第五节 生活中的优化问题举例(数学建模二)

第五节 生活中的优化问题举例(数学建模二)
第五节 生活中的优化问题举例(数学建模二)

第五节生活中的优化问题举例(数学建模二)

A组基础题组

1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为

y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为()

A.13万件

B.11万件

C.9万件

D.7万件

答案C由题意得,y'=-x2+81,令y'=0,解得x=9或x=-9(舍去).

当00;当x>9时,y'<0.

故当x=9时,y取最大值.

2.(2019孝感模拟)某品牌小汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式为y=x3-x+18(0

A.60千米/时

B.80千米/时

C.90千米/时

D.100千米/时

答案C当速度为x千米/小时时,该汽车行驶200千米时行驶了小时,设耗油量为h(x)升,y=x3-x+18(0

依题意得h(x)=-·=x2+-20(0

h'(x)=x-=-(0

令h'(x)=0,得x=90.

当x∈(0,90)时,h'(x)<0,h(x)是减函数;

当x∈(90,120]时,h'(x)>0,h(x)是增函数.

所以当x=90时,h(x)取得极小值h(90)=18.

因为h(x)在(0,120]上只有一个极值,

所以当x=90时取得最小值.

故选C.

3.设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面正三角形的边长为()

A. B. C. D.2

答案C设底面正三角形的边长为x,侧棱长为l,则V=x2·sin60°·l,

∴l=,∴S表=2S底+S侧=x2sin60°+3xl=x2+.令S'表=x-=0,得x=,又当

x∈(0,)时,S'表<0;x∈(,+∞)时,S'表>0,∴当x=时,表面积最小.

4.在半径为r的半圆内作一内接梯形,使其下底为直径,其他三边为圆的弦,则梯形的面积最大时,梯形的上底长为()

A. B.r C.r D.r

答案D设梯形的上底长为2x,高为h,面积为S,

∵h=-,

∴S=-=(r+x)·-.

∴S'=--

-=

-

=

-

.令S'=0,得x=(x=-r舍去),

∴h=r.当x∈时,S'>0;当x∈时,S'<0,∴当x=时,S取最大值,即当梯形的上底长为r 时,它的面积最大.

5.某厂生产某种产品x件的总成本c(x)=1200+x3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为件时,总利润最大.

答案25

解析设产品的单价为p万元,根据已知,可设p2=,其中k为比例系数.

因为当x=100时,p=50,所以k=250000,

所以p2=,p=(x>0).

设总利润为y万元,则y=·x-1200-x3=500-x3-1200.

y'=-x2.

令y'=0,得x=25.当00;当x>25时,y'<0.

因此当x=25时,函数y取得极大值,也是最大值.

6.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为cm.

答案

解析设该漏斗的高为x cm,则其底面半径为-cm,体积

V=π(202-x2)x=π(400x-x3)(0

则V'=π(400-3x2).令V'=0,解得x1=,x2=-(舍去).当00;当

7.统计表明,某种型号的汽车在匀速行驶过程中的耗油量y(L/h)关于行驶速度x(km/h)的解析式可以表示为y=x3-x+8(0

(1)当汽车以40km/h的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少?

解析(1)汽车以40km/h的速度从甲地匀速行驶到乙地需=2.5(h),要耗油-×2.5=17.5(L).

(2)当匀速行驶速度为x km/h时,汽车从甲地行驶到乙地需h,设耗油量为h L,

依题意得h(x)=-=-+(0

h'(x)=-=-(0

令h'(x)=0,得x=80.

当x∈(0,80)时,h'(x)<0,h(x)是减函数;

当x∈(80,120]时,h'(x)>0,h(x)是增函数.

所以当x=80时,h(x)取得极小值h(80)=11.25.

因为h(x)在(0,120]上只有一个极小值,所以它也是最小值.

所以当汽车以80km/h的速度匀速行驶时,从甲地到乙地耗油最少,为11.25L.

