82.

[18]Zi Ping,Zhanga,Gang Yua,Yuejun,Ou Yanga, et al.Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D[J]. Applied Surface Science,2009,17(255);7773-7779.

[19]张体群,陆萍,周宁雅,黄华江. 光亮添加剂在硫酸盐电镀锌钢丝生产中的应用[J]. 金属制

品,2011,01(23):45-48.

[20]胡波,张红田,黄治国.一线双用钢丝热镀锌生产工艺及设备改进[J].金属制品,2011,05(37):42-44.

[21]尚书定.使用线材硫酸盐电镀锌工艺[C].全国金属制品信息网第22届年会论文集,2010,130-132.

[22]O Aaboubi,J Douglade, X Abenaqui, et al. Influence of tartaric acid on zinc electrodeposition from sulphate bath[J]. Electrochimica Acta,2011,56:7885-7889.

[23]Soroor Ghaziof,Wei Gao. The effect of pulse electroplating on Zn–Ni alloy and Zn–Ni–Al2O3 composite coatings[J]. Journal of Alloys and Compounds,2015,622:918-924.

[24]Tatiana Scarazzato,Daniella Cardoso Buzzia, Andréa Moura Bernardes,et al. Treatment of wastewaters from cyanide-free plating process by electrodialysis[J]. Journal of Cleaner Production,2014,19:046-049.

[25]J.C.Ballesteros,L.M.Torres-Martínez,I. Juárez-Ramírez,et al. Study of the electrochemical co-reduction of

Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine[J]. Journal of Electroanalytical Chemistry .2014,727:104-112.

[26]Ju-Cheng Hsieh,Chi-Chang Hua,Tai-Chou Leeb. Effects of polyamines on the deposition behavior and morphology of zinc electroplated at high-current densities in alkaline cyanide-free baths[J].Surface and Coatings Technology.2009,203:3111-3115.

[27]Jueling Chen,Gang Yua,Bonian Hu. A zinc transition layer in electroless nickel plating[J]. Surface and Coatings Technology.2006,201:686-690.

[28]李亚军.锌酸盐镀锌工艺的再研究[J].电镀与环保,2008,28(4):16-17.

[29]John Bibber.Zincate- or Stannate–Free Plating of Aluminum and its Alloys[J].Metal Finishing.2013,1:23-25.

[30]Jinwei Tang,Kazuhisa Azumi.Influence of zincate pretreatment on adhesion strength of a copper electroplating layer on AZ91 D magnesium alloy[J].Surface and Coatings Technology.2011,205:3050-3057.

[31]魏新. 可替代氰化镀锌的无晶须锌酸盐镀锌工艺[J].电镀与精饰,2013,01(17):28-30.

[32]肖鑫,易翔,钟萍,欧玲燕. 全光亮碱性锌酸盐镀锌工艺研究[J].腐蚀科学与防护技术,2008,01(23):62-64.

[33]黄荣一,卜水.光亮锌酸盐镀锌工艺的研究[J].电镀与环保,2012,32(4):15-18.

[34]王池,张红利.环保型碱性镀锌工艺介绍[J].材料保护,2007,40(2):64-66.

[35]H.B.Muralidhara, Y.A.Naik.Electrochemical deposition of nanocrystalline zinc on steel substrate from zincate bath[J]. Surface and Coatings Technology,2008,202:3403-3412.

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

《金属的电化学腐蚀与防护》教案3(新人教选修4)

