冷却水蒸发量计算修订稿

冷却水蒸发量计算修订稿
冷却水蒸发量计算修订稿

冷却水蒸发量计算公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

冷却塔的水量损失主要以蒸发损失为主:蒸发损失水量计算如下(1)初步确定冷却塔的补充水量,可按下式计算

(2) Qe=KΔtQ

(3)其中:Qe———蒸发损失水量(m3/h)

(4)Δt———冷却塔进出水的温度差(℃)

(5) Q———循环水量(m3/h)

(6) K——--系数(1/℃)

(7)K值

根据上述冷却塔供水量参数和计算公式可得冷却塔水量损失为: Qe=KΔtQ

=0.00155×5×81

=0.62775m3/h

蒸发量计算的基础知识

冷却塔蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。 凉水塔补水=蒸发量+排污量+飘散损失+泄漏一般凉水塔内水份的蒸发量不大,约为进水量的1~2.5%. 1、蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。

冷却塔流量计算

冷却塔是水与空气进行热交换的一种设备,它主要由风机、电机、填料、播水系统、塔身、水盘等组成,而进行热交换主要由在风机作用下比较低温空气与填料中的水进行热交换而降低水温。水塔的构造及设计工况在说明书上有注明,而我们现在采用的水吨为单位是国际上比较常用的单位。在计算选型上比较方便,另冷却塔在选型上应留有20%左右的余量。 以日立RCU120SY2 为例: 冷凝:37℃ 蒸发:7 ℃ 蒸发器:Q = 316000 Kcal/h Q = 63.2m3/h 冷凝器:Q = 393000 Kcal/h Q = 78.6m3/h 这些在日立的说明书上可以查到; 如选用马利冷却塔则: 78.6×1.2 = 94.32 m3/h(每小时的水流量) 选用马利SR-100 可以满足(或其它系列同规格的塔,如SC-100L) 在选用水泵时要在SR-100 的100 吨水中留有10%的余量,在比较低的扬程时可选用管道泵,在扬程高时则宜选用IS 泵。 100×1.1=110 吨水/小时 选用管道泵GD125-20 可以满足; 而在只知道蒸发器Q=316000Kcal/h 时,则可以通过以下公式算出需要多大的冷却塔: 316000×1.25(恒值)= 395000 Kcal/h, 1.25——冷凝器负荷系数 395000÷5 = 79000 KG/h = 79 m3/h 79×1.2(余量) = 94.8m3/h(冷却塔水流量) (电制冷主机—通式:匹数×2700×1.2×1.25÷5000 或冷吨×3024×1.2×1.25÷5000 = 冷却塔水流量m3/h) 冷却塔已知基它条件确定冷却塔循环水量的常用公式: a. 冷却水量=主机制冷量(KW)×1.2×1.25×861/5000(m3/h) b. 冷却水量=主机冷凝器热负荷(kcal/h)×1.2/5000(m3/h) c. 冷却水量=主机冷凝器热负荷(m3/h)×1.2(m3/h) d. 冷却水量=主机制冷量(冷吨)×0.8(m3/h) e. 冷却水量=主机蒸发器热负荷(kcal/h)×1.5×1.25/5000(m3/h) f. 冷却水量=主机蒸发器热负荷(m3/h)×1.2×1.25(m3/h) g. 冷却水量=主机蒸发器热负荷(冷吨)×1.2×1.25×3024/5000(m3/h) 注:以上:1.2为选型余量 1.25为冷凝器负荷系数。 Q=cm(T2-T1)t是时间,即降温需要多少时间 算出来的制冷量单位是大卡(kcal/h),然后再除以0.86就是制冷量(w) 如果是风冷,再除以2500,就是匹数 如果是水冷,再除以3000,就是匹数 Q单位J ; 冷却塔C比热,如果是水就是4.2kJ/K*kg ; T2-T1就是降温差值 制冷量=Q/4.2/t

