围岩工程地质条件对隧道设计及施工的影响

围岩工程地质条件对隧道设计及施工的影响
围岩工程地质条件对隧道设计及施工的影响

浅谈围岩工程地质条件对隧道设计及施工的影响

一、围岩工程地质条件对隧道设计的重要性

隧道勘测的目的是为确定隧道位置、施工方法和支护、衬砌类型等技术方案,对隧道地处范围内的地形、地质状况,以及对地下水的分布和水量等水文情况要进行勘测,查明隧道施工地点的工程地质条件,分析围岩稳定性,为公路路线必选和工程预算提供科学依据。公路隧道的特点是断面大、隧道长、地质条件复杂,隧道掘进面前方和洞口的不良地层条件极易引起隧道塌方、涌水。隧道地下工程围岩地层的复杂性和不可见性,增加了勘探人员工作的难度。因此,在隧道勘探设计过程中对围岩工程地质的调查和分析,并积累隧道工程资料和经验,为将来公路隧道的设计和施工铺平了道路。

1、公路隧道勘测设计工作重点

进行公路隧道规划、设计、施工和维护管理,应预先获得各种资料,因此需要进行调查。包括地形调查、地质调查、气象调查、环境调查、施工条件调查以及与工程有关的法令法规调查等。这些调查越广泛、深入细致、准确,所起的作用就越大。

(1)文献资料的收集:包括地形地貌资料、工程地质与水文地质资料、工程资料、气象资料、灾害及预算资料等。

(2)地形地质调查:地形调查是为路线服务的,目的是在现有地形条件下使路线满足规范要求,并尽可能的得到优化,这是设计的需要;地质调查是核对在实际地质条件上是否可能,是否可以得到一个稳定的结构物。包括:地质调查、资料整编、地质详查、涌水调查、气象调查等工作。

2、围岩工程地质条件对隧道勘测的重要性

2.1 围岩工程地质对隧道的重要性

工程地质条件会随着区域的不同而发生变化,这样的条件直接影响到隧道施工及后期运营、养护。本节主要从隧道选址、施工条件和衬砌支护三个方面讨论围岩工程地质条件对隧道的重要性。

2.1.1 围岩工程地质对隧道选址的重要性

1)岩体结构及种类

花岗岩、玢岩、斑岩、蛇纹岩、温泉变质作用的安山岩和凝灰岩、泥岩、片岩类、千枚岩和岩堆等,都应给予特别注意。例如花岗岩往往有深部风化,有的变为花岗岩风化土,沿断层易风化,花岗岩中的断层难以发现,风化带和变质带的宽度不同。这些岩石的种类及发生的物理化学风化对于隧道选址和施工将会产生重大影响。基本岩体或特殊地质体调查不细致对于施工、养护将会造成额外经济损失。

2)地质构造

重点研究大型断裂构造是否为活动断裂。如为活动断裂应避开。隧道还应尽量避开断层破带,特别是含水丰富的破碎带,必须穿越时,隧道应与之垂直或大角度斜交通过,并应提醒设计施工方做好支护及排截水措施,预防出现坍塌、避免富水破碎带出现突水涌泥现象造成安全事故。

3)初始地应力

岩体初始应力对隧道围岩的稳定性有较大影响,特别是高初始应力的存在。高初始应力会导致隧道洞壁岩体在开挖过程中时有饼化、岩爆等不良现象的发生,造成隧道成洞性差。高初始应力主要存在于埋深大、构造作用强烈的隧道。因此,对于深埋隧道应通过地应力测试结果按公路隧道设计规范判定是否存在高初始应力地段。

2.1.2 围岩工程地质对隧道施工的影响

随着隧道施工工艺和施工机械的不断更新,原本单一施工的技术早已经被多样化、复合

型施工工艺所代替,这样对隧道工程质量、安全性、环保的要求也就更高。

传统的钻爆法施工现在已经发展的非常成熟,相比TBM技术有其自身的优势,例如:钻爆法适用范围广,不受隧道断面尺寸和形状的限制,且对各类围岩均能适用,对不良地质条件的适应能力较强;当地质条件变化时,可对设计方案及时进行调整,施工工艺可随之机动灵活变化;施工设备便于运输、组装和转移,重复利用率高;多年来已积累了丰富宝贵的施工经验,形成了科学完整的工艺,技术相对比较成熟;造价低,在中国国情下有明显的经济优势。当然,钻爆法也有着缺点与不足,如:施工工序多,施工过程中各工序干扰大,开挖速度慢;对地层扰动大,超欠挖现象严重,容易诱发岩爆等围岩稳定性问题;施工安全性差,工作环境恶劣,工人劳动强度大;开挖工作面,提高了工程造价;工程质量控制难度大,施工质量不如TBM掘进技术。

2.1.3 围岩工程地质对隧道衬砌类型及材料选择的重要性

隧道是埋藏在地层深处的工程建筑物。通过长期观测,发现围岩不仅对衬砌产生压力,同时还约束衬砌变形。洞身衬砌的断面形式、厚度和材料往往由围堰工程地质情况通过衬砌计算决定的。

1)衬砌材料

混凝土、钢筋砼:优势是整体性好,既可以现场浇筑,也可以加工预制,而且可以机械化施工。其本身密实性较好,具有一定的抗渗性,能够有效的防止因为围岩松动产生的透水现象。

喷射混凝土:将混凝土干拌合料、速凝剂和水,用混凝土喷射机高速喷射到洁净的岩石表面凝结而成,密实性高且能快速封闭围岩裂隙。密贴与岩石表面,早期强度高能很快起到封闭岩石缝隙的作用。

锚杆与锚杆支护:锚杆是用机械方法加固围岩的一种材料。围岩不够稳定时,还可以张挂金属网。对于松散体围岩有较好的防护能力。

2)衬砌类型

直墙式衬砌:通常用于垂直围岩压力为主要计算荷载、水平围岩压力很小的情况。一般适用于Ⅱ、Ⅲ级围岩。对于公路隧道,直墙式衬砌结构的拱部可采用圆割拱、坦三心圆拱等。

曲墙式衬砌:通常在Ⅳ级以下的围岩中,水平压力比较大,为了抵抗较大的水平压力把边墙也做成曲线形状。当地基条件较差时,为防止衬砌沉陷,可设置仰拱,使衬砌形成环状封闭结构。

复合式衬砌:这种衬砌与上述传统的衬砌方法有本质上的区别,如果以喷砼、锚杆或构件支撑的一种或几种组合作为初期支护,对围岩进行加固,维护围岩稳定。待初期支护的变形基本稳定以后,进行现浇混凝土二次衬砌,二者合称复合式衬砌。

圆形断面隧道:为了抵御膨胀性围岩压力,隧道可以采用圆形或近似圆形的断面。这种断面可以使用掘进机进行开挖。

矩形断面隧道:采用沉管法施工时,其断面形式为矩形。一般在软土地区,不能抵御较大的水平推力的地方采用矩形断面隧道。而且矩形断面隧道的利用率也非常高,城市隧道使用较多。

隧道围岩工程地质条件对隧道勘测设计十分重要。尤其对隧道选址、施工、运营方面起着决定性的作用,对隧道周围环境也产生了较大的影响。在倡导绿色施工、绿色运营的今天,隧道的施工正是充分展现可持续发展战略的平台。这其中,围岩工程地质决定了隧道勘测设计的好坏。