第四节金属的电化学腐蚀与防护 教材内容分析: 本节内容安排:揭示金属腐蚀的严重性和危害性→分析金属腐蚀的原因→探讨防止金属腐蚀的思路和方法。 教材以钢铁锈蚀为例,剖析了金属的两种电化腐蚀过程,并重点介绍了金属的电化学防护方法。 教材目标设定: 1、解金属腐蚀的两种形式。 2、了解钢铁的吸氧腐蚀和析氢腐蚀这两种电化学腐蚀的作用原理。 3、根据金属的电化学防护的方法 教学方法建议: 阅读讨论、分析探究 教学过程设计: 【阅读】:P84—第1,2小节,了解金属锈蚀的现象 【阅读】:P84—第3,4,5小节,了解金属腐蚀的两种方式 【板书】:一金属的电化学腐蚀 1、金属的腐蚀:化学腐蚀和电化学腐蚀 【阅读】:P84-最后一节至P85,思考并分析以下问题: 1、钢铁的电化学腐蚀有哪两种形式? 吸氧腐蚀、析氢腐蚀 2、钢铁的电化学腐蚀的实质失什么? 钢铁与电解质溶液接触,形成Fe—C原电池,铁失去电子而被氧 3、钢铁在潮湿空气中怎样形成微小的原电池? Fe、C作电极,钢铁在潮湿的空气中表面形成一层水膜,水膜溶解 有来自大气中的CO2、SO2、H2S等气体。从而形成电解质溶液。 4、析氢腐蚀和吸氧腐蚀的电极反应怎样? 析氢腐蚀:(水膜的酸性较强) 负极:Fe —2e—=Fe2+ 正极:2H2O + 2e—=H2↑+ 2OH— 总反应:Fe + 2H2O =Fe(OH)2 吸氧腐蚀:(水膜的酸性很弱或呈中性) 负极:Fe —2e—=Fe2+

正极:2H2O + O2+4e—=4OH— 总反应:2Fe + 2H2O + O2=2 Fe(OH)2 两种腐蚀中生成的Fe(OH)2被O2氧化成Fe(OH)3,再失去一部 分水生成Fe2O3·X H2O疏松地覆盖在钢铁表面。 5、电化学腐蚀与化学腐蚀有什么异同? 相同点:都是金属原子失去电子而被氧化。 不同点:1、电化学腐蚀过程中伴随着电流产生,化学腐蚀过程没有。 2、两种腐蚀均同时发生,但电化学腐蚀普遍,腐蚀速度快。【板书】:2 钢铁的电化学腐蚀 析氢腐蚀:负极:Fe —2e—=Fe2+ 正极:2H2O + 2e—=H2↑+ 2OH— 总反应:Fe + 2H2O =Fe(OH)2 吸氧腐蚀:负极:Fe —2e—=Fe2+ 正极:2H2O + O2+4e—=4OH— 总反应:2Fe + 2H2O + O2=2 Fe(OH)2 4Fe(OH)2+2H2O + O2=4Fe(OH)3,Fe(OH)3 失去部分水,形成Fe2O3·X H2O。 【演示实验】:P85-实验4-3,观察现象。 导管内形成一段水柱 【过渡】:我们了解了金属的电化学腐蚀原理。可以指导我们去做好金属的防护,减少金属的腐蚀。 【阅读】:P86-87:二、金属的电化学防护,思考和分析以下问题: 1、金属的电化学防护通常有哪两种方法? 牺牲阳极的阴极保护法和外加电流的阴极保护法 2、牺牲阴极的阳极保护法中,对阳极有什么要求? 活泼性比Fe强,如Zn等,并要定期拆换 3、外加电流的阴极保护法如何保护? 被保护的钢铁设备作阴极,惰性电极作辅助阳极,接上外加直流电源,通电后,电子被强制流向被保护的钢铁设备,使钢铁表面产生电 子的积累,抑制了钢铁发生电子的作用。 【板书】:二金属的电化学防护 1、牺牲阳极的阴极保护法 2、外加电流的阴极保护法