8.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h 米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

生活中的优化问题举例

高二数学◆选修2-2◆导学案编写:刘方贵张晓丽审核:仇国宗陈兆平袁全升2011-03-21 1 建立数学模型§1.4生活中的优化问题举例 教学目标: 1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作 用 2.提高将实际问题转化为数学问题的能力 教学重点:利用导数解决生活中的一些优化问题. 教学难点:利用导数解决生活中的一些优化问题. 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为 优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节, 我们利用导数,解决一些生活中的优化问题. 二.新课讲授 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有 以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函 数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是 建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决, 在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路: 三.典例分析 例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图 1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。 如何设计海报的尺寸,才能使四周空心面积最小? 本节课精华记录预习心得:解决数学模型 作答用函数表示的数学问题 优化问题用导数解决数学问题 优化问题的答案

3.4生活中的优化问题举例

二、预习内容 :生活中的优化问题,如何用导数来求函数的最小

二、学习过程 1.汽油使用效率最高的问题 阅读例1,回答以下问题: (1)是不是汽车速度越快,汽油消耗量越大? (2)“汽车的汽油使用效率最高”含义是什么? (3)如何根据图3.4-1中的数据信息,解决汽油的使用效率最高的问题? 2.磁盘最大存储量问题 阅读背景知识,思考下面的问题: 问题:现有一张半径为的磁盘,它的存储区是半径介于r与R的环形区域。(1)是不是r越小,磁盘的存储量越大? (2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 3饮料瓶大小对饮料公司利润的影响 阅读背景知识,思考下面的问题: (1)请建立利润y与瓶子半径r的函数关系。 (2)分别求出瓶子半径多大时利润最小、最大。 (3)饮料瓶大小对饮料公司利润是如何影响的? 三、反思总结 通过上述例子,我们不难发现,解决优化问题的基本思路是:

收集一下各种型号打印纸的数据资料,并说明其中所蕴含的设计原理。【资料】打印纸型号数据(单位:厘米)

§3.4 生活中的优化问题举例教学目标: 1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数解析式()y f x =,根据实际问题确定函数()y f x =的定义域; 2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答. 重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论 值应予舍去。 难点:在实际问题中,有()0f x '=常常仅解到一个根,若能判断函数的最大(小)值 在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。 教学方法:尝试性教学 教学过程: 前置测评: (1)求曲线y=x 2+2在点P(1,3)处的切线方程. (2)若曲线y=x 3上某点切线的斜率为3,求此点的坐标。 【情景引入】 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题 例1.汽油的使用效率何时最高 材料:随着我国经济高速发展,能源短缺的矛盾突现,建设节约性社会是众望所归。现实生活中,汽车作为代步工具,与我们的生活密切相关。众所周知,汽车的每小时耗油量与汽车的速度有一定的关系。如何使汽车的汽油使用效率最高(汽油使有效率最高是指每千米路程的汽油耗油量最少)呢? 通过大量统计分析,得到汽油每小时的消耗量 g(L/h)与汽车行驶的平均速度v (km/h )之间的函数关系g=f(v) 如图3.4-1,根据图象中的信息,试说出汽车的速度v 为多少时,汽油的使用效率最高? 解:因为G=w/s=(w/t)/(s/t)=g/v 这样,问题就转化为求g/v 的最小值,从图象上看,g/v

生活中的优化问题举例

生活中的优化问题举例 学校:___________姓名:___________班级:___________考号:___________ 一、选择题 1.内接于半径为的圆的矩形的面积的最大值是( ) A .32 B .16 C .16π D .64 2.设底面为等边三角形的直棱柱的体积为 V ,那么其表面积最小时,底面边长为( ) D .3.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3 +27x +123(x>0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件 4.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( ) A .1∶ 2 B .1∶π C .2∶1 D .2∶π 5.要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则其高为( ) A cm B .100cm C .20cm D .20 cm 3 6.某城市在发展过程中,交通状况逐渐受到大家更多的关注,据有关数据统计显示,从上午6时到9时,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数表示:3 213368 4y t t t =-- +-6294 ,则在这段时间内,通过该路段用时最多的时刻是( ) A .6时 B .7时 C .8时 D .9时 7.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( ) A .4 B .8 C . 43 D .83 8.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100 元,若总收入R (x )元与年产量x 的关系是()R x =3 400,0390,90090090,390,x x x x ?- +≤≤???>? 则当