二、围岩工程地质条件对隧道工程的制约

隧道是地表以下跨越障碍物的工程建筑物,围岩是隧道及地下工程周围一定范围内对洞

身稳定性有影响的地质体。隧道工程设计和施工面向的对象是岩土体,其性质不同于一般的工程材料,岩土体的工程地质环境也具有复杂性,这导致隧道工程具有不同于一般地面工程的特点和规律。隧道工程结构由人工衬砌和天然围岩共同构成,而且围岩是主要承载体,围岩的稳定性直接影响到隧道的稳定性。

隧道围岩工程地质条件千差万别,影响围岩力学性质和稳定性的因素较多,这些因素对围岩力学性质和稳定性都有重要和直接的影响,而且各影响因素的作用机理十分复杂,致使围岩力学性质相当复杂,定量准确掌握围岩的力学性质是十分困难的,因此有必要采用定性和定量相结合的方法,对隧道围岩力学性质和稳定性有一个整体性和规律性的把握,围岩分类法则是这样一个有力的工具。符合实际的围岩分类是正确进行规律隧道稳定性评价的保证,也是隧道合理设计的依据,更是准确进行隧道施工预报的指南,而隧道围岩定量分类系统的建立是客观地进行公路隧道围岩分类的前提和基本保证。正确的、符合工程实际的围岩分类,对于隧道设计计算及支护设计的准确与否有很重要的意义。

(1)坚硬块状岩石

这类岩体本身具有很高的力学强度和抗变形能力,在力学属性上可以视为均质、各向同性的连续介质,应力与应变呈线性关系。这类围岩的变形破坏形式主要有:岩爆、脆性开裂及块体滑移。

(2)层状岩体

这类岩体常以软硬岩层相间的互层形式出现。岩体中的结构面以层理面为主,并有层间错动及泥化夹层等软弱结构面发育。层状岩体的变形破坏主要受岩层产状及岩层组合等因素控制,其破坏形式主要有:沿层面张裂、折断塌落、弯曲内鼓等。

(3)碎裂岩体

碎裂岩体是指断裂带、岩脉穿插挤压破碎带和风化破碎加次生夹泥的岩体。这类围岩的变形破坏形式常表现为崩塌和滑动。破坏规模和特征主要取决于岩体的碎裂程度和含泥量的多少。在以岩块刚性接触为主的碎裂围岩中,由于变形时岩块的互相挤压、错动,将产生一定的阻力,因而不易产生大规模塌方。相反,当夹泥量很高时,由于岩块间失去刚性接触,则易产生大的塌方。若不及时支护,将产生大的变形,直至冒顶。

(4)松软岩体

松软岩体是指强烈构造破碎、强烈风化岩体或心境堆积的松散土体。这类围岩的力学属性表现为弹塑性、塑性或流塑性,其变形破坏形式以拱形冒落为主。当围岩结构均匀时,冒落拱的形状较为规则,但当围岩结构不均匀或松软岩体仅构成局部危岩时,则常表现为局部塌方、塑性挤入及滑动等变形破坏形式。

从实践看问题:围岩类别是隧道设计、施工的基本依据,由于预测围岩类别不准,施工中变更设计多,工程造价变动大,给工程投资控制、工程管理带来不小的负面影响。造成这个结果的原因,除了与围岩预测难度较大有关外,还与地质调查工作和隧道设计工作分家有较大关系。所以要提高公路隧道围岩预测的精度,必须创造一个“利益一致、便于协调”的工作环境,使地质调查者与隧道设计者共同努力,才能达到。英国矿业工程学会出版的《岩石地下工程》指出“正确剖析地质情况乃是进行合理设计的一个主要先决条件”,“设计师的职责并不在于精确计算,而在于正确判断”。这些经验是很值得借鉴的。

三、围岩工程及水文地质条件对隧道设计及施工的影响

1.围岩工程地质的影响

1.1隧道路线的选择

(1)越岭隧道选择

越岭线路所经地段,一般山峦起伏、地形陡峻、地质复杂、自然条件变化较大。因此,选择越岭隧道位置时,应进行大面积的方案研究,对可能穿越的垭口,要以不同的限坡、不同的进出口标高做出各种越岭隧道方案,进行同等的调查研究。

(2)河谷线隧道选择

河谷地段受地质构造和水流冲刷等影响,往往河道弯曲、沟谷发育,两岸多台地和陡峭的山坡,并常伴有崩塌、错落、岩堆、滑坡、冲刷等不良地质现象,地形和地质情况均较复杂,平面位置受线形限制,可移动的幅度不大,沿河山地段,当线路采用隧道通过时,隧道位置宜往里,宜长一些,外侧洞壁要有足够厚度,避免出现洞壁过薄、偏压过大等问题。

除了地形条件外,在根据地质条件选择隧道位置时应注意以下几点:

(1)隧道位置应尽可能选择在地质构造简单、节理裂隙不发育、岩性较好、稳定的地层中通过。

(2)隧道穿越两种岩性迥然不同的岩层接触带时,应避免平行和接近平行。

(3)在岩溶地区,隧道应避免穿越大溶洞和暗河。

1.2洞口及洞门的选择

洞门部分在地质上通常是不稳定的,设计时应考虑避开滑坡、崩塌、泥石流等不良地质地段。确定洞门位置时,应着重考虑确保边、仰坡的稳定性,以免造成难以整治的病害,一般应设在山体稳定、地质条件好、排水有利的地方。洞口是隧道的咽喉,其稳定与否直接关系到施工难易与运营安全。洞口设在高位,隧道长度短,引线长度大,但洞口遇到坡积、堆积的可能性小;洞口设在低位,则相反。所以过于低位的洞口,除非是特殊情况,一般都会遇到坡积、堆积层。这种地方基本上是松散体,施工时会很麻烦,是个易于诱发洞口病害的地方,可通过使用特殊方法,不至于诱发边、仰坡病害。

2.水文地质条件的影响

2.1公路隧道的防、排水

(1)对隧道结构安全构成威胁

一方面由于地下水对隧道围岩的浸泡、冲蚀,地下水可以使软弱围岩的强度显著降低,使膨胀性围岩发生膨胀,在黄土地区还可能使黄土发生湿陷,这些变化都使隧道围岩压力增大,隧道结构所要承受的荷载也增大,从而使隧道结构安全受到影响。另一方面,一些侵蚀性地下水的存在,也会侵蚀隧道结构,破坏混凝土结构,锈蚀钢筋,从而降低隧道结构强度。

(2)对隧道运营环境构成威胁

地下水的侵入可以使隧道运营环境严重恶化。渗漏水使隧道内潮湿,降低隧道内的舒适度,给隧道管理工作人员和通行人员的身体带来不良影响;渗漏水使隧道内道路湿滑,雾气增加而能见度降低,给行车安全带来威胁;渗漏水对隧道内大量的运营设施也构成威胁,不仅使电气设施运营效率降低、寿命缩短,还可能引发火灾等安全事故。

2.2边坡稳定性

统计资料分析表明:大中型滑坡诱因多为水的作用,包括降水、各种原因引起的地下水位的变化、水库泄洪及冲刷,边坡失稳的诱因大体有以下几个方面:

(1)由于受水浸泡或地下水位升高,引起岩石力学强度指标降低;

(2)人类活动的影响。包括施工用水、机械振动、爆破扰动、生态环境破坏等;