微生物对重金属 的去除

微生物处理重金属废水的常规研究进展2010-8-23 来源:谷腾水网点击:37 重金属废水的常规处理方法主要包括:化学沉淀法、离子交换法、蒸发浓缩法、电解法、活性炭和硅胶吸附法和膜分离法等,但这些方法存在去除不彻底、费用昂贵、产生有毒污泥或其他废料等缺点。因此,人们一直致力于研究与开发高效环保型的重金属废水处理技术和工艺。微生物处理法是利用细菌、真菌(酵母)、藻类等生物材料及其生命代谢活动去除和(或)积累废水中的重金属,并通过一定的方法使金属离子从微生物体内释放出来,从而降低废水中重金属离子的浓度。近年来,国际上在微生物处理重金属废水的研究中取得了较多成果,该技术在投资、运行、操作管理和金属回收、废水回用等方面优越于传统的治理方法,展现出广阔的应用前景。我国在微生物处理废水重金属这方面的研究尚处于起步阶段,因此,本文就微生物处理重金属废水的机理及其影响因素做一概述,以期促进国内该领域的研究。 1微生物处理重金属废水的机理 1.1微生物对重金属的吸附作用 微生物的吸附作用是指利用某些微生物本身的化学成分和结构特性来吸附废水中的重金属离子,通过固液两相分离达到去除废水中的重金属离子的目的。生物吸附剂为自然界中丰富的生物资源,如藻类、地衣、真菌和细菌等。微生物结构的复杂性以及同一微生物和不同金属间亲和力的差别决定了微生物吸附金属的机理非常复杂,至今尚未得到统一认识。根据被吸附重金属离子在微生物细胞中的分布,一般将微生物对金属离子的吸附分为胞外吸附、细胞表面吸附和胞内吸附。 1.1.1胞外吸附 一些微生物可以分泌多聚糖,糖蛋白,脂多糖,可溶性氨基酸等胞外聚合物质(extracellularpolymericsubstances,EPS),EPS具有络合或沉淀金属离子作用。如蓝细菌能分泌多糖等胞外聚合物,一些白腐真菌可以分泌柠檬酸(金属螯合剂)或草酸(与金属形成草酸盐沉淀)。Suh等研究发现,当茁芽短梗霉(Aureobasidiumpullulans)分泌EPS时,Pb2 便积累于整个细胞的表面,且随着细胞的存活时间增长,EPS的分泌量增多,积累于细胞表面的Pb2 水平就越高,从最初的56.9上升到215.6mg/g(干重);当把细胞分泌的EPS提取出来后,Pb2 便会渗透到细胞内,但Pb2 的积累量显著减少(最高量仅为35.8mg/g干重)。 1.1.2细胞表面吸附 细胞表面吸附是指金属离子通过与细胞表面,特别是细胞壁组分(蛋白质、多糖、脂类等)中的化学基团(如羧基、羟基、磷酰基、酰胺基、硫酸脂基、氨基、巯基等)的相互作用,吸附到细胞表面。如将酵母细胞壁上氨基,羧基,羟基等化学基团进行封闭,则会减少其对Cu2 的吸收量,表明这些基团在结合Cu2 方面具有重要的作用,这也间接证明了细胞壁上蛋白质和糖类在生物吸附中的作用。 金属离子被细胞表面吸附的机制包括离子交换、表面络合、物理吸附(如范德华力、静电作用)、氧化还原或无机微沉淀等。不同的微生物对不同金属的吸附作用机制不同(表1)。Kratochvil等认为,离子交换是许多非活性真菌和藻类吸附金属离子的主要机理,主要是细胞表面的羧基,其次是硫酸脂基和氨基在生物吸附中发挥了重要作用。Davis等也认为离子交换是褐藻吸附金属离子的主要机制,特别是以前被认为的物理和化学的结合机制都可以用离子交换来解释。细胞表面功能基团中的氮、氧、硫、磷等原子,可以作为配位原子与金属离子配位络合。例如Zn、Pb可以与产黄青霉(P.chrysogenum)表面的磷酰基和羧基形成络合物,溶液中的阴离子(EDTA、SO42-、Cl-、PO33-等)可以与细胞竞争重金属阳离子,形成络合物,从而降低产黄青霉对Zn、Pb的吸附量,这也间接地说明细胞表面对金属离子的吸附确实存在络合机制。关于氧化还原和无机微沉淀的机制也有少量报道。如Lin采用X 射线衍射(XRD)、红外光谱(IR)以及光电子能谱(XPS)技术,研究了废弃酵母吸附Au3 的过程,发现还原性糖(细胞壁肽聚糖层的多糖水解产物)半缩醛基团中的自由醛基,可以