冷却塔冷却水泵及冷冻水泵选型计算方法

冷却塔及冷却水泵选型计算方法: 1冷却塔冷却水量 方法一: 冷却水量=860×Q(kW)×T/5000=559 m3/h T------系数,离心式冷水机组取1.3,吸收式制冷机组取2.5 5000-----每吨水带走的热量 方法二: 冷却水量: G= 3.6 Q/C (tw1-tw2)=559 m3/h Q—冷却塔冷却热量,kW,对电制冷机取制冷负荷1.35倍左右,吸收式取2.5倍左右。C—水的比热(4.19kJ/kg.k) tw1-tw2—冷却塔进出口温差,一般取5℃;压缩式制冷机,取4~5℃;吸收式制冷机,取6~9℃ 冷却塔吨位=559×1.1=614 m3/h 2冷却水泵扬程 冷却水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷却水管路系统总的沿程阻力和局部阻力,mH2O; h m——冷凝器阻力,mH2O; h s——冷却塔中水的提升高度(从冷却盛水池到喷嘴的高差),mH2O;(开式系统有,闭式系统没哟此项) h o——冷却塔喷嘴喷雾压力,mH2O,约等于5 mH2O。 H p=(h f+h d)+h m+h s+h o=0.02×50+5.8+19.8+5=31.6mH2O

冷却水泵所需扬程=31.6×1.1=34.8 mH2O 冷却水泵流量=262×2×1.1=576 m3/h 3冷冻水泵扬程 冷冻水泵所需扬程 H p=(h f+h d)+h m+h s+h o 式中h f,h d——冷冻水管路系统总的沿程阻力和局部阻力,mH2O ; h m——蒸发器阻力,mH2O ; h s——空调器末端阻力,mH2O ; h o——二通调节阀阻力,mH2O 。 H p=(h f+h d)+h m+h s+h o=0.02×150+5+2.78+4=14.78mH2O 冷却水泵所需扬程=14.78×1.1=16.3 mH2O 冷却水泵流量=220×2×1.1=484 m3/h

蒸发量计算

玻璃钢冷却塔技术手册之二(玻璃钢冷却塔性能参数) 发布者:admin 发布时间:2010-10-31 10:30:26 二、 玻璃钢冷却塔性能参数 2.1 冷却效能 部分人有一个错误的概念,就是以冷幅作为玻璃钢冷却塔效能的标准,并以着来选择合适的散热量,其实冷幅是冷却水塔运作的反映与效能是没有直接之关系。 热量是循环系统内所产生的负荷,它的单位为千卡/小时(Kcal/HR)计算公式如下: 热量=循环水流量×冷幅×比热系数 热量负荷和玻璃钢冷却塔的效能是没有直接关系,所以无论玻璃钢冷却塔的体积大小,当热量负荷和循环水流量不变而运作下,在理论上冷幅都是固定的。 若一座玻璃钢冷却塔能适合以下之条件而运作: i)出水温度为32℃及37℃ ii)循环水流量为 200L/S iii)环境湿球温度为 27℃ iv)逼近=32-27=5℃ v)冷幅=37-32=5℃ 计算其热量应为3600000Kcal/HR 此玻璃钢冷却塔也能适合以下之条件有效地运作: i)出水温度为33℃及43℃ ii)循环水流量为 200L/S iii)环境湿球温度为 23℃ iv)逼近=33-23=10℃ v)冷幅=43-33=10℃ 计算其热量应为7200000Kcal/HR

从上述举例可显示出相同玻璃钢冷却塔可在不同热量下运作,而热量的差别示极大,所以不能单靠冷幅来衡量玻璃钢冷却塔的效能。 前文提及玻璃钢冷却塔的散热量直接受环境湿球温度影响,而以上两列因环境湿球温度有差别,导致逼近不同,所以同一冷却水塔能在以上两条件下运作如常,证明玻璃钢冷却塔的效能是直接与逼近有密切关系而不能单以冷幅计算。 2.2 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为 T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------ (2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃ ---------- (3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃)A<不是做不到,而是不合理和不经济。 2.3 漂水耗损量 漂水耗损量的大小是和玻璃钢冷却塔(是否取用隔水设施),风扇性能(包括风量、风机及风扇叶角度的调整以及它们之间的配合等),水泵的匹配以及水塔的安装质量等因素有关,通常它的耗损量是很少的,大约在冷却器水总流量的0.2%以下。 2.4 放空耗损量 由于冷却回水不断的蒸发而令其变化(使水质凝结)这凝结了的冷却回水能使整个循环系统内产生腐蚀作用及导致藻类生长,所以部分的冷却回水要定期排出,以便补充更新,而这