(3)自然灾害,如地震、洪水、泥石流等。

综上,水不仅降低岩石和滑动面的强度指标内摩擦角和粘聚力值,而且是推动边坡滑体的滑动力,是边坡失稳的重要原因。

2.3隧道涌水的影响

一般情况下,隧道涌水易发生在具有渗透性强、水量丰富、岩体破碎的地层岩体中。在特殊地质地段,褶皱和断层发育,对地下水渗透通道的大小和连通性都产生显著的影响。并

且当水力梯度增大时,对断层破碎带、强烈风化带或大裂隙中充填物形成潜蚀,将小颗粒带走。在地下水流量及水力增大时就会出现管涌、塌方,造成施工困难,并对隧道本身的安全性造成破坏。

2.4 地下水的影响

(1)由于水位上升引起的岩土工程危害

水位的上升可能会使土壤沼泽化,盐分含量升高,从而使得水体的腐蚀性增大,对工程的施工以及质量有着重要的影响,此外还可能带来一些滑坡、崩塌等现象,水位上升还会使得岩土体的结构造成破坏,从而可能产生流砂、管涌等现象。

(2)由于地下水位下降引起的岩土工程危害

地下水位的下降会使得工程产生地裂、地面下沉等现象影响工程质量,地下水的过度开采还会给环境带来一定的影响,对人们的正常居住以及原有建筑物的稳定带来影响。

(3)地下水频繁升降对岩土工程造成的危害

地下水的升降变化能引起膨胀性岩土产生不均匀的胀缩变形,当地下水升降频繁时,不仅使岩上的膨胀收缩变形往复,而且会导致岩土的膨胀收缩幅度不断加大,进而形成地裂引起建筑物特别是轻型建筑物的破坏。

2.5对周围生态环境的影响

隧道工程对环境水文地质条件及周围的生态环境会带来不同程度的影响, 其中地表、地下水的大量涌入或隧道内地下水的大量排放是其主要原因。因此我们在进行隧道设计时,应该兼顾周围的生态环境,主要包括以下方面:

(1)新建隧道环境影响评估应贯穿于隧道勘测设计、施工及运营各个阶段。

(2)从保护环境的大目标出发, 新建隧道工程的防排水原则应以截、堵措施为主。

(3)环境影响评估应包括地表环境影响程度、范围的评估和对隧道内环境影响的评估两方面的项目和内容。

浅埋软弱围岩隧道变形控制

浅埋软弱围岩隧道变形控制 摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。 关键词:隧道,浅埋,软弱围岩,变形控制 abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method. key words: tunnel, shallow buried and weak surrounding rock, deformation control. 中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言 在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。 1 工程概况 钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。隧道穿越地层主要为含砾粉质黏土及泥质

地下建筑结构课程设计 隧道盾构施工

目录 1 荷载计算-------------------------------------3 1.1 结构尺寸及地层示意图-----------------------3 1.2 隧道外围荷载标准值-------------------------3 1.2.1 自重--------------------------------3 1.2.2 均布竖向地层荷载----------------------4 1.2.3 水平地层均布荷载----------------------4 1.2.4 按三角形分布的水平地层压力--------------5 1.2.5 底部反力-----------------------------5 1.2.6 侧向地层抗力--------------------------5 1.2.7 荷载示意图----------------------------6 2 内力计算---------------------------------------6 3 标准管片配筋计算--------------------------------8 3.1 截面及内力确定-----------------------------8 3.2 环向钢筋计算--------------------------------8 3.3 环向弯矩平面承载力验算-----------------------11 4 抗浮验算-------------------------------------10 5 纵向接缝验算--------------------------------12 5.1 接缝强度计算------------------------------12 5.2 接缝张开验算------------------------------14 6 裂缝张开验算------------------------------15 7 环向接缝验算----------------------------16

隧道软弱围岩(断层)专项施工方案

石山隧道进口软弱围岩(断层)专项施工方案 一、编制依据 1、xxx合同段工程施工总承包招标文件及设计文件、两阶段施工图设计等; 2、国家、交通部现行的公路工程建设施工规范、设计规范、验收标准、安全规范等; 3、国家及福建省相关法律、法规及条例等; 4、现场踏勘收集到的地形、地质、气象和其它地区性条件等资料; 5、近年来高速公路等类似施工经验、施工工法、科技成果; 6、福建省高速公路标准化建设指南和施工要点; 7、我单位拥有的国家级、部级工法、科技成果和长期从事高等级公路建设所积累的丰富施工经验。 二、工程概况 1、工程概况 我部承建的石山隧道0.5座,为分离式双洞隧道,隧道全长855.8m,为长隧道,左洞长854.1m,右洞长857.5m。隧道进出口均位于平面曲线内,进口左右线曲线半径分别为R左=3000m和R右=2850m;隧道纵坡坡率/坡长:左洞为0.7%/854.1m,右洞0.7%/857.5m;隧道进口设计桩号:左洞为ZK63+572,右洞为YK63+565;进口设计高程:左洞为586.69m,右洞为586.64m。。 2、地形、地貌 隧址区属剥蚀低山地貌,隧道轴线大致呈南北走向,地形呈波状起伏,起伏较大,隧道最大埋深约为160m,地表植被较发育,覆盖层较薄。进口侧山坡自然坡度25~30°,出口侧山坡自然坡度35~40°。 3、地层岩性 本隧址场区表层多为第四系残坡积土,一般厚度3-6m,冲沟底部及陡坎略薄些,下伏侏罗系南园组(J3n)凝灰熔岩及其风化层。

隧道洞身围岩为侏罗系南园组(J3n)的凝灰熔岩,属较硬-坚硬岩,岩体一般较完整,对隧道洞身围岩的稳定较有利,据地质调绘及钻孔揭露隧道区主要发育有3条裂隙带及断裂构造带,对隧道围岩不利,影响隧道围岩级别,隧道开挖时,围岩稳定性较差,易产生塌方掉块,应加强支护和监测措施,各段的具体评价见隧道纵断面图。 拟建隧道最大埋深约160m,深部围岩主要为微风化凝灰熔岩,节理裂隙发育较少-较发育,较有利于地应力的释放和调整,但钻孔中未见有岩芯饼化等高应力作用现象,综合临近泉三高速公路等工程经验分析,本隧道在隧洞区内出现高地应力的可能性不大。 隧址区未见有矿体分布,不会产生瓦斯等有害气体。但施工中粉尘可能较大,施工中应注意粉尘污染监测工作,并做好通风工作。 4、地质构造及地震动参数 根据《厦门至沙县高速公路(安溪至沙县)泉州段线路工程地震安全性评价》,线路地震设防烈度属于6度区,测区内50年超越概率10%的平均土质条件下峰值加速度为0.05g,中硬土场地动反应谱特征周期为0.45s,区域地质相对稳定,建议抗震设计按《公路工程抗震设计规范》(JTJ004-89)规范执行。 5、水文地质条件 隧道位于当地侵蚀基准面之上,山坡坡体起伏较大,隧道地表水系不发育,仅部分冲沟底部见有小水流。隧址区四周地形较陡,一般坡度25-35°,地形切割较强烈,降雨后地表水沿坡排泄迅速,无有利地表水蓄积之地形。 地下水按埋藏条件及赋存介质不同主要有:①基岩风化网状裂隙水:赋存于碎块状强风化岩~中风化岩层的网状裂隙中。隧道区岩性为侏罗系南园组(J3n)凝灰熔岩,碎块状强风化岩层裂隙较发育,富水性及导水性相对较强,接受大气降水的补给,厚度相对较小,勘察期间水量较贫乏,对洞身围岩及开挖影响较小,主要对隧道进、出口及浅埋段围岩的施工有影响。②基岩裂隙水:洞身围岩主要为微风化凝灰熔岩,主要受节理裂隙等控制,受大气降水的补给和基岩风化裂隙水的补给,向山体附近的沟谷中排泄,富水性一般较差,节理密集带相对较富水,但本隧道3条节理带宽度小,故地下水贫乏。