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

第四节 金属的电化学腐蚀与防1

第四节金属的电化学腐蚀与防护 一、教材分析 《金属的电化学腐蚀与防护》是人教版高中化学选修四《化学反应原理》第四章第四节,在学习了原电池原理及电解池原理的基础上展开,介绍了金属腐蚀造成的严重危害、电化学腐蚀的原理及防止金属腐蚀的几种方法,重点是掌握金属电化学腐蚀(析氢腐蚀和吸氧腐蚀)的本质(金属表面形成了微型原电池),同时指出,人们根据对金属电化学腐蚀本质的认识,发现了防护金属电化学腐蚀的方法,并具体地介绍了牺牲阳极的阴极保护法和外加电流的阴极保护法,不但运用原电池原理(牺牲阳极的阴极保护法),也再次运用了电解原理(外加电流的阴极保护法),加深了学生对化学能与电能相互转化的认识。本节内容是本章理论知识的实际应用,有利于培养学生发现问题、分析问题、解决问题的能力。 二、教学目标 1.知识目标: (1)知道金属腐蚀的两种类型(化学腐蚀和电化学腐蚀)。 (2)能解释金属发生电化学腐蚀的原因,认识金属腐蚀的危害。 (3)知道防护金属腐蚀的方法。 2.能力目标: (1)学会设计控制单一变量进行对比实验以及对实验设计进行评价。 (2)从实验探究过程中提高对实验现象的观察能力和分析能力。 3.情感、态度和价值观目标: (1)通过金属腐蚀与生产、生活实际相联系的内容,增强学生学习兴趣. (2)通过课堂探究活动,发展学生的探究能力,学会与人合作与交流,共同研究,探讨科学问题。 (3)通过化学实验(设计、验证和评价)这一科学研究方法,培养学生实事求是的科学精神,帮助学生树立正确的科学态度。 三、教学重点难点 重点:金属的电化学腐蚀及金属的电化学防护 难点:金属发生吸氧腐蚀的电化学原理 四、学情分析 学生对金属的腐蚀有一定的认识,包括它的产生和防治,生活中对金属腐蚀的危害也有所见闻,而对金属腐蚀及防腐的原理不太清楚,学生了解了铁的腐蚀是氧气和水共同作用的结果,并且学习了原电池原理,再此基础上学习比较容易接受。 五、教学方法 1.阅读讨论分析探究计算机辅助教学实验辅助教学 2.学案导学:见后面的学案。 3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习金属的电化学腐蚀内容。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。3.教学环境的设计和布置:四人一组,实验室内教学。课前打开实验室门窗通风,课前准备好如下仪器装置和药品:铁粉碳粉具支试管导管红墨水醋酸 NaCl溶液 七、课时安排:1课时 八、教学过程 [引入]在日常生活中,我们经常可以看到一些美丽的金属器皿使用一段时间后会失去表面的

最新整理《金属的电化学腐蚀与防护》教学设计讲课稿

《金属的电化学腐蚀与防护》教学设计三维目标: 知识与技能:1.了解金属腐蚀及其危害。 2.了解金属电化学腐蚀的原因及反应原理。 3.了解金属防护的一般方法,特别是电化学防护的方法。 过程与方法:事例引入,激发兴趣;分组实验,总结结论,典型题例,强化理解。 情感态度与价值观:通过生活事例引发学生思考,体现化学与生活的紧密联系,激发学生的探索精神,并让学生体会到学以致用的科学精神。 教学重点:金属的电化学腐蚀及金属的电化学防护。 教学难点:金属发生吸氧腐蚀的电化学原理。 教具:提供试剂:锌片铜片稀硫酸氯化钠溶液 提供仪器:水槽导管电流表 教学过程: 【事例引入(配合投影)】在我们的生活中经常可以看到这些现象(投影图片)。这些现实均显示:我们辛苦制备的材料,尤其是金属材料在使用

中往往会被腐蚀,造成损坏,浪费,甚至引起恶性事故。如:这是位于美国的俄亥俄桥,突然塌入河中,死亡46人。事后调查,是由于桥梁的钢梁被腐蚀产生裂缝所致。又如,这是日本大阪地下铁道的输气管道,因腐蚀而折断,造成瓦斯爆炸,乘客当场死亡75人。 这样的例子举不胜举,可见,金属腐蚀给人类造成的损失有多么巨大。据统计:(投影)。这些数据都说明金属腐蚀造成的损失已经远远超过了各种自然灾害造成的损失的总和。所以我们要有这样的使命感:用自己学过的知识,去研究金属腐蚀的原理,并尝试找出“防止腐蚀的方法”,甚至想想利用腐蚀原理为我们服务。今天这堂课我们就来走进“金属的腐蚀与防护”。 【板书】金属的电化学腐蚀与防护 [预设问题1] 钢铁生锈,铁锈的主要成分:Fe 2O 3 ·xH 2 O 铜器生锈,铜绿的主要成分:Cu 2(OH) 2 CO 3 思考:金属腐蚀的本质是什么? [板书] 第四节金属的电化学腐蚀与防护[板书] 一、金属的电化学腐蚀