生活中数学最优化问题的研究

生活中数学最优化问题的研究

生活中数学最优化问题的研究 教学目标: 1)知识与技能:能够把理论与实践相结合,将现实生活中的实际问题抽象、归纳并转化成数学中的最优化问题来解决。 2)能力目标: 1、运用已掌握的数学知识及其他相关的知识,将实际问题转化为数学问题去解决; 2、培养学生发现问题、分析问题和解决题的能力; 3、培养学生探索数学问题的能力。 3)情感目标: 1、通过主动发现、自主探索的过程,让学生有发现、有收获,从而获得成功的经验,激发学生的求知欲; 2、培养学生的合作精神和创新精神。 参与者特征分析 高中生相对来说独立性较强,具有一定的独立处理事情的能力,但他们生活经验不够,看待问题欠准确,往往会以点概面,不过高中生很容易接受新生事物,只要进行适当的引导,相信能使活动顺利开展。教学过程: 1、深入生活,从生活中取得课题 生活中处处充满着数学,处处留心皆数学。我们早晨起床刷牙用的牙膏,细心的同学会发现,牙膏的包装有大有小,其价格也不相同,你想过大小包与其价格之间的关系吗?你吃东西时,想过营养成份的搭配吗?你在开灯关灯时,想过灯的位置与照明度问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?烈日下,你想过遮阳棚搭建方式与遮挡太阳光线有关吗?你在购买商品时,想过哪儿如何才能买到最便宜的吗? 生活中经常遇到求利润最大、用料最省、效率最高、费用最少、路线最短、容积最大等

将款全部付清的前提下, 商店又提出了下表所示的几种付款方案,以供顾客选择,何种方案最实惠。 分几次付清付款方法首期所付款额付款总额与一次性付款差额 3次购买后四个月第 一次付款,每四 个月付一次款 1775.8元5327元327元 6次购买后2个月第 一次付款,后每 两个月付一次 款,购买后12个 月是第6次付款 880.8 5285 285 12次购买后一个月第 一次付款,每一 个月付一次款 438.6元5263元263元 注规定月利率为0.8%,每月利息按复利计算 方案一:设每期所付款额x元,那么到最后一次付款时付款合部本利和为x×(1+1.0084+1.0088)元x×(1+) 另外,5000元商品在购买后12个月后的本利和为5000×1.00812元。得x×(1+1.0084+1.0088)=5000×1.00812 解得x=1775.8元 方案2: =5000×1.00812 x=880.8元 方案3: =5000×1.00812 x=438.6元 不难得出第三种方案时间既宽松而且更实惠。 四、成本最低化问题

初中数学建模案例

初中数学建模案例 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。 第二句,通过怎样的思路来解决问题。

第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤 1. 确定题目 选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。 2. 开展科研课题

生活中的最优化问题

生活中的最优化问题 新乡市一中刘秀辉初中生的数学学习过程,事实上是一个体验生活、不断积累生活经验的过程。数学课程 中许多问题的解决,实际上就是为学生创设一个或若干个选择的情境,让学生在模拟的实际 背景下学会解决问题,在解决问题的过程中学会“选择”。教师应尽可能多地为学生设置“真 实情景”的活动平台,使学生在对数学实际问题的探究活动中学会选择最佳解决方案。下面 是我在《生活中的最优化问题》的教学过程中,利用生活中的几个实际问题,引导学生学会 如何做出最佳选择的。 一、创设问题情景,搭建“选择”平台 师:数学来源于生活。生活中许多实际问题可以转化为数学问题来解决,请同学们看大 屏幕,认真观察老师为大家收集的几个生活中的问题,看这些问题背景材料有什么共同特点? 背景材料1:(人教版七年级上册教材100页数学活动1)一种笔记本售价为2.3元/本,如 果买100本以上(不含100本),售价为2.2元/本。某班级要统一购买练习本,怎样购买才划算? 背景材料2:某地上网有两种收费方式 用户可以任选其一: (A)记时制:2.8元/时 (B)包月制:60元/月 此外,每一种上网方式都加收通信费1.2元/时。你能帮一位新上网客户策划一下选用哪种 收费方式? 背景材料3:为了使学生更多地了解牧野文化,新乡市一中七年级某班班主任带领学生准 备去牧野公园参观,参观门票是每张20元,售票员告诉老师说有两种优惠方式:一种是老师 免费,学生按7.25折优惠;一种是全体师生都按7折优惠。如果你是这个班的班主任,怎样购 买门票划算? 背景材料4:某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费, 然后每通话1分钟,再付电话费0.4元;“神州行”不缴月租费,每通话1分钟,付话费0.6元。如果你的爸爸因为工作需要刚刚购买一部手机,你能帮他参考选用哪种收费方式吗? (同学们边看边小声议论,问题展示完毕,便有同学站起来回答老师的问题。) 生1:我认为这些生活的数学问题,都提供了多种方案,让我们做出选择。 生2:在选择这些实际问题的方案时要结合自己的实际情况,没有最好,只有更好! 师:同学们的见解很独到,很精彩!对问题的理解比较到位。让我们快行动起来,来探 究这些有趣的数学问题吧! 二、实际问题探究,引领学生学会“选择”