冷却塔选型

冷却塔选型 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

冷却塔选型 冷却水量的计算: [1]. Q = m s △ t Q 冷却能力 Kcal / h (冷冻机/ 空调机的冷冻能力) m 水流量(质量) Kg / h s 水的比热值 1 Kcal / 1 kg - ℃ △ t 进入冷凝器的水温与离开冷凝器的水温之差 [2]. Q 的计算 Q = 72 q ( I 入口- I 出口 ) Q 冷却能力 Kcal / h q 冷却水塔的风量 CMM I 入口冷却水塔入口空气的焓(enthalpy) I 出口冷却水塔出口空气的焓(enthalpy) [3]. q 冷却水塔的风量 CMM 的计算 q = Q / 72 ( I 入口- I 出口 ) 上述计算系依据基本的热力学理论,按空气线图(psychrometrics)的湿空气性能,搭配基本代数式计算之。 更深入的数学式依Merkel Theory的Enthalpy potential 观念导算出类似更精确的计算方程式: Q = K ×S × ( hw -ha ) Q 冷却水塔的总传热量 K 焓的热传导系数 S 冷却水塔的热传面积 hw 空气与冷却水蒸发的混合湿空气之焓 ha 进入冷却水塔的外气空气之焓 此时,导入冷却水流量(质量),建立 KS / L 的积分(Integration) 遂计算出更为精确的冷却水塔热传方程式。详细的计算你可以从Heat Transfer的热力学内查阅。 冷却水塔的正确选用,是根据外气的湿球温度计算而来,绝非凭经验而来。诸多人士认为冷却水塔的能力一定大于冷冻空调的主机,这是完全错误的导论与说法,实不足为取。这是一种「积非成是,以讹传讹」的谬论。 顺便一提,楼上有一位兄弟提到,湿球温度从27℃→28℃,冷却水塔的能力降低,why?其实这就是基础热力学上湿球温度的应用。 湿球温度愈高,湿球温度的冷却能力愈差。所以,当湿球温度增高时,冷却水塔的能力下降,换言之,冷却水塔的出水量减少了。 从事空调制冷,空气的性能曲线图──Psychrometrics(空气线图)一定得充分认识、了解。Psychrometrics 就像医学上的X 光照片、心电图等等一样,让我门100%掌握空气性能的变化,所有制冷空调的问题均迎刃而解。

冷却塔水量损失计算(技术部)

冷却塔水量损失计算 水的蒸发损失[()]* :水的定压比热,取.摄氏度,:水的蒸发潜热,:循环水流量,():温差。 例如你设计的温差是度,就是,每小时循环水量吨的话,每小时蒸发吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为℃,出水温度为℃,湿球温度为,则*:(℃)() 式中::冷却水的温度差,对单位水量即是冷却的热负荷或制冷量 对式()可推论出水蒸发量的估算公式 *:()×() 式中:当温度下降℃时的蒸发量,以总循环水量的百分比表示,考虑了各种散热因素之后确定之常数。 如:℃ 则{(×)}总水量 或℃,即温差为℃时的水蒸发量

*:℃() 式中:逼近度,即出水温度()逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取≥℃(推进≥即℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失。二、风吹损失。三、排污损失: 四、冷却池的附加蒸发损失水量 第2.2.5条冷却塔的蒸发损失水量可按下式计算: Δ 式中——蒸发损失水量,; Δ——冷却塔进水与出水温度差,℃。 ——循环水量,。 ——系数,℃1,可按表2.2.5采用。 系数 气温- 第2.2.6条冷却塔的风吹损失水量占进入冷却塔循环水量的百分数可采用下数值 机械通风冷却塔(有除水器) ~’$ ( $ ( {. ]* " ) 风筒式自然通风冷却塔(以下简称自然通风冷却塔) 当有除水器时

冷却塔的热力计算

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看 作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦 克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一 个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 ( ) dV h h dH t xv q 0" -=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; " t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