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

土壤重金属污染的微生物效应研究进展_1

重金属污染土壤的治理是当今世界的一大难题,由于土壤中重金属污染是一个不可逆的过程,且土壤中的重金属具有非降解性及难以清除性。采用传统方法修复重金属污染土壤是非常困难和昂贵的[1]。而生物修复法能克服传统方法中的缺点,越来越受到重视[2]。土壤中微生物种类繁多,数量庞大,有的不仅参与土壤中污染物的循环过程,还可作为环境载体吸附重金属等污染物[3]。由于微生物对重金属具有积累和解毒作用的功能,可促进有毒、有害物质解毒或降低毒性,使土壤重金属污染生物处理技术的发展和应用倍受关注。虽然近年来人们已经对土壤重金属污染的微生物效应、微生物学评价及修复机制做了大量的研究,但往往这些研究都是独立进行,缺乏相互之间的联系,造成很多结论的不统一性,对它们的综合评价产生一定的影响。因此,系统综述土壤重金属污染的微生物效应、微生物学评价及微生物的修复作用等方面的研究进展,研究和运用微生物与重金属间的相互关系和作用特点,对重金属污染土壤的微生物修复具有重要的意义[4]。 1土壤重金属污染的微生物效应及毒性 1.1重金属污染对土壤微生物活性的影响 当土壤受外来重金属污染物污染时,微生物为了维持生存可能需要更多的能量,而使土壤微生物的代谢活性发生不同程度的反应[5]86。微生物的代谢商(qCO 2)是微生物活性反应指标之一,它反映了单位生物量的微生物在单位时间里的呼吸作用强度[6]138。土壤微生物的代谢商通常随着重金属污染程 度的增加而上升。Chander 等[7]613研究认为,含高浓度重金属的土壤中微生物利用有机碳更多地作为能量代谢,以CO 2的形式释放,而低浓度重金属的土壤中微生物能更有效地利用有机碳转化为生物量碳,土壤中的重金属含量的高低影响了微生物的呼吸及代谢,进而影响了土壤的呼吸作用。张玲和叶正钱[6]139研究了铅锌矿区污染土壤的微生物活性,在矿口处土壤基础呼吸为33.69mg/(kg ·d ),明显高于其他地段,在远离矿口800m 的地方土壤基础呼吸为24.57mg/(kg ·d ),明显高于对照的4.06mg/(kg ·d ),矿口土壤的土壤基础呼吸和微生物代谢商分别是对照土壤的1.6倍和2.3倍。Fliepbach 等[8]1202也研究认为,代谢商是评价重金属微生物效应的敏感指标,它可以反映出土壤重金属污染程度。 1.2重金属污染对土壤微生物生物量的影响 土壤微生物生物量代表着参与调控土壤中能量和养分循环以及有机质转化所对应生物量的数量,而且土壤微生物碳或氮转化速率较快,可以很好地表征土壤总碳或总氮的动态变化,是比较敏感的生物学指标[8]1201。大量的研究表明,由于土壤重金属污染造成微生物生物量发生变化。Khan 等[9]30研究指出,Pb 污染矿区土壤的微生物生物量受到严重影响,靠近矿区附近土壤的微生物生物量明显低于远离矿区土壤的微生物生物量。Fliepbach 等[8]1201研究结果表明,低浓度的重金属能刺激微生物生长,可增加微生物生物量碳,而高浓度重金属污染则导致土壤微生物生物量碳的明显下降。Khan 等[9]31采用室内培养实验,研究了Cd 、Pb 和Zn 对红壤微生物生 土壤重金属污染的微生物效应研究进展 王彬杨胜翔徐卫红 (西南大学资源环境学院,重庆 400716) 摘 要 文章综述了土壤重金属污染的微生物效应、重金属污染土壤的微生物学评价及微生物的修复机制等方面的研究进展,并对今后土壤重金属污染的微生物修复的研究重点进行了展望。 关键词 重金属污染 土壤微生物 修复 收稿日期:2007-11-28,修改稿收到日期:2008-01-07 第23卷第2期 2008年6月广州环境科学 GUANGZHOU ENVIRONMENTAL SCIENCES Vol.23,No.2Jun.2008 6

工业废水中金属离子的去除方法

1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点: (1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放; (2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理; (4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。 与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。 2氧化还原处理 化学还原法 电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。 应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH 或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。 铁氧体法 铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,