maab数学建模实例

第四周 3. function y=mj() for x0=0::8 x1=x0^*x0^2+*; if (abs(x1)< x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>= x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>= x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法:

function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>= x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel 迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>= x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a)); U=-triu(a,1);

3.4生活中的优化问题举例(含答案)

§3.4 生活中的优化问题举例 课时目标 通过用料最省、利润最大、效率最高等优化问题,使学生体会导数在解决 实际问题中的作用,会利用导数解决简单的实际生活中的优化问题. 1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为____________,通过前面的学习,我们知道________是求函数最大(小)值的有力工具,运用________,可以解决一些生活中的______________. 2.解决实际应用问题时,要把问题中所涉及的几个变量转化成函数关系,这需通过分析、联想、抽象和转化完成.函数的最值要由极值和端点的函数值确定,当定义域是开区间,而且其上有惟一的极值,则它就是函数的最值. 3.解决优化问题的基本思路是: 用函数表示的数学问题→用函数表示的数学问题 ↓ 优化问题的答案←用导数解决数学问题 上述解决优化问题的过程是一个典型的_________ _过程. 一、选择题 1.某箱子的容积与底面边长x 的关系为V (x )=x 2?? ?? 60-x 2 (0400) ,则总利润最大时,年产 量是( )

生活中的优化问题举例(教学设计)含答案

3.4生活中的优化问题举例(教学设计)(1)(2)(2课时) 教学目标: 知识与技能目标: 会利用导数求利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用,提高将实际问题转化为数学问题的能力。 过程与方法目标: 在利用导数解决实际问题中的优化问题的过程中,进一步巩固导数的相关知识,学生通过自主探究,体验数学发现与创造的历程,提高学生的数学素养。 情感、态度与价值观目标: 在学习应用数学知识解决问题的过程中,培养学生善于发现问题、解决问题的自觉性,以及科学认真的生活态度,并以此激发他们学习知识的积极性。 教学重点:利用导数解决生活中的一些优化问题. 教学难点:将实际问题转化为数学问题,根据实际利用导数解决生活中的优化问题. 教学过程: 一.创设情景、新课引入 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.师生互动,新课讲解 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 例1(课本P101例1).海报版面尺寸的设计 学校或班级举行活动,通常需要贴海报进行宣传。现让你设计一如图1.4-1所示的竖向贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。如何设计海报的尺寸,才能使四周空心面积最小? 解:设版心的高为xdm ,则版心的宽为128 x dm,此时四周空白面积为 128512 ()(4)(2)12828,0S x x x x x x =++-=++>。 求导数,得 '2 512()2S x x =- 。 令' 2512()20S x x =-=,解得16(16x x ==-舍去)。 于是宽为128128 816x ==。 当(0,16)x ∈时,' ()S x <0;当(16,)x ∈+∞时,' ()S x >0. 因此,16x =是函数()S x 的极小值,也是最小值点。所以,当版心高为16dm ,宽为8dm 时,能使四周空白面积最小。 答:当版心高为16dm ,宽为8dm 时,海报四周空白面积最小。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

生活中的优化问题带答案

生活中的优化问题举例 1.要制做一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( ) cm B .1033cm cm D .2033cm [答案] D 2.用总长为6m 的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为( ) A .0.5m B .1m C .0.8m D .1.5m [答案] A [解析] 设容器底面相邻两边长分别为3x m 、4x m ,则高为6-12x -16x 4=? ?? ??32-7x (m),容积V =3x ·4x ·? ????32-7x =18x 2-84x 3? ?? ??00,x ∈? ?? ??17,314时,V ′<0,所以在x =17处,V 有最大值,此时高为0.5m. 3.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R R D .34R [答案] C [解析] 设圆锥高为h ,底面半径为r ,则R 2=(h -R )2+r 2,∴r 2=2Rh -h 2, ∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3,V ′=43πRh -πh 2.令V ′=0得h =43R . 当00;当4R 3