冷却塔水量损失计算

冷却塔水量损失计算 水的蒸发损失WE=[(Tw1-TW2)Cp/R]*L CP:水的定压比热,取4.2KJ/KG.摄氏度,R:水的蒸发潜热2520KJ/KG ,L:循环水流量,(Tw1-TW2):温差。 例如你设计的温差是10度,就是10/600=1.67 %,每小时循环水量1000吨的话,每小时蒸发16.7吨,这是冷却塔全效时的蒸发量,如果低于这个量就是冷却塔设计有问题。 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明:令:进水温度为T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------(2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃----------(3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃),不是做不到,而是不合理和不经济。 水塔蒸发量计算 第2.2.4条冷却塔的水量损失应按下列各项确定: 一、蒸发损失;二、风吹损失;三、排污损失: 四、冷却池的附加蒸发损失水量

冷却塔选型计算

冷却塔选型须知 1、请注明冷却塔选用的具体型号,或每小时处理的流量。 2 、冷却塔进塔温度和出塔水温。 3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。 4、若需要备品备件及其他配件,有无其他要求等请注明。 5、非常条件使用请说明使用环境和具体情况,以便选择适当的冷却塔型号。 6、特殊情况、型号订货时请标明,以双方合同、技术协议约定专门进行设计。 冷却塔详细选型: 1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。 2、确定使用设备或者可以按照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。 3、根据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。(一般取1.2—1.25倍)。 4、多台并联时尽量选择同一型号冷却塔。 其次,冷却塔选型时要注意: 1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。 2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。 3、冷却塔淋水填料的型式符合水质、水温要求。 4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。 5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。 6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。 7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。 8、冷却塔的进水管方向可按90°、180°、270°旋转。 9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%。 10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。 11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。 12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。 13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。 14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。 15、当选择多台冷却塔的时候,尽可能选用同一型号。 此外,衡量冷却塔的效果还通常采用三个指标: (1)冷却塔的进水温度t1和出水温度t2之差Δt。Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。

循环水浓缩倍数的计算

1xx温度对冷水机组制冷量的影响 我们都知遭: 从运行费来讲,在蒸发温度和压缩机转数一定的情况下,冷凝温度越低,制冷系数越大,耗电量就越小。据测算,冷凝温度每增加1℃,单位制冷量的耗功率约增加3%-4%.所以,从这一角度来讲,保持冷凝温度稳定对提高冷水机组的制冷量是有益的。但为达到此目的,需采取以下措施: 增加冷凝器的换热面积和冷却水的水量;或提高冷凝器的传热系数,但是,对于一个空调冷却系统来说,增加冷凝器的面积几乎是不可能的。增加冷却水的水量势必增加水在冷凝器内的流速,这将影响制冷机的寿命,同时还增加了冷却水泵的耗电和管材浪费等一系列问题,而且效果也不尽理想。增大冷却塔的型号,考虑一定量的富余系数尚可,但如果盲目加大冷却塔的型号,以追求降低冷却水温也是得不偿失的,而且,冷却水温度还受当地气象参数的限制。提高冷凝器冷却水侧的放热系数,是实际和有效的,而提高放热系的有效途径是减小水侧的污垢热阻,对冷却水补水进行有效的处理. 2xx的补水问题 xx水量损失,包括三部分: 蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb 式中: Qm为冷却塔水量损失;Qe为燕发水量损失;Qw为风吹量损失;Qb为排污水量损失。 (1)蒸发损失 Qe= (0.001+0.002θ)Δt Q (1) 式中:

Qe为蒸发损失量;Δt为冷却塔进出水温度差;Q为循环水量;θ为空气的干球温度。 (2)风吹损失水量 对于有除水器的机械通风冷却塔,风吹损失量为 Qw=(0.2%~0.3%)Q (2) (3)排污和渗漏损失 该损失是比较机动的一项,它与循环冷却水质要求、处理方法、补充水的水质及循环水的浓缩倍数有关.浓缩倍数的计算公式: N =Cr/Cm 式中: N为浓缩倍数;Cr为循环冷却水的含盐量;Cm为补充水的含盐量.根据循环冷却水系统的含盐量平衡,补充水带进系统的含盐最应等于排污,风吹和渗偏水中所带走的含盐量. QmCm= (Qw+Qb)Cr N =Cr/Cm=Qm/(Qw+Qb)=( Qe+ Qw+Qb)/( Qw+Qb) =Qm/Qb(Q w可忽略)( (3)Qm= QeN/(N 一1) N=1+Q e/Q w+Q b(Q