三级围岩爆破设计说明书

Ⅲ围岩爆破设计 一、全断面开挖钻爆设计: (一)爆破参数设计 1)炮眼直径 炮眼直径采用:d=42mm 2)循环进尺 循环进尺为3.0m,炮眼利用率0.9。 3)掏槽方式 掏槽眼采用斜眼掏槽,其他炮眼采用直眼扩槽; 4)炮眼深度及角度 ①掏槽眼: 深3.5m;角度75°。 ②崩落眼:深3.3m;角度90°。 ③周边眼和二圈眼:深3.3 m,87°。 5)掏槽眼形式及参数 掏槽形式及孔网参数如下图: 掏槽孔装药量计算: 按装药系数确定直孔掏槽的炮孔装药量: Q=ηlq 1 =0.6×3.5×0.78(线装药密度KG/m)=1.638kg,取Q=1.80kg。 6)崩落孔爆破参数 抵抗线:根据经验取抵抗线W=700mm。 炮孔间距取:a r =(0.8~1.3)W a r =1.1×700=770m,在实际爆破过程中取a r =800mm。 图1 掏槽形式及孔网参数示意图(单位:mm)

下方15、17段崩落孔抵抗线与空间距为0.85m和1.00m。 崩落孔装药量1:Q=qv=qa r wl=0.9×0.80×0.70×3.0=1.512kg,取Q=1.50kg。 崩落孔装药量2:Q=qv=qa r wl=0.9×1.00×0.85×3.0=2.295kg,取Q=2.25kg(下方15、17段崩落孔) 7)底板孔装药量计算 Q=qv=qa r wl=0.9×0.60×0.70×3.0=1.14kg 取Q=1.2kg 8)周边孔爆破及参数 周边孔参数按经验公式计算 孔间距:E=(8~12)d,在计算时取E=12×42=504,故取E=500mm。 抵抗线:W=(1.0~1.5)E,在计算时取W=1.2×500=600mm。 装药集中度:q=0.04~0.19kg/m,取q=0.18kg/m, 故Q=0.18×3.3=0.594kg,取Q=0.60kg。 9)炮孔堵塞长度l 的计算 l 0=(0.2~0.5)W,取l =0.5×0.8=0.40m,在实际施工中取l =600mm。 (二)炮眼布置图 如下图所示:

地下课设隧道完整版解析

《地下建筑结构设计》课程设计题目:盾构管片设计计算 院部:工程技术学院 专业:土木工程 班级: 组员及学号:

一、设计功能:该段隧道为城市地铁区间段 二、称砌方式:根据设计要求盾构管片类型为平面型。平面型管片的抗弯刚度和强度相对较大,且管片混凝土截面削弱小,对盾构推进装置的顶力具有较大的抵抗能力。故决定采用C50钢筋混凝土平面型管片,管片厚度的选择,取决于土质条件、覆盖土层的厚度、施工荷载状况、隧道的使用目的及管片施工条件等多种因素。本工程的管片厚度选择为300mm ,管片内径为(2350+100*16=3950)mm ,管片的每环长度为1000mm 。 三、管片类型:平面型;管片外直径:D=3350mm ;管片型心半径:Rc=1975mm;管片宽度:B=1000mm ;管片厚度:t=300mm ;管片截面面积:) (2cm 30001000300=?=A ;管片单位重度:3 c m /26KN =γ;管片的弹性模量:a 1030.37KP E ?=;管片截面的惯性矩: 44-m 106276.1?=I /m ;混凝土轴心抗压强度标准值:a 43f c MP =;混凝土抗弯刚度有效 系数η=1.0;钢筋混凝土弹性模量比n=c s /E E =15;混凝土弯矩增大率ζ=0.0.构件的容许应力见下图。 四、场地条件:土层条件:沙质土;土的单位重度:3 /5.18m KN =γ,土的单位浮重度; 3/5.8m KN ='γ,土的内摩擦角:?=21?,土的粘聚力:kpa c 12=;土的侧压力系数: 5.00=k ;超载:kpa p 100=;上部土层厚度:m H 5.7=;潜水位:地面水平线-3.0m ,m H w 5.40.35.7=-=;N 值:N=30;地基反作用系数:3/10m MN k =;水的单位重度: 3/10m KN =γ 五、 构件容许应力: 混凝土标准强度:; 2 ck =32.4MN m f 混凝土允许抗压强度: 2 ca =16.2MN m σ; 混凝土抗弯刚度有效系数:η=1.0; 钢筋与混凝土弹性模量比:5 s 4 c 2.010===5.803.4510E n E ??; 混凝土弯矩增大率:ξ=0.0; 钢筋(SD35)允许强度:2 sa =200MN m σ; 螺栓允许强度:2 sa 240MN m σ=; 六、盾构千斤顶; 盾构千斤顶轴推力:1000kN T =10?片。一个盾构千斤顶的中心推力与衬砌管片中心

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制(参考模板)

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施 工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1 前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高。一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2 工程概况 2.1 概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长 2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为 4.0‰。按新奥法设计,采用复合式衬砌。 2.2 工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度 25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层 Qml、第四系残坡积层 Qel+dl,下伏侏罗系上统西山头组 J3x 流纹质玻屑凝灰岩。地下水为松散岩类孔隙水和火山碎石屑岩

类基岩裂隙水。区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明。雨量充沛,年降雨量达 1723.0 毫米,4~9 月最集中。化学环境作用等级为 H2,地震动峰值加速度为 0.05g,地震动反应谱特征周期为 0.35s。隧道进口进口工程特点

四级围岩爆破设计

Ⅳ级围岩爆破设计 一、上下台阶开挖钻爆设计: (一)上台阶爆破设计 1.上台阶爆破参数设计 1)炮眼直径 炮眼直径采用:d=42mm 2)掏槽方式:掏槽眼采用斜眼掏槽,其他炮眼采用直眼掏槽; 3)炮眼深度及角度 ①掏槽眼: 深2.9m;角度75°。 ②崩落眼:深2.8m;角度90°。 ③周边眼和二圈眼:深2.8 m,87°。 4)循环进尺 循环进尺为2.5m,炮眼利用率0.9。 5)掏槽眼 掏槽孔装药量计算: 按装药系数确定直孔掏槽的炮孔装药量: Q=ηlq 1 =0.55×2.9×0.78=1.241kg,取Q=1.5kg。 6)崩落孔爆破及参数参数 抵抗线:根据经验取抵抗线W=700mm。 炮孔间距取:a r =(0.8~1.3)W a r =1.1×700=770m,在实际爆破过程中取a r =800mm。 崩落孔装药量:Q=qa r wl=0.85×0.80×0.70×2.5=1.19kg,取Q=1.20kg。