数学建模案例

2014年河南科技大学模拟训练一 承诺书 我们仔细阅读了数学建模选拔赛的规则. 我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。 我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。 我们选择的题号是(从A/B/C中选择一项填写): C 队员签名:1. 2. 3. 日期: 2014 年 8 月 19 日

2014年河南科技大学数学建模竞赛选拔 编号专用页 评阅编号(评阅前进行编号): 评阅记录(评阅时使用): 评 阅 人 评 分 备 注

搜索黑匣子 摘要

一、问题重述 2014年3月8号,马来西亚航空370号班机从马来西亚吉隆坡前往中国北京途中失联,被认为是有史以来“最离奇”的飞机失联案例。空难的谜团不能解开,很大程度上取决于能不能打捞到“黑匣子”。MH370的失联,各国为此出动了25架飞机,40艘舰艇,甚至包括若干卫星。 我们要解决的问题如下: 1.我们首先将单独对船只这种搜寻工具分析,根据假设确定最后失联地点,找出大概搜索区域,确定飞机残骸和黑夹子疑似地点,利用性变形最短路径模型确定搜索完所有可疑地点的最短路径,最后求出最小风险系数下的最优搜索方案,并明确这种搜索方案的优缺点。 2.所有的飞机船舰及卫星都有一个国家统一调度,则根据卫星、飞机、船舰的各自的探索方式划分搜寻区域,进行统一分工合作,提高搜索的效率和降低搜索的费用。分别建立模型得出每种单一搜索工具的最优搜索你方案,最终利用多人TST问题计算整合出多种搜索工具共同参与下的最优搜索方案。 二、模型假设 1.马航370残骸和黑夹子落点的可疑位置已确定。 2.专家对搜索船只在搜索过程中的权重确定真是可靠。 3.船只在搜索过程中只受到文中因素的影响,其余因素影响很小。 4.在搜索过程中,风速和浪高等环境因素是不变的。 5.搜索过程中各种搜索工具不会出现故障。 6.搜救船只只能按照特定航道行驶。 7.搜索船只的设备都比较齐全,船只的类别对搜索的影响不大。 8.在搜索过程中,风速和浪高等环境因素是不变的。 9.各种搜索人员之间能够实现理想状态下的无障碍交流和信息共享。 三、符号说明 变量和缩略语定义 WC 风飘矢量位移 Vt 海流t时刻的速度 S1 只在洋流影响下的漂流位移 S0 初始位移 La1 A线上相邻顶点之间的距离 A 顶点的分组A即搜索路线A线 M 关联矩阵

初中数学建模案例

中学数学建模论文指导 中学阶段常见的数学模型有:方程模型、不等式模型、函数模型、几何模型和统计模型等。我们也把运用数学模型解决实际问题的方法统称为应用建模。可以分五种模型来写。论文最好自己写,如果是参加竞赛的话从网上找的会被搜出来的。 一、建模论文的标准组成部分 建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。现就每个部分做个简要的说明。 1. 题目 题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象。建议将论文所涉及的模型或所用的计算方式写入题目。如“用概率方法计算商场打折与返券的实惠效应”。 2. 摘要 摘要是论文中重要的组成部分。摘要应该使用简练的语言叙述论文的核心观点和主要思想。如果你有一些创新的地方,一定要在摘要中说明。进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%。”摘要应该最后书写。在论文的其他部分还没有完成之前,你不应该书写摘要。因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要。 摘要一般分三个部分。用三句话表述整篇论文的中心。 第一句,用什么模型,解决什么问题。

第二句,通过怎样的思路来解决问题。 第三句,最后结果怎么样。 当然,对于低年级的同学,也可以不写摘要。 3. 正文 正文是论文的核心,也是最重要的组成部分。在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的。其中,提出问题、分析问题应该是清晰简短。而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确。在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升。 4. 结论 论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价。结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一。并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验。 5. 参考资料 在论文中,如果使用了其他人的资料。必须在论文后标明引用文章的作者、应用来源等信息。 二、建模论文的写作步骤