冷却塔损失量计算

冷却塔的工作原理: 冷却塔是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的废热的一种设备。基本原理是:干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒入塔内。当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。 冷却塔的工作过程: 圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降。从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。 冷却塔的分类: 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按形状分有圆形冷却塔、方形冷却塔、矩形冷却塔。 五、按冷却温度分有标准型冷却塔、中温型冷却塔、高温型冷却塔。 六、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 七、按用途分有塑机专用冷却塔、发电机专用冷却塔、中频炉专用冷却塔、中央空调冷却塔、电厂冷却塔。 八、其他有喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 冷却水的补水问题 冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb

循环水蒸发量计算

我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一,节约用水成了一个社会发展所必须面对的问题。火力发电厂是一个耗水大户,其中循环水冷却塔的耗水量约占整个电厂耗水量的60%以上。因此,冷却塔耗水量的变化对整个电厂耗水量有着较明显的影响。那么哪些因素影响冷却塔的耗水量,又是如何影响的呢?下面以一台300MW火电机组为实例具体分析一下其变化的内在规律,以期获得对火电厂节水工作有益的结论。 1.计算所需数据:(机组在300MW工况下) 冷却塔循环水量36000t/h? ?? ?? ?? ?? ?? ?? ?? ? 循环水温升9.51℃ 凝汽器循环水进水温度20℃? ?? ?? ?? ?? ?? ?? ? 空气湿度61% 循环冷却塔的端差5℃(端差为冷却塔循环水出水温度与大气湿球温度之差) 循环水浓缩倍率3.0 2.影响冷却塔耗水量因素分析: 火力发电厂循环水冷却系统运行中,维持系统正常稳定运行的关键是两个平衡,即:水量平衡和盐量平衡。二者相互联系,如果其中一个平衡变化,那么另一个平衡也会随之发生相应变化。 2.1循环水的水量平衡: 水量平衡过程是:机组运行过程中,对于敞开式循环冷却水系统来说,水的损失有蒸发损失、风吹损失、排污损失、漏泄损失(由于量较小,一般可略去不计)等,要维持水量平衡就需要同时对系统进行补水。 循环水系统的水量平衡数学表达式为:PBu =P1+ P2+ P3 [1]公式1 PBu:补充水量占循环水量的百分率,% P1:蒸发损失水量占循环水量的百分率,% P2:风吹损失占循环水量的百分率,% P3:排污损失占循环水量的百分率,% 在以上平衡中通常P1所占的份额较大,而它的大小主要取决于凝汽器的热负荷,以及气候条件(主要是温度因