7)周边孔爆破及参数 周边孔参数按经验公式计算 孔间距:E=(8~12)d,在计算时取E=12×42=504,故取E=500mm。 抵抗线:W=(1.0~1.5)E,在计算时取W=1.2×500=600mm。 装药集中度:q=0.04~0.19kg/m,取q=0.16kg/m, 故Q=0.16×2.8=0.448kg,取Q=0.45kg。 8)炮孔堵塞长度l 的计算 l 0=(0.2~0.5)W,取l =0.5×0.8=0.40m,在实际施工中取l =500mm。 2、下台阶爆破参数设计 1)炮眼直径 炮眼直径采用:d=42mm 2)循环进尺 循环进尺为2.5m,炮眼利用率0.9。 3) 炮眼深度及角度 ①崩落眼:深2.8m;角度90°。 ②周边眼和二圈眼:深2.8m,87°。 4)崩落眼爆破参数 确定崩落眼抵抗线: W=(15~25)d,取W=16d=16×42=672mm,取W=700mm。 确定崩落炮孔间距: a r =(1.1~1.8)W,取a r =1.1×700=770mm,取a r =800mm。 崩落孔装药量(1、3段):Q=qa r wl=0.55×1.00×0.85×2.5=1.17kg,取Q=1.20kg。 崩落孔装药量(5段):Q=qa r wl=0.55×0.7×0.8×2.5=1.17kg,取Q=0.77kg。 取Q=0.75kg 5)周边孔爆破参数设计 周边孔参数按经验公式计算 孔间距:E=(8~12)d,在计算时取E=12×42=504,故取E=500mm。 抵抗线:W=(1.0~1.5)E,在计算时取W=1.2×500=600mm。 装药集中度:q=0.04~0.19kg/m,取q=0.17kg/m, 故Q=0.17×2.5=0.425kg,取Q=0.45kg。 6)炮孔堵塞长度l 的计算

隧道软弱围岩安全快速施工的基本原则及施工方法探讨

隧道软弱围岩安全快速施工的基本原则及施工方法探讨 摘要:本文首先阐述了隧道软弱围岩安全快速施工的意义,然后探讨了隧道软弱围岩安全快速施工的基本原则,最后研究了隧道软弱围岩安全快速施工的方法,具有一定理论价值和实用价值,供大家借鉴参考。 关键词:隧道;软弱围岩;安全快速施工 Abstract: This paper expounds the weak rock tunnel the meaning of rapid construction safety, and then discusses the weak rock tunnel safely and quickly the basic principles of the construction, and finally the weak rock tunnel safe the construction method of fast, has certain theory value and practical value for your reference. Key words: tunnel; weak rock; rapid construction safety 1隧道软弱围岩安全快速施工的意义 隧道安全快速施工对我国铁路建设具有重要意义,尤其是软弱围岩隧道的安全快速施工,其意义尤为重要,主要表现在以下2个方面: 1)工程工期的要求。隧道的建设由于工作面少,作业空间狭窄,施工速度慢,往往成为铁路建设的控制性节点工程。而软弱围岩隧道,由于围岩稳定性差、变形不易控制、容易发生塌方等安全事故,导致其施工工序复杂,施工速度极其缓慢,严重影响和制约着工程的工期。 2)自身稳定性的要求。变形速度快、变形时间长是软弱围岩的基本特性,这也就意味着施工速度越慢时,围岩暴露时间越长,隧道发生的变形越大,所需的加固措施也变得越强。因此,软弱围岩隧道的施工很容易陷入如图1所示的恶性循环。 图1软弱围岩隧道施工易出现的恶性循环 Fig.1 A vicious circle of the construction of weak surrounding rock tunnel 2隧道软弱围岩安全快速施工的基本原则 “预支护、快挖、快支、快闭合”是软弱围岩隧道安全快速施工的基本原则。 1)预支护是在开挖前,针对开挖后预计的变形实态,事前采取的控制变形的对策,预支护的目的是控制掌子面前方先行位移和挤出位移。

软弱围岩隧道安全施工技术

软弱围岩隧道安全施工技术 摘要:介绍软弱围岩对隧道施工的影响,结合工程实践,详细 地介绍了隧道安全施工控制的方法和措施,阐述了施工方法的特点、施工工艺等,对类似隧道施工有一定的参考价值。 关键词:软弱;隧道;施工 abstract: the weak surrounding rock of tunnel construction, engineering practice, and detailed description of the tunnel construction safety control methods and measures, described the characteristics of the construction methods, construction techniques, etc., similar to the tunneling of some reference value. key words: weak; tunnel; construction 中图分类号:文献标识码:a 文章编号:2095-2104(2012) 1.前言 软弱围岩由于其本身的地质特性,一般力学指标低,岩性松散、承载力差,压缩性高,遇到有岩隙水的作用时,就容易引起隧道施工时产生较大的沉降变形,造成安全隐患。同时,工后沉降过大也会对运营使用和处理带来很大的困难。所以,在软弱围岩地段时,需要特别注意隧道施工方法的选择和正确的处理措施。软弱围岩隧道的施工方法,主要有台阶法和双侧壁导坑法、crd法、环形开挖 留核心土法等。双侧壁导坑法和crd法限制了大型施工机械的使用,降低了工效;工序多,相互干扰大,施工进度缓慢,且临时施工支

各级围岩爆破的施工方法

一.隧道爆破技术要求 ⑴根据围岩特点,合理选定周边眼的间距E、最小抵抗线W和炮眼深度L,辅助炮眼交错均匀布置在内圈眼与掏槽眼之间,周边炮眼、内圈眼与辅助炮眼眼底在同一垂直面上,掏槽炮眼加深10cm。 ⑵严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布,同步起爆。 ⑶周边眼使用小直径药卷、低猛度和低爆速的乳化炸药。为了满足瓦斯隧道安全施工要求,有瓦斯突出地段安全等级不低于三级的煤矿许用的含水炸药,必须采用煤矿许用电雷管连续正向装药,严禁反向装药,雷管以外不装药。严禁使用秒及毫秒级电雷管,使用煤矿许用毫秒延期电雷管时,最后一段延期时间不得大于130毫秒。 ⑷爆破参数计算公式: Q=qV, Q:一个爆破循环的总用药量,kg; q:爆破每立方米岩石所需炸药的消耗量,主要取决于围岩级别、临空面数目、断面大小。施工中Ⅲ级围岩全断面开挖q=1;Ⅳ级围岩上导坑开挖q=1,下导坑q=0.7;Ⅴ级围岩开挖q=0.6。 V:一个循环进尺所爆落的岩石体积(紧方),m3,V=S×L L:设计进尺=炮眼深度×炮眼利用率(取0.9) S:开挖断面面积m2 ⑸采用毫秒差有序起爆,使光面爆破具有良好的临空面。 ⑹爆破网络采用串联,接头拧紧,明线部分包裹绝缘层;常规采用串并联结合复式网络。 ⑺采用绝缘母线单回路爆破,母线与洞内电缆线、电线和信号线分别在隧道两侧。