3.4生活中的优化问题举例

第三章第4节 生活中的优化问题举例 课前预习学案 一、预习目标 了解解决优化问题的思路和步骤 二、预习内容 1.概念: 优化问题:_______________________________________________________ 2.回顾相关知识: (1)求曲线y=x 2+2在点P(1,3)处的切线方程. (2)若曲线y=x 3上某点切线的斜率为3, 求此点的坐标。 3:生活中的优化问题, 如何用导数来求函数的最小(大)值? 4.解决优化问题的基本思路是什么? 三、提出疑惑 同学们, 通过你的自主学习, 你还有哪些疑惑, 请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 一、学习目标 1.要细致分析实际问题中各个量之间的关系, 正确设定所求最大值或最小值的变量y 与自变量x , 把实际问题转化为数学问题, 即列出函数解析式()y f x =, 根据实际问题确定函数()y f x =的定义域; 2.要熟练掌握应用导数法求函数最值的步骤, 细心运算, 正确合理地做答. 重点:求实际问题的最值时, 一定要从问题的实际意义去考察, 不符合实际意义的理论值应予舍去。 难点:在实际问题中, 有()0f x '=常常仅解到一个根, 若能判断函数的最大(小)值在x 的变化区间内部得到, 则这个根处的函数值就是所求的最大(小)值。

二、学习过程 1.汽油使用效率最高的问题 阅读例1, 回答以下问题: (1)是不是汽车速度越快, 汽油消耗量越大? (2)“汽车的汽油使用效率最高”含义是什么? (3)如何根据图3.4-1中的数据信息, 解决汽油的使用效率最高的问题? 2.磁盘最大存储量问题 阅读背景知识, 思考下面的问题: 问题:现有一张半径为的磁盘, 它的存储区是半径介于r与R的环形区域。(1)是不是r越小, 磁盘的存储量越大? (2)r为多少时, 磁盘具有最大存储量(最外面的磁道不存储任何信息)? 3饮料瓶大小对饮料公司利润的影响 阅读背景知识, 思考下面的问题: (1)请建立利润y与瓶子半径r的函数关系。 (2)分别求出瓶子半径多大时利润最小、最大。 (3)饮料瓶大小对饮料公司利润是如何影响的? 三、反思总结 通过上述例子, 我们不难发现, 解决优化问题的基本思路是:

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

生活中数学最优化问题的研究

生活中数学最优化问题的研究 教学目标: 1)知识与技能:能够把理论与实践相结合,将现实生活中的实际问题抽象、归纳并转化成数学中的最优化问题来解决。 2)能力目标: 1、运用已掌握的数学知识及其他相关的知识,将实际问题转化为数学问题去解决; 2、培养学生发现问题、分析问题和解决题的能力; 3、培养学生探索数学问题的能力。 3)情感目标: 1、通过主动发现、自主探索的过程,让学生有发现、有收获,从而获得成功的经验,激发学生的求知欲; 2、培养学生的合作精神和创新精神。 参与者特征分析 高中生相对来说独立性较强,具有一定的独立处理事情的能力,但他们生活经验不够,看待问题欠准确,往往会以点概面,不过高中生很容易接受新生事物,只要进行适当的引导,相信能使活动顺利开展。教学过程: 1、深入生活,从生活中取得课题 生活中处处充满着数学,处处留心皆数学。我们早晨起床刷牙用的牙膏,细心的同学会发现,牙膏的包装有大有小,其价格也不相同,你想过大小包与其价格之间的关系吗?你吃东西时,想过营养成份的搭配吗?你在开灯关灯时,想过灯的位置与照明度问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?烈日下,你想过遮阳棚搭建方式与遮挡太阳光线有关吗?你在购买商品时,想过哪儿如何才能买到最便宜的吗? 生活中经常遇到求利润最大、用料最省、效率最高、费用最少、路线最短、容积最大等问题,这些问题通常称为优化问题。现如今最优化问题备受关注,已渗透到生产、管理、商业、