循环水蒸发量计算

循环水蒸发量计算 我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一,节约用水成了一个社会发展所必须面对的问题。火力发电厂是一个耗水大户,其中循环水冷却塔的耗水量约占整个电厂耗水量的60%以上。因此,冷却塔耗水量的变化对整个电厂耗水量有着较明显的影响。那么哪些因素影响冷却塔的耗水量,又是如何影响的呢?下面以一台300MW火电机组为实例具体分析一下其变化的内在规律,以期获得对火电厂节水工作有益的结论。 1.计算所需数据:(机组在300MW工况下) 冷却塔循环水量36000t/h 循环水温升 9.51℃ 凝汽器循环水进水温度20℃空气湿度61% 循环冷却塔的端差5℃(端差为冷却塔循环水出水温度与大气湿球温度之差)循环水浓缩倍率3.0 2.影响冷却塔耗水量因素分析: 火力发电厂循环水冷却系统运行中,维持系统正常稳定运行的关键是两个平衡,即:水量平衡和盐量平衡。二者相互联系,如果其中一个平衡变化,那么另一个平衡也会随之发生相应变化。 2.1循环水的水量平衡: 水量平衡过程是:机组运行过程中,对于敞开式循环冷却水系统来说,水的损失有蒸发损失、风吹损失、排污损失、漏泄损失(由于量较小,一般可略去不计)等,要维持水量平衡就需要同时对系统进行补水。 循环水系统的水量平衡数学表达式为:PBu =P1+ P2+ P3 [1]公式1 PBu:补充水量占循环水量的百分率,% P1:蒸发损失水量占循环水量的百分率,% P2:风吹损失占循环水量的百分率,% P3:排污损失占循环水量的百分率,% 在以上平衡中通常P1所占的份额较大,而它的大小主要取决于凝汽器的热负荷,以及气候条件(主要是温度因素);P2的大小取0.1%(机组冷却塔中装有除水器时);P3的大小主要取决于循环水系统所能达到的浓缩倍率。 水量平衡的另一种数学表达式为: M=E+B+D [2]公式2 M:补充水量,t/h; E:蒸发损失量,t/h; B:风吹损失量,t/h;的D:排污损失量,t/h 其中:自然通风冷却塔的蒸发损失计算公式为: E=k×△t×Qm [2]公式3 k:与环境大气温度有关的系数,%;△t:循环冷却水温升,℃;Qm:循环水量,T。若其它条件不变,仅冷却水量发生变化时,同一机组△t成反比变化,因而蒸发损失水量则保持不变的。 由公式1和公式2可以推出:B=Qm×P2 公式4) D=Qm×P3 公式5 2.2循环水的盐量平衡: 循环水系统的盐量平衡过程是:机组在运行过程中,由于循环冷却系统中水的蒸发作用,循环水中的溶解盐类不断浓缩,因此就需要通过排污等方式降低溶解盐类。当循环冷却水系统中进入和失去的盐类达到平衡后可得: K=(P1+ P2+ P3)/( P2+ P3)[1]公式6 由以上两个平衡过程的分析可以得出,影响循环水冷却塔耗水量的主要因素为:环境温度,空气湿度,机组出力,浓缩倍率。 3.影响耗水量因素的定量分析:

循环水自然降温计算

循环水池散热计算 (1 )水面蒸发和传导损失的热量: Qx = a y( 0.0174vf + 0.0229 ) (Pb —Pq) A(760/B) 式中Qx――水池表面蒸发损失的热量(kJ/h ); a ――热量换算系数, a = 4.1868 kJ /kcal ; y——与水池水温相等的饱和蒸汽的蒸发汽化潜热 (kcal/kg ); vf ――水池水面上的风速(m/s ), —般按下列规定采用: 室内水池vf = 0.2~0.5 m/s ;露天水池vf = 2~3 m/s ; Pb――与水池水温相等的饱和空气的水蒸汽分压力 (mmHg ); 3.782 KPa Pq --- 水池的环境(23C)空气的水蒸汽压力( mmHg ); A --- 水池的水表面面积(m2 ); B --- 当地的大气压力(mmHg )。 (2)加上水池的水表面、池底、池壁、管道和设备等传导所损失的热量: 而水池的水表面、池底、池壁、管道和设备等传导所损失的热

量,占水池水表面蒸发损失热量的20%。

(3)水池补水加热所需的热量: Qb = a qb y (tr- tb )/t 式中Qb——水池补充水加热所需的热量(kJ/h); a 量换算系数,a= 4.1868(kJ /kcal); qb --- 水池每日的补充水量(L);按水池水量的5 y ――的密度(kg/L ); tr――水池水的温度(C)。 tb ——水池补充水水温「C); t——加热时间(h)。 (4)水池表面蒸发量的计算: Ws = ?x(Pq.b -Pa )F>B/B、式中 W——水池散湿量(kg/h ); 9 ——系数,0.00557 X10-5 kg/N.s ; Pq.b --- 与水池水温相等的饱和空气的水蒸汽分压力(Pq——水池的环境空气的水蒸汽压力(Pa ); F——水池的水表面面积(m2 ); B―― 标准的大气压力(Pa ); B、当地的大气压力(Pa ); 10%确定; Pa);