重金属污染的微生物修复及一般性分析

重金属污染的微生物修复及一般性分析 环境科学系陈汉忱苏冠勇汪渝松姜炳棋 摘要:耐受重金属微生物资源的筛选与分子鉴定及抗性研究;SBR工艺去除城市污泥 中重金属的研究;固定化微生物技术及其在重金属废水处理中的应用;汞对有效微生物 的毒性效应。 关键词难受重金属微生物SBR工艺固化微生物技术汞毒性 正文 微生物技术在环境方面的应用越来越广泛并且日益成熟,采用微生物处理重金属污染技术还不是很成熟,下面将从四个方面逐步探讨微生物处理重金属污染技术的可行性、方法、一些具体的应用实例以及一些关键的影响因素。 耐受重金属微生物资源的筛选与分子鉴定&抗性研究 首先应对微生物处理进行预先的筛选和条件最优化试验,而且如有必要,应作微生物重金属抗性研究 [例]吸附重金属离子菌种的筛选及其吸附试验研究 实验步骤:从汽车制造厂排污口采集废水及污泥样品进行富集、分离纯化,筛选出可吸附重金属的菌种。进行吸附实验后测定重金属离子浓度。将一定量的溶液溶解在一定量的去离子水中,用ICP测定其浓度。从上述吸附实验中选择出吸附重金属离子效果最好的菌种。接入到50mL模拟重金属离子水溶液中。在一定条件下进行吸附,测定重金属离子的残留浓度。 实验结果: (1)菌体本身的影响

(2)pH的影响 由图2可以看出,pH值为5时WNO4对于Pb2+的吸附效果最好,其吸附率为97.1%。 重金属抗性形成的可能机制:生物吸附作用在细菌、真菌和藻类细胞上有许多结构组分具有结合重金属的能力,大量研究证实,胞外多糖带有负电荷,可以作为重金属的有效生物吸附剂,阻止重金属离子进入细胞。将动胶菌属的细菌产生的胞外多糖萃取并除去,会大大降低细菌吸附重金属的能力,进而增加其对金属的敏感性;其它蓝细菌、藻类和真菌也可

金属的电化学腐蚀与防护习题

金属的电化学腐蚀与防 护习题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

训练5 金属的电化学腐蚀与防护 一、金属的腐蚀 1.关于金属腐蚀的叙述中,正确的是 ( ) A .金属被腐蚀的本质是M +n H 2O===M(OH)n +n 2 H 2↑ B .马口铁(镀锡铁)镀层破损后被腐蚀时,首先是镀层被氧化 C .金属在一般情况下发生的电化学腐蚀主要是吸氧腐蚀 D .常温下,置于空气中的金属主要发生化学腐蚀 2.下列事实与电化学腐蚀无关的是 ( ) A .光亮的自行车钢圈不易生锈 B .黄铜(Cu 、Zn 合金)制的铜锣不易生锈 C .铜、铝电线一般不连接起来作导线 D .生铁比熟铁(几乎是纯铁)容易生锈 3.出土的锡青铜(铜锡合金)文物常有Cu 2(OH)3Cl 覆盖在其表面。下列说 法不正确的是( ) A .锡青铜的熔点比纯铜低 B .在自然环境中,锡青铜中的锡可对铜起保护作用 C .锡青铜文物在潮湿环境中的腐蚀比干燥环境中快 D .生成Cu 2(OH)3Cl 覆盖物是电化学腐蚀过程,但不是化学反应过程 二、铁的析氢腐蚀和吸氧腐蚀 4.下列关于钢铁的析氢腐蚀的说法中正确的是 ( ) A .铁为正极 B .碳为正极 C .溶液中氢离子浓度不变 D .析氢腐蚀在任何溶液中都会发生 5.在铁的吸氧腐蚀过程中,下列5种变化可能发生的是 ( ) ①Fe 由+2价转化成+3价 ②O 2被还原 ③产生H 2 ④Fe(OH)3失水 形成Fe 2O 3·x H 2O ⑤杂质C 被氧化除去 A .①②④ B .③④ C .①②③④ D .①②③④⑤ 6.钢铁在潮湿的空气中会被腐蚀,发生的原电池反应为2Fe +2H 2O + O 2===2Fe(OH)2。以下说法正确的是 ( ) A .负极发生的反应为Fe -2e -===Fe 2+