⑻在岩石中,炮眼深度不足0.9米时,装药长度不得大于炮眼深度的1/2,炮眼深度为0.9米以上,装药长度不得大于炮眼深度2/3,煤层中,装药长度小于炮眼深度1/2。所有炮眼剩余部分用水泡泥和黏土泡泥,水泡泥外剩余泡眼部分应用黏土泡泥封满填实,严禁使用煤粉、块状材料或其它可燃材料做炮泥。 ⑼瓦斯隧道采用不低于二级煤矿许用炸药和电毫秒雷管。以下爆破设计均采用2#岩石乳化炸药进行计算。 二.各级围岩爆破的施工方法 (1)洞身开挖 1.围岩级别及工期 主洞开挖施工35个月(2014年11月1日~2017年9月30日)。 2.III级围全断面岩爆破设计: III级围岩地段运用光面爆破技术进行全断面法施工。采用风动凿岩机钻眼,塑料导爆管非电起爆系统毫秒微差有序起爆。隧道出碴采用自卸汽车运输,挖掘机和侧卸装载机装碴。全断面掘进每循环进尺3.2m。全断面开挖掘进作业循环时间见下表。

软土地区地铁盾构隧道课程设计计算书(1)

软土地区地铁盾构隧道课程设计说明书 (共00页) 姓名杨均 学号 070849 导师丁文琪 土木工程学院地下建筑与工程系 2010年7月

1. 设计荷载计算 1.1 结构尺寸及地层示意图 ?=7.2 ?=8.9 2 q=20kN/m 图1-1 结构尺寸及地层示意图 如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整: mm 43800 50*849+1350h ==灰。 按照课程设计题目,以下只进行基本使用阶段的荷载计算。 1.2 隧道外围荷载标准值计算 (1) 自重 2 /75.835.025m kN g h =?==δγ (2)竖向土压 若按一般公式:

2 1 /95.44688.485.37.80.11.90.185.018q m KN h n i i i =?+?+?+?+?==∑=γ 由于h=1.5+1.0+3.5+43.8=48.8m>D=6.55m ,属深埋隧道。应按照太沙基公式或普氏公式计算竖向土压: a 太沙基公式: )tan ()tan (0010 ]1[tan )/(p ??? γB h B h e q e B c B --?+--= 其中: m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=? (加权平均值0007.785 .5205 .42.7645.19.8=?+?= ?) 则: 2 )9.8tan 83 .68 .48()9.8tan 83.68 .48(11/02.18920]1[9 .8tan )83.6/2.128(83.6p m KN e e =?+--=-- b 普氏公式: 2 012/73.2699.8tan 92.7832tan 32p m KN B =??== ?γ 取竖向土压为太沙基公式计算值,即: 2 1/02.189p m KN e =。 (3) 拱背土压 m kN R c /72.286.7925.2)4 1(2)4 1(2G 22=??- ?=?- =π γπ 。 其中: 3/6.728 .1645.11 .728.10.8645.1m KN =+?+?= γ。 (4) 侧向主动土压 )2 45tan(2)245(tan )(q 0021? ?γ-?--?+=c h p e e 其中: 21/02.189p m KN e =, 3/4.785 .5205 .41.7645.18m KN =?+?= γ 0007.785 .5205.42.7645.19.8=?+?=?

软弱围岩施工方法

软弱围岩施工方法 乌鞘岭隧道的软弱围岩以Ⅴ、Ⅵ级围岩为主,主要集中在四条断层破碎带位置和进洞位置处,断层物质主要由断层泥砾及碎裂岩组成,松散破碎,风化严重,地下水在局部地段较丰富;进口段350m为黏质黄土,后530m围岩为N2泥质砂岩,埋深浅,地下水较贫乏。就该隧整体地质情况来看,软弱围岩占全隧长度的40%,为堆积体,坡面孤石较多,并且存在偏压现象。为有效地保证正洞周边围岩和边坡稳定,防止施工中出现边仰坡坍塌和孤石下滑,确保施工万无一失,对进洞段进行特殊交底,请现场值班人员、各工班遵照执行。 一边仰坡开挖及防护 1边仰坡开挖前应组织人员将坡面危石及杂草清除干净,并在开挖轮廓以外用轨排防护,避免危石溜坍; 2做好边仰坡外侧的截排水工作,防止雨水或泥石流冲刷坡面; 3正洞开挖轮廓线以外必须进行坡面防护,坡面防护参数:C20喷射砼厚度,10cm;22mm锚杆长度 3.0m,间距 1.0x1.0m;8mm钢筋网格尺寸20x20cm,根据坡面情况,可先用细钢丝网防护后再铺设钢筋网; 二超前支护 1正洞进洞位置或当探明前方围岩破碎时,应及时采取超前支护; 2超前支护方法采用超前小导管内插钢筋方案,超前小导管采用外径42MM,壁厚3.5MM无缝钢管,长3M,全部为花管,为便于打入,前段做成尖锥型,管壁每隔15CM交错梅花形钻眼,眼径8MM;超前小导管间距为:

纵向2.0M,搭接长度不小于1.0M,环向0.3M,进洞位置内外两环,环间距0.3M,梅花形布置,钢管外插角约50,(见图一)为加强小导管刚度,在小导管内插22mm螺纹钢。(见图二) 原地面 超前小导管 ° 仰坡(喷砼护面) 正洞 图一超前小导管布置图 单位:cm,比例:示意 Φ22钢筋 Φ42小导管 图二小导管钢管与钢筋关系图 3注浆浆液采用水泥—水玻璃浆液,水泥浆与水玻璃浆液比例为1:0.5,水泥浆水灰比为1:1,水玻璃浓度35Be0,注浆压力0.5~1.0MPa; 4注浆过程中随时观察,发现串浆现象时,应采取间歇式注浆或调整水泥浆与水玻璃浆液比例,确保注浆效果; 5注浆后观察注浆效果,如发现漏注或有空洞,应及时补注或用砼补喷,保证结构总体均匀。 三洞身开挖

五级围岩爆破设计

哈牡客专SG-5标 亚布力隧道级Ⅴ级围岩爆破设计技术交底 编制: 复核: 审核: 中铁五局哈牡客专SG-5标综合三队 2016年3月5日

亚布力隧道IV级围岩开挖技术交底 一、工程概况 亚布力隧道DK203+896~DK204+790段全长896m,其中Ⅴ级围岩489m,Ⅳ围岩405m,隧道区的分布底层为粉质粘土、花岗岩,地表上覆约0.3m厚的腐殖土,DK204+347~DK204+340段7米DK204+370~DK204+380段10米,围岩级别Ⅴe,浅埋富水地段岩层,全风化或强风化及破碎。呈砂砾状,角砾碎最大石状松散结构。该段正常涌水量1531m3/天,最大涌水量3756m3/天,根据设计图纸,开挖方式采用三台阶临时横撑法开挖。 为了提高工程质量,保证施工安全,控制隧道超欠挖,节约成本,创建优质工程,特编制《Ⅴ级围岩爆破技术交底》,用以指导现场生产。一、设计原则 根据地质条件、开挖断面、开挖进尺、爆破器材等条件编制了爆破方案,Ⅴ级围岩采用三台阶法弱爆破。 1、根据围岩特点合理选择周边眼间距及周边眼的最小抵抗线,辅助炮眼交错均匀布置,周边炮眼与辅助炮眼眼底在同一垂直面上,掏槽炮眼加深20cm。 2、严格控制周边眼的装药量,采用间隔装药,使药量沿炮眼全长均匀分布。 3、选用低密度低爆速、低猛度的炸药,采用乳化炸药及岩石膨化硝铵炸药,塑料导爆管电雷管起爆。 4、采用毫秒微差有序起爆,一般周边眼最后起爆,以减小起爆时差。