冷却塔耗水量计算

封闭式软水冷却塔与(开式冷却塔+水池)比较 (以实际流量为200吨/小时项目,每天运行20小时,一年运行300天为例) 一:水池+开式冷却塔结垢所带来的电消耗(一年多耗电费为24万元) 开塔用水为敞开式,易结垢,造成炉体加热时间及钢水出炉时间增长,电费浪费。工程实例: 我们在山东的某浙江老板,购置一套6000KW/12吨中频感应电炉,建了一个深3米/600m3钢筋混凝土水池,加一只普通的圆形冷却塔,池底下有厚达30公分的烂泥污染物和青苔草;建成后冷却塔每运行三个月就无法再使用,冷却塔填料全部结垢,水无法流过,循环冷却系统中,结垢四分之一,水温高达75℃,整个系统经常报警。6000KW-12T中频电炉正常钢水出炉时间为90分钟,而该炉出钢水时间为120分钟,延长了30分钟,相当于三分之一时间,我们不讲一套12T电炉水泵和冷却塔等其他损失,只计算6000KW电炉延长30分钟出钢水要多用200度电,每天计算10炉就多用2000度电,计算电价为0.4元/度,每天就浪费800元的电费,每年按300天计算,一年多耗电费为24万元。据专家估计这台12T电炉和易损件加起来损失30多万元。后来,这家钢厂经专家推荐,购置我公司FBN- T型封闭式软水循环冷却机后,取消了原开放式冷却塔和水池,经我公司给这家钢厂整个系统用化学剂除垢两次和冲洗三次换好纯净水后,整个系统得到正常运行,出炉时间为95分钟,电损控制在正常范围内。 注:我公司生产的闭式冷却塔不存在结垢现象。 ……请选择!请比较!我们渴望被关注、愿意被了解、希望被认可。…… 二:其它费用比较 1、水池费用 开式冷却塔:必须要挖水池。

冷却塔选型计算

冷却塔选型 欧阳学文 1.冷却水流量计算:L=(Q1+Q2)/(Δt*1.163)*1.1L—冷却水流量(m3/h)Q1—乘以同时使用系数后的总冷负荷,KWQ2—机组中压缩机耗电量,KWΔt—冷却水进出水温差,℃,一般取4.55 冷却塔的水流量 = 冷却水系统水量×(1.2~1.5); 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32oC/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算:Q=72*L*(h1h2)Q冷却能力(Kcal/h)L冷却塔风量,m3/hh1冷却塔入口空气焓值h2

冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定 扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法: .

6.冷却水管径选择 7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2p1)/ρg+(c2c1)/2g+z2z1。其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进

出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K) △P1为冷水机组蒸发器的水压降。△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K 值取0.4~0.6。 8.冷却塔的选择:

循环水蒸发量计算

精心整理 我国是一个水资源十分贫乏的国家,一些地区水资源已成为制约经济发展的主要因素之一,节约用水成了一个社会发展所必须面对的问题。火力发电厂是一个耗水大户,其中循环水冷却塔的耗水量约占整个电厂耗水量的60%以上。因此,冷却塔耗水量的变化对整个电厂耗水量有着较明显的影响。那么哪些因素影响冷却塔的耗水量,又是如何影响的呢?下面以一台300MW 火电机组为实例具体分析一下其变化的内在1. ? ???2.? ? 火力发电厂循环水冷却系统运行中,维持系统正常稳定运行的关键是两个平衡,即:水量平衡和盐量平衡。二者相互联系,如果其中一个平衡变化,那么另一个平衡也会随之发生相应变化。 2.1循环水的水量平衡:

水量平衡过程是:机组运行过程中,对于敞开式循环冷却水系统来说,水的损失有蒸发损失、风吹损失、排污损失、漏泄损失(由于量较小,一般可略去不计)等,要维持水量平衡就需要同时对系统进行补水。 循环水系统的水量平衡数学表达式为:PBu =P1+ P2+ P3 [1]? ?? ?? ?? ?? ?? ???公式1 PBu% P2% P3 ??公式2 M 量, 其中:自然通风冷却塔的蒸发损失计算公式为: E=k×△t×Qm [2]? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?公式3 k:与环境大气温度有关的系数,%;△t:循环冷却水温升,℃;Qm:循环水量,T。

若其它条件不变,仅冷却水量发生变化时,同一机组△t成反比变化,因而蒸发损失水 量则保持不变的。 由公式1和公式2可以推出:B=Qm×P2? ?? ?? ?? ?? ?? ?? ?? ?? ?? ? 公式4 D 2.2 K=( 公式 3.影响耗水量因素的定量分析: 3.1环境温度变化对冷却塔耗水量的影响:(取空气湿度61%,机组出力300MW,浓缩倍率K=3.0) 3.1.1蒸发损失量的计算:? ?