军事、决策等各领域。对于上述问题,有些你也许想过,有些你也许从未想过。这些问题都与数学最优化问题有关!这堂课让我们共同发现并研究这些数学最优化问题吧! 2、结合生活、联系社会实际选择课题 解决最优化问题是一个发现、探索的过程,也是我们亲身感受问题、寻找解题策略,实现再创造以及体验数学价值的过程。在这个过程中,肯定我们的见解不全相同,就让我们彼此关心、合作探讨、互相评价、取得共识、达到群体算法多样化,获得探索成功的快乐吧。使不同的人在数学活动中得到不同的收获,让我们每个人都能有所发展、有所创新,提高创造思维水平高,丰富实践经验,增强探索能力。下面我就列举几个生活中数学最优化问题的例子吧。 一、商品价格最优化问题 在生活中,有许多生活必需品需要我们购买,就如妈妈要购买一台电磁炉,但如何才能买到最实惠的呢?于是我们开始为妈妈出谋划策,前往各大超市调查这件商品的价格。我们将收集的信息列成下表: 各大超市电磁炉价目表: 从上表我们不难发现天天新最便宜,如果只从价格方面考虑我们不难得出结论,妈妈在天天新买最合算。 上述这个问题是一个很直接也很简单的数学最优化问题,我们收集信息——分析信息——得出结论,加以使用数学最为简单的加减运算,就为妈妈节省了一笔钱。 二、预算最优化问题 在研究过程中,我们不仅需要动脑,更需要调查行动。学习了长方体的表面积后,让我们来测算一下粉刷教室的费用。 我们首先动手测定教室的粉刷面积,了解市场上涂料价格如何,需要多少涂料,粉刷的工钱如何计付,明确了这些因素以后我们就能对粉刷教室的费用做个初步的结算。 三、分期付款最优化问题 现在让我们来完成一道较为复杂的数学最优化问题,它与时下流行的分期付款的计算有关,为了更加迎合消费者的需要,开发商往往会提出几种销售方案供顾客选择,如何选最优的销售方案,也是我们研究的关键所在。顾客购买一件售价为5000元的商品时,那在一年内将款全部付清的前提下, 商店又提出了下表所示的几种付款方案,以供顾客选择,何种方案最实惠。

初中数学建模案例

初中数学建模案例 2011年3月10日,云南盈江县发生里氏5.8级 地震。萧山金利浦地震救援队接到上级命令后立即 赶赴震区进行救援。救援队利用生命探测仪在某建筑 物废墟下方探测到点 C 处有生命迹象,已知废墟一侧 地面上两探测点A 、B 相距3米,探测线与地面的夹角 分别是30°和60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:2 1.41,3 1.73) 解:如图,过点C 作CD ⊥AB 交AB 于点D. ∵探测线与地面的夹角为30°和60° ∴∠CAD=30°,∠CBD=60° 在Rt △BDC 中,BD CD 60tan ∴3 60tan CD CD BD 在Rt △ADC 中,AD CD 30tan ∴3 330tan CD CD AD ∵3 BD AD AB ∴33 33CD CD ∴) (6.2273 .13233米CD 答:生命所在点C 的深度大约为 2.6米。

分析:这是综合解直角三角形的问题,画出示意图,先计算出 360tan CD CD BD ,再计算出3330tan CD CD AD ,进而由关系式3BD AD AB 计算出CD 的长,最 后确定生命所在点 C 的深度。 设计说明与思路: 实际问题是复杂多变的,数学建模较多的是探索性和创造性,但是初中数学应用性问题常见的建模方法还是有规律可以归纳总结的, 本题涉及解直角三角形问题,常需要建立相应的几何模型,转化为几何或三角函数问题求解。 初中数学题源于实际问题,探讨这类问题的解法具有重要的现实意义,数学建模就是 将具有实际意义的应用问题,通过数学抽象转化为数学模型,以求得问题的解决,其基本思路是:实际问题----数学模型----数学问题的解决----抽象----解答----解释(检验)。 在应用性问题和数学建模的教学活动设计中,应把学生当作教学活动的主体,让学生 自己通过观察,只考虑去提问题,解决问题,是数学建模教学的重要环节。不要只把问题解决的过程展示给学生看,教学活动的设计应有利于发挥学生的主体性、创造性、协作精神,让学生能把学习知识、应用知识、探索发现、使用计算机工具和建模求解更好地结合起来,使学生在应用性问题与数学建模教学过程中学数学、 用数学、得到“微科研”的体验,从而达到学好数学,提高素质,增长才干的目的,达到“面向所有的学生,让所有的学生获得更 多可以广泛应用、与现实世界及其他学科密切相关的数学! 让所有的学生学到有价值的、富有挑战性的数学!让所有的学生学会数学地思考, 并积极地参与数学活动,进行自主探索!”的目的。

相关文档
最新文档