二、Ⅴ级围岩钻爆设计参数 隧道开挖采用控制爆破,根据地质情况,采用二级楔形掏槽爆破的方式。周边眼间距0.55m。 炮眼设计见台阶法开挖炮眼布置图,钻爆参数表。开挖每循环进尺控制在1.2m围内。台阶法开挖炮眼布置图(附后) 上台阶断面装药指标 上台阶面爆破装药参数

软弱围岩隧道台阶法五步开挖施工工法(参考模板)

软弱围岩隧道台阶法五步开挖施工工法 1、前言 隧道通过软弱围岩地段时,由于围岩的整体强度低,自稳能力差,隧道开挖后自稳时间短,甚至没有自稳时间,隧道开挖后拱顶及局部应力集中过大易出现坍塌冒顶,隧道结构极易失稳,给施工带来极大的困难。我局在恩施凤凰山隧道施工过程中,结合施工能力和现场实际地质条件,依据新奥法原理改进施工方案,采用上下台阶预留核心土分五步进行开挖支护,拱部和边墙分别采用组合模板台车衬砌。该施工工艺具有以下特点:1、减少了对周边围岩的扰动,且台阶之间可平行穿插作业;2、开挖面稳定,作业较为安全;3、机械利用率高,施工周期短。通过四川凉山州官地水电站对外交通公路E标段煤炭沟隧道、杭瑞高速鸡口山隧道等软弱围岩隧道的施工,总结了成功的经验,取得了良好的经济效益的社会效益,并形成本工法。 2、工法特点 2.0.1将监控量测技术、数据处理和信息反馈技术应用于施工,动态调整施工方法和支护,确保施工安全; 2.0.2运用上下台阶预留核心土法进行开挖支护,拱部边墙先施做系统锚杆注浆,分部封闭成环,初期支护为网、锚、喷加型钢钢架,二次衬砌为钢筋混凝土结构; 2.0.3采用五步开挖作业简便,无需使用特殊施工机械,容易推广应用; 2.0.4边墙与拱部采用一套组合模板台车,具有费用低、效率高、

混凝土外观质量好的优点。 3、适用范围 3.1.1本工法适用于新奥法指导施工的较大跨度软弱围岩隧道。 3.1.2本工法适用于各种埋深Ⅳ-Ⅴ级围岩公路隧道和类似跨度与其他级别围岩的隧道工程。 4、工艺原理 4.0.1采用上下台阶预留核心土法施工较大跨度的隧道,其机理是将洞室断面分为上部环形拱部、上部核心土、下部弧形拱部、下部核心土以及仰拱,由于上下部有核心土支挡着开挖面,而且能及时施做拱部初期支护,开挖工作面稳定性好,施工安全有保障。上下台阶预留核心土法施工示意图:见图4.1。 上下台阶预留核心土施工示意图图一 1 11 2 3上弧形导坑开挖及支护 上核心土开挖及支护 下弧形导坑开挖及支护下核心土开挖 仰拱开挖及支护 3 4 5 超前小导管 隧道掘进方向 1 2 3 4 5 图4.1

《地下工程》课程设计

《地下工程课程设计》 目录 一、目的 (2) 二、设计资料 (2) 三、隧道设计 (2) 四、管片衬砌结构设计 (7) 五、轨道设计 (12) 六、参考文献 (13)

地铁区间盾构隧道建筑限界的确定与横断面设计一.目的:通过课程设计,使学生掌握地铁区间隧道车辆轮廓线、车辆限界、设备 限界和建筑限界的计算过程与影响因素,车辆类型,支护结构类型,轨道类型,受电弓知识,直线与曲线隧道计算超高的办法及其对隧道建筑限界的影响等知识,使学生能够在任一速度和曲线半径下,选择车型和轨道设计,进行隧道衬砌选择和衬砌管片的选择,并且设计出管片的厚度和二次衬砌的厚度(若需要),绘出给定条件下的隧道建筑限界图(车辆轮廓线图、车辆限界图、设备限界图和建筑限界图),并给出具体控制点的坐标值,绘出单(复)线隧道直线和曲线条件下的衬砌内轮廓图,绘出衬砌设计图,绘出管片设计图等。 二.设计资料:取之于“广州地铁某线某区间盾构隧道设计”。 圆形盾构地铁区间隧道,底层参数为: 粉粘土,上覆地层高12.0m,容重18.0kN/m3,地面超载20.0kN/m3,侧压力系数0.5,地基抗力系数30.0MPa/m。 设计要求: 1)直线隧道,时速80km/h 2)曲线段隧道,时速70 km/h,半径750m,车型B1,减震轨枕。 三.隧道设计: 本隧道设计选择B1车型中的下部受流型车型,其车辆主要参数如下: 1.车辆长度:19000mm 2. 车辆宽度:2800mm 3. 车辆高度:3800mm 4. 车体重量: 1) 空车:24000kg(钢车) 2)重车:42600kg(钢车) ●车辆轮廓线 B1型计算车辆轮廓线坐标值(mm)如下表: 点号0 1 2 3 4 5 6 27 28

软弱围岩隧道

软弱围岩隧道 随着我国铁路路网的完善,建设标准的提高,特别是高速铁路和客运专线的大量修建,隧道建设规模和技术水平也踏上了一个新的台阶;然而,软弱围岩隧道坍方、作业人员伤亡等事故却时有发生,隧道建设的安全现状无法与当前的形势相适应。从设计源头上解决当前软弱围岩隧道建设过程中存在的问题,是非常必要和及时的。 我国是世界铁路隧道大国。据统计,截止目前,我国铁路隧道通车运营长度已达到6000公里,在建隧道约6600公里,规划设计长度约7600公里,预计到2020年,我国铁路隧道总长将达2万公里左右,位居世界第一。 我院承担的任务主要集中在西南山区,地形、地质条件复杂,一方面,隧道多;另一方面,隧道通过软弱围岩地段长,如:全长462km的成兰线,隧道长度就达到322km,隧线比70%,Ⅳ、Ⅴ级围岩的比重75%,且多为千枚岩、板岩等软弱围岩地层。 这些都从客观上增大了隧道设计在安全方面的风险。半个多世纪来,我院在西南山区铁路隧道的建设中,既积累了一定的经验,也有不少教训和体会,根据会议安排,下面我就软弱围岩隧道工程设计方面做简要汇报,不妥之处,敬请领导批评指正。一、软弱围岩主要工程地质特点 软弱围岩一般是指岩质软弱、承载力低、节理裂隙发育、结构破碎的围岩,工程地质特点有:

(1)岩体破碎松散、粘结力差:一般为土层、岩体全风化层、挤压破碎带等构成的围岩,由于结构破碎松散,岩体间的粘结力差,开挖洞室后,仅靠颗粒间的摩擦效应和微弱胶结作用成拱,这类岩体极不稳定,尤其是在浅埋地段容易发生坍塌冒顶。 (2)围岩强度低、遇水易软化:一般以页岩、泥岩、片岩、炭质岩、千枚岩等为代表的软质岩地层,由于其强度低、稳定性差,开挖暴露后易风化、遇水易软化,尤其是深埋地段受高应力影响容易发生塑性变形,造成洞室内挤。 (3)岩体结构面软弱、易滑塌:主要是存在于受结构面切割影响严重的块状岩体中,由于结构面的粘结强度较低,开挖后周边岩体极易沿结构面产生松弛、滑移和坠落等变形破坏现象。