常见工业废水处理技术介绍

常见工业废水处理技术介绍 在电子、塑胶、电镀、五金、印刷、食品、印染等行业,从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰

重金属废水的微生物废水处理工艺

重金属废水的微生物废水处理工艺 一、微生物法治理电镀废水技术 1.主要技术内容 (1)基本原理用从电镀污泥中获得的SR系列复合功能菌,高效还原六价铬为三价铬,三价铬、锌、铜、镍和镉等二价金属离子被菌体富集,再经固液分离,废水被净化,污泥中金属再用微生物或化学法回收,固液分离的上清液可以回用。 (2)技术关键本技术的关键是菌体的培养和“菌废比”的合理调控,这是保证处理水质达到排放标准或回用的重要条件。一般采用厌氧技术培养菌体,培养液可以是生活污水,粪便,高浓度有机废水,也可以人工配制。采用中温发酵技术。根据废水中的金属离子的浓度和培养的菌体的浓度决定“菌废比”,具体情况具体决定。 (3)工艺流程微生物治理电镀废水工艺流程见图9-24。 2.主要技术指标 (1)净化能力本技术对废水成分变化的适应性强,各金属离子浓度的范围为:铬1mg/L~1000mg /L,锌1mg/L~1000mg/L,铜1mg/L~1000mg/L,镍1mg/L~500mg/L,镉1mg/L~500mg/L。本技术不仅能处理单一的金属废水,也可处理混合的金属废水。废水的pH值可在4~8范围内变化。每天处理废水量可达1m3~1000m3以上。 (2)特点利用微生物高效快速还原六价铬,无二次污染,能回收菌泥中的金属,因此,使用周期长,管理方便。如果能利用生活污水、食品加工废水等培养微生物,可以实现以废治废。 (3)出水水质处理后排放水中六价铬、总铬、锌、铜、镍、镉等金属低于国家GB8978-1996污水综合排放标准,见表9-15。

3.投资分析对于日处理100t废水的规模而言,1992年价格为总投资30万元,其中土建15万元,设备10万元,其他5万元。 本技术主要设备使用期可达40年,运行费用约为每吨废水0.20元。 4.主要设备微生物法治理电镀废水技术的主要设备有培菌池,生物反应器,调节池,泵房,沉淀池,消毒池,主控室,化验室等。 二、硫酸盐生物还原法处理含锌废水 硫酸盐生物还原法处理含锌废水其原理是利用硫酸盐还原菌SRB在厌氧条件下产生硫化氢,硫化氢和废水中的重金属反应,生成金属硫化物沉淀以去除重金属离子。 1.废水处理工艺流程见图9-25。

重金属废水治理技术

重金属废水治理技术 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。1、电镀重金属废水治理技术的现状 1.1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 1.1.1中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 1.1.2硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。

微生物处理重金属污染

微生物处理重金属污染 摘要:重金属污染的修复是目前研究的热点之一,其中生物治理技术尤其得到了广泛关注。利用菌类微生物的表面结构特性及其生化代谢作用,通过生物化学法、生物絮凝法等将重金属元素分离或降低其毒性,可达到治理污染的目的。基因工程技术在这一领域的应用,加强了菌类和微藻的吸附、代谢、絮凝功能,提高了重金属污染的处理能力。固定化技术的应用提高了治理重金属污染的效率及稳定性,有力地推动了重金属微生物治理技术的发展。文章综述了近年来国内外在利用微生物及植物技术治理重金属污染方面的研究进展,并对其发展方向进行了展望。 关键词:重金属;微生物;研究现状;应用前景 Review on Microbiological for Heavy Metal Pollution LI Dong-xiao Abstract:Development in the treatment of heavy metal pollution at home and abroad by means of microbiological techniques were summarized,and present studies and application prospects of Biological chemical method,Biological flocculation method. the application of gene engineering technique and immobilized microorganism technique to heavy metal pollution treatment were introduced. The prospects of development of treatment technology for heavy metal pollution were also discussed. Key words:heavy metal pollution;microorganism;status; review 1.前言 由于工业的发展,重金属的使用越来越广泛,伴随而来的重金属污染问题也日趋严重。特别是重金属废水,因其中的铅、铬、镉等可通过食物链最终在生物体内累积,破坏正常的生理代谢活动甚至产生“三致”(致癌、致畸、致突变)作用,而成为一种对生态环境危害极大的工业废水。因此,寻找一种能有效地治理重金属废水污染的技术已显得紧迫而重要。 治理重金属的传统方法有:中和沉淀法、化学沉淀法、氧化还原法、气浮法、电解法、蒸发和凝固法、离子交换法、吸附法、溶剂萃取法、液膜法、反渗透和电渗析法等。它们各有优点,但又不同程度地存在着投资大、能耗高、操作困难、易产生二次污染等不足,特别是在处理低含量重金属污染时,其操作费用和原材料成本相对过高[1]。利用微生物体系制备的生物吸附剂处理和回收重金属,是目前实践证明最有发展前途的一种新方法。它与传统的处理方法相比,具有以下优点[2]: (1)在低浓度下,金属可以被选择性地去除; (2)节能,处理效率高; (3)操作时的pH值和温度条件范围宽; (4)易于分离回收重金属; (5)吸附剂易再生利用; (6)对钙、镁离子吸附量少;(7)投资小,运行费用低,无二次污染。 2. 重金属污染的微生物处理方法