冷却塔选型计算

1.冷却水流量计算: L=(Q1+Q2)/(Δt*)* L—冷却水流量(m3/h) Q1—乘以同时使用系数后的总冷负荷,KW Q2—机组中压缩机耗电量,KW Δt—冷却水进出水温差,℃,一般取 冷却塔的水流量 = 冷却水系统水量×~; 冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32oC/37oC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得. 冷却塔与周围障碍物的距离应为一个塔高。 冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(3/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为。 湿球温度每升高1℃,冷却效率约下降17% 2.冷却塔冷却能力计算: Q=72*L*(h1-h2) Q-冷却能力(Kcal/h) L-冷却塔风量,m3/h h1-冷却塔入口空气焓值 h2-冷却塔出口空气焓值 3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。 4.冷却水泵扬程的确定

扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力 5.冷却塔不同类型噪音及处理方法: . 6.冷却水管径选择 7.冷却水泵扬程: 扬程通常是指水泵所能够扬水的最高度,用H表示。最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。 其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。 通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的~倍(单台取,两台并联取。 按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+(1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取~,最不利环路较短时K值取~。 8.冷却塔的选择:

循环水自然降温计算

循环水池散热计算 (1)水面蒸发和传导损失的热量: Qx =α·у(+)(Pb -Pq) A(760/B) 式中Qx——水池表面蒸发损失的热量(kJ/h ); α——热量换算系数,α=kJ /kcal ; у——与水池水温相等的饱和蒸汽的蒸发汽化潜热(kcal/kg ); vf ——水池水面上的风速(m/s ),一般按下列规定采用:室内水池vf =~ m/s ;露天水池vf =2~3 m/s ; Pb——与水池水温相等的饱和空气的水蒸汽分压力(mmHg );KPa Pq——水池的环境(23℃)空气的水蒸汽压力(mmHg ); A——水池的水表面面积(m2 ); B——当地的大气压力(mmHg )。 (2)加上水池的水表面、池底、池壁、管道和设备等传导所损失的热量: 而水池的水表面、池底、池壁、管道和设备等传导所损失的热量,占水池水表面蒸发损失热量的20% 。 (3)水池补水加热所需的热量: Qb=αqbу(tr- tb)/t

式中Qb——水池补充水加热所需的热量(kJ/h); α——热量换算系数,α=(kJ /kcal); 确定;10%~5;按水池水量的(L)水池每日的补充水量——qb ;水的密度(kg/L)у——。tr——水池水的温度(℃) ;tb——水池补充水水温(℃) 。加热时间(h)t——4()水池表面蒸发量的计算:、式中-Pa )F×B/BWs =ψ×(kg/h );W——水池散湿量( 10-5 kg/ ;=ψ——系数,ψ×);——与水池水温相等的饱和空气的水蒸汽分压力(Pa );Pq——水池的环境空气的水蒸汽压力(Pa );——水池的水表面面积(m2 F ;标准的大气压力(Pa )B ——;当地的大气压力(Pa )B、—— 饱和水蒸气压力表 绝对压强水蒸汽的密焓t/℃H/kJ·kg-1 汽化热r/kJ·kg-1 温度m-3 ρ/kg·度p/kPa 液体水蒸汽 5 10

冷却塔的热力计算知识讲解

冷却塔的热力计算

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 () dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ;

"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量; w c —— 水的比热()[] C /J o ?kg k ; Q —— 冷却水量 (s /g k ); u Q —— 蒸发水量 (s /g k ) t —— 水温度 (℃) 并引入系数K : m w u m u w r t c Q r t Q c K 2 211-=- = 式中 m r ——塔内平均汽化热(kg kJ /) 经整理,并积分后,可得冷却塔热力计算的基本方程式: ?-=120 "t t t w xv h h dt c Q v K β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即: Q V K xv β= Ω' (3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:

相关文档
最新文档