富水软弱围岩隧道施工控制要点

富水软弱围岩隧道施工控制要点 目前,花油山隧道4#斜井工区大里程、5#斜井工区小里程掌子面为第三系饱水状态下全、强风化砂砾岩,局部呈土状,为富水软弱围岩,而且埋深浅、断面大,开挖后围岩变形大、易失稳,造成侵限、塌方。 设计对于不良地质开挖时采取的措施:采用大管棚、小导管、超前锚杆如玻璃纤维锚杆等超前加固支护措施,配合双侧壁导坑、CRD、CD、三台阶七步等分部开挖工法;支护采用强支护,是预防塌方的重要措施,大多采用复合式衬砌,即:初期支护+防水板+模筑衬砌,初期支护采取锚喷、网喷、喷混凝土与钢支撑或格栅钢架相结合的支护方法,通常采用“钢筋网片+钢拱架+锚杆+喷射混凝土”锚喷支护体系。 施工过程中,应用新奥法原理“少扰动、早喷锚、快封闭、勤测量”,加强施工过程的管控,控变防塌,控制要点主要有下几个方面: 一、重视围岩变形量测工作,确保量测数据真实、可靠 控制软弱围岩的变形是确保施工过程安全的关键。有一句俗语“软岩靠量测,硬岩靠预报”,软弱围岩开挖后的变形是徐变,到一定数值才会塌方,有一个过程,就要求隧道开挖后,及时、准确的量测围岩变形量,对于变形量超标的围岩及时采取加固措施,防止塌方。 (一)围岩量测主要作用 围岩量测是在隧道施工阶段,使用专门仪器和工具,对围岩变形情况和支护结构工作状态进行的量测,是保证隧道

施工过程中安全性重要的环节。 1.及时提供围岩稳定状态和支护结构安全信息,预见可能发生的险情和事故; 2.验证支护结构效果,是设计支护参数和施工方法结果的反馈,同时为调整支护参数和施工方法提供依据; 3.根据变形数据,经济合理确定不同围岩情况下隧道预留的变形量,防止超欠挖; 4.确定二衬施作时机,水平收敛(拱脚附近7d平均值)小于0.2mm/d,拱部下沉速度小于0.15mm/d,方可施作二衬; 5.积累量测数据,为风险管理分级提供依据; 6.为施工过程的安全和结构长期稳定性评价提供实测数据; 7.监控工程施工对周边环境、临近建筑物安全度的影响。 (二)围岩量测方法 围岩量测主要就是接触式测量和非接触式两种方法,传统原始的接触式测量方法即采用水准仪测拱顶下沉、拉钢尺测水平收敛,对施工干扰大、测量速度慢,目前先进、常用的非接触式方法是全站仪无尺法。要求花油山隧道采用全站仪无尺法进行围岩量测。 全站仪无尺法量测技术:隧道开挖后,及时在基岩埋设观测标,利用固定的工作基点作为参照点,全站仪自由设站连续测设前方观测标相对于固定工作基点的位移变化值,经过计算取得围岩的变形信息。当拱顶下沉、水平收敛速率达

三级围岩爆破设计

山围岩爆破设计 1、全断面开挖钻爆设计: (一)爆破参数设计 1)炮眼直径 炮眼直径采用:d=42mm 2)循环进尺 循环进尺为3.0m,炮眼利用率0.9。 3)掏槽方式 掏槽眼采用斜眼掏槽,其他炮眼采用直眼扩槽; 4)炮眼深度及角度 ①掏槽眼:深3.5m;角度75°。 ②崩落眼:深3.3m;角度90°。 ③周边眼和二圈眼:深3.3 m,87°。 5)掏槽眼形式及参数 掏槽形式及孔网参数如下图: 图1掏槽形式及孔网参数示意图(单位: mm) 掏槽孔装药量计算: 按装药系数确定直孔掏槽的炮孔装药量: Q= n lq i =0.6 x 3.5 x 0.78(线装药密度KG/m)=1.638kg,取Q=1.80kg。 6)崩落孔爆破参数 抵抗线:根据经验取抵抗线W=700mm

炮孔间距取:a r= (0.8?1.3 )W a r=1.1 x 700=770m在实际爆破过程中取a「=800mm F方15、17段崩落孔抵抗线与空间距为0.85m和1.00m。 崩落孔装药量1: Q=qv=qawl=0.9 X 0.80 X 0.70 x 3.0=1.512kg , 取Q=1.50kg。 崩落孔装药量2: Q=qv=qawl=0.9 X 1.00 X0.85 x3.0=2.295kg , 取Q=2.25kg (下方15、17段崩落孔) 7)底板孔装药量计算 Q=qv=qa r wl=0.9 x 0.60 x 0.70 x 3.0=1.14kg 取Q=1.2kg 8)周边孔爆破及参数 周边孔参数按经验公式计算 孔间距:E= (8?12)d,在计算时取E=12x42=504,故取E=500mm 抵抗线:W=(1.0?1.5)E,在计算时取W=1.2x 500=600mm 装药集中度:q=0.04 ?0.19kg/m,取q=0.18kg/m , 故Q=0.18x 3.3=0.594kg,取Q=0.60kg。 9)炮孔堵塞长度l 0的计算 l 0= (0.2 ?0.5 )W 取l 0=0.5 x 0.8=0.40m,在实际施工中取I o=600mm (二)炮眼布置图 如下图所示:

【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高.一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2工程概况 2.1概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为4.0‰。按新奥法设计,采用复合式衬砌。 2。2工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。

隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层Qml、第四系残坡积层Qel+dl,下伏侏罗系上统西山头组J3x流纹质玻屑凝灰岩.

地下水为松散岩类孔隙水和火山碎石屑岩类基岩裂隙水.区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明.雨量充沛,年降雨量达1723。0毫米,4~9月最集中。化学环境作用等级为H2,地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35s。隧道进口进口工程特点 2。3隧道进口工程特点从现场看,隧道进口进洞条件差,边仰坡的坡度陡峭。进口洞口段处于浅埋偏压严重,位于第四系残积层内。进口段表层为含砾粉质黏土,硬塑,厚0~2.5m,下伏基岩流纹质玻屑凝灰岩,强风化厚1~7。5m,下为弱风化,岩质较硬,裂隙发育,岩体破碎。地下水为基岩裂隙水,不发育。洞口浅埋段全长77m,埋深0~18m。因此,如何根据地形、围岩地质的基本特性,确定合理、快捷的施工方法,顺利穿过偏压、浅埋、破碎段是本隧道施工的关键。麻芝川隧道进口平面布置图见图1所示。图1麻芝川隧道进口平面布置图3施工总体方案隧道明洞采用明挖法施工,暗洞采用新奥法施工,进洞采用套拱进洞。隧道半明半暗部分采用套拱、超前支护等措施减小偏压力.超前支护采用108mm超前管棚注浆支护。明洞采用明挖法施工。暗洞软弱围岩地段坚持“管超前、严注浆、弱爆破、短进尺、强支护、早封闭、勤量测、紧衬砌”的施工原则。暗洞V级围岩采用三台阶四步法开挖。4浅埋偏压破碎段施工方法浅埋偏压破碎段施工方法破碎浅埋偏压隧道进洞施工技术以新奥法原理为依据,通过人工配合机械开挖及控制爆破,减少对岩体的扰动。在进洞前完成洞口段地表处理、超前支护、锚喷钢架支护、二次衬砌受力体系转换.4。1地表处理

相关文档
最新文档