知识讲解_金属的电化学腐蚀与防护(基础)

高考总复习金属的电化学腐蚀与防护 编稿:房鑫审稿:曹玉婷 【考纲要求】 1.金属腐蚀的种类,探究金属发生电化学腐蚀的原因。 2.了解金属腐蚀的危害,防止金属腐蚀的措施。 【考点梳理】 考点一:金属腐蚀 1.定义:金属腐蚀是指金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程。 2.本质:金属腐蚀的实质都是金属原子失去电子被氧化生成金属阳离子的过程。 M-ne-==M n+(M代表金属元素)。 3.类型:(1)化学腐蚀:金属或合金直接与具有腐蚀性的化学物质接触发生氧化还原反应而消耗的过程。 (2)电化学腐蚀:不纯金属或合金与电解质溶液接触发生原电池反应而消耗的过程。 考点二:金属的电化学腐蚀 1 2.电化学腐蚀的种类: (1)种类:吸氧腐蚀与析氢腐蚀 (2)吸氧腐蚀与析氢腐蚀的比较(以钢铁为例) 3.金属腐蚀的快慢一般规律 (1) 在同一电解质溶液中,电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀。 (2) 在不同溶液中,金属在电解质溶液中的腐蚀>金属在非电解质溶液中的腐蚀;金属在强电解质溶液中的腐蚀>金属在弱电解质溶液中的腐蚀。 (3) 有保护措施的条件下,无防护条件的腐蚀>有一般防护条件下的腐蚀>牺牲阳极的阴极保护法条件下的腐蚀>外接电源(负极)的阴极保护法条件下的腐蚀。 (4) 对同一种电解质溶液来说,电解质溶液浓度越大,腐蚀越快。 (5) 由于金属表面一般不会遇到酸性较强的溶液,故吸氧腐蚀是金属腐蚀的主要形式,只有在金属活动性顺序表中排在氢以前的金属才可能发生析氢腐蚀,而位于氢之后的金属腐蚀时只能是吸氧腐蚀。 考点三:金属的电化学防护 1.在金属表面覆盖保护层。 ①在钢铁表面涂矿物性油脂、油漆或覆盖搪瓷、塑料等物质;

重金属废水处理方法

在环境与人类健康领域,重金属主要指汞(Hg)、镉(Cd)、铅(Pb)、铬(cr)、砷(As)、铜(Cu)、锌(Zn)、钴(Co)、镍(Ni)等重金属。他们以不同的形态存在于环境之中,并 在环境中迁移、积累。采矿、冶金、化工等行业是水体中主要的人为污染源。重金属在食物链中的过量富集会对自然环境和人体健康造成很大的危害。 1.1 沉淀法 1.1.1 氢氧化物沉淀法 往重金属废水中加入碱性溶液,利用OH一与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废 水中的各种重金属离子同时以氢氧化物沉淀的形式析出。 1.1.2 硫化物沉淀法 将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此。硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。 1.1.3 还原一沉淀法 这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。 1.1.4 絮凝浮选沉淀法 通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。 1.2 物理化学法 1.2.1 吸附法 (1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。 (2)树脂吸附。环保是树脂吸附法的一个重要的特点t41,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。 (3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。 1.2.2 浮选法

相关文档
最新文档