chap-循环神经网络资料

chap-循环神经网络资料
chap-循环神经网络资料

循环神经网络(RNN, Recurrent Neural Networks)介绍

循环神经网络(RNN, Recurrent Neural Networks)介绍 标签:递归神经网络RNN神经网络LSTMCW-RNN 2015-09-23 13:24 25873人阅读评论(13) 收藏举报分类: 数据挖掘与机器学习(23) 版权声明:未经许可, 不能转载 目录(?)[+]循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考: https://www.360docs.net/doc/eb15772286.html,/2015/09/recurrent-neural-networks-tutorial-part-1-introd uction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解。 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。主要分成以下几个部分对RNNs进行介绍: 1. RNNs的基本介绍以及一些常见的RNNs(本文内容); 2. 详细介绍RNNs中一些经常使用的训练算法,如Back Propagation Through Time(BPTT)、Real-time Recurrent Learning(RTRL)、Extended Kalman Filter(EKF)等学习算法,以及梯度消失问题(vanishing gradient problem) 3. 详细介绍Long Short-Term Memory(LSTM,长短时记忆网络);

第4章 SOM自组织特征映射神经网络

第4章 SOM 自组织特征映射神经网络 生物学研究表明,在人脑的感觉通道上,神经元的组织原理是有序排列的。当外界的特定时空信息输入时,大脑皮层的特定区域兴奋,而且类似的外界信息在对应的区域是连续映像的。生物视网膜中有许多特定的细胞对特定的图形比较敏感,当视网膜中有若干个接收单元同时受特定模式刺激时,就使大脑皮层中的特定神经元开始兴奋,输入模式接近,与之对应的兴奋神经元也接近;在听觉通道上,神经元在结构排列上与频率的关系十分密切,对于某个频率,特定的神经元具有最大的响应,位置相邻的神经元具有相近的频率特征,而远离的神经元具有的频率特征差别也较大。大脑皮层中神经元的这种响应特点不是先天安排好的,而是通过后天的学习自组织形成的。 据此芬兰Helsinki 大学的Kohonen T.教授提出了一种自组织特征映射网络(Self-organizing feature Map ,SOM ),又称Kohonen 网络[1-5]。Kohonen 认为,一个神经网络接受外界输入模式时,将会分为不同的对应区域,各区域对输入模式有不同的响应特征,而这个过程是自动完成的。SOM 网络正是根据这一看法提出的,其特点与人脑的自组织特性相类似。 4.1 竞争学习算法基础[6] 4.1.1 自组织神经网络结构 1.定义 自组织神经网络是无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。 2.结构 层次型结构,具有竞争层。典型结构:输入层+竞争层。如图4-1所示。 竞争层 输入 层 图4-1 自组织神经网络结构

· 输入层:接受外界信息,将输入模式向竞争层传递,起“观察”作用。 竞争层:负责对输入模式进行“分析比较”,寻找规律,并归类。 4.1.2 自组织神经网络的原理 1.分类与输入模式的相似性 分类是在类别知识等导师信号的指导下,将待识别的输入模式分配到各自的模式类中,无导师指导的分类称为聚类,聚类的目的是将相似的模式样本划归一类,而将不相似的分离开来,实现模式样本的类内相似性和类间分离性。由于无导师学习的训练样本中不含期望输出,因此对于某一输入模式样本应属于哪一类并没有任何先验知识。对于一组输入模式,只能根据它们之间的相似程度来分为若干类,因此,相似性是输入模式的聚类依据。 2.相似性测量 神经网络的输入模式向量的相似性测量可用向量之间的距离来衡量。常用的方法有欧氏距离法和余弦法两种。 (1)欧式距离法 设i X X ,为两向量,其间的欧式距离 T i i i X X X X X X d ))((--= -= (4-1) d 越小,X 与i X 越接近,两者越相似,当0=d 时,i X X =;以T d =(常数)为判据,可对输入向量模式进行聚类分析: 由于312312,,d d d 均小于T ,465645,,d d d 均小于T ,而)6,5,4(1=>i T d i , )6,5,4(2=>i T d i , )6,5,4(3=>i T d i , 故将输入模式654321,,,,,X X X X X X 分为类1和类2两大类,如图4-2所示。 (2)余弦法 设i X X ,为两向量,其间的夹角余弦 i T X X XX = ?cos (4-2) ?越小,X 与i X 越接近,两者越相似;当?=0时,?cos =1,i X X =;同样以0??=为 判据可进行聚类分析。

多层循环神经网络在动作识别中的应用

Computer Science and Application 计算机科学与应用, 2020, 10(6), 1277-1285 Published Online June 2020 in Hans. https://www.360docs.net/doc/eb15772286.html,/journal/csa https://https://www.360docs.net/doc/eb15772286.html,/10.12677/csa.2020.106132 Multilayer Recurrent Neural Network for Action Recognition Wei Du North China University of Technology, Beijing Received: Jun. 8th, 2020; accepted: Jun. 21st, 2020; published: Jun. 28th, 2020 Abstract Human action recognition is a research hotspot of computer vision. In this paper, we introduce an object detection model to typical two-stream network and propose an action recognition model based on multilayer recurrent neural network. Our model uses three-dimensional pyramid di-lated convolution network to process serial video images, and combines with Long Short-Term Memory Network to provide a pyramid convolutional Long Short-Term Memory Network that can analyze human actions in real-time. This paper uses five kinds of human actions from NTU RGB + D action recognition datasets, such as brush hair, sit down, stand up, hand waving, falling down. The experimental results show that our model has good accuracy and real-time in the aspect of monitoring video processing due to using dilated convolution and obviously reduces parameters. Keywords Action Recognition, Dilated Convolution, Long Short-Term Memory Network, Deep Learning 多层循环神经网络在动作识别中的应用 杜溦 北方工业大学,北京 收稿日期:2020年6月8日;录用日期:2020年6月21日;发布日期:2020年6月28日 摘要 人体动作识别是目前计算机视觉的一个研究热点。本文在传统双流法的基础上,引入目标识别网络,提出了一种基于多层循环神经网络的人体动作识别算法。该算法利用三维扩张卷积金字塔处理连续视频图

神经网络简介abstract( 英文的)

Abstract: Artificial Neural Network is a math model which is applied to process information of the structure which is similar to Brain synaptic connection in a distributed and parallel way. Artificial Neural Network is a computing model, and it contains of many neurons and the connection of the neurons. Every neuron represents a special output function which is called activation function. The connection of neurons represents a weighted value of the connection’s signal. Neuron is a basic and essential part of Artificial Neural Network, and it includes the sum of weighted value, single-input single-output (SISO) system and nonlinear function mapping. The element of neuron can represent different thing, such as feature, alphabet, conception and some meaningful abstract pattern. In the network, the style of neuron’s element divided into three categories: input element, output element and hidden element. The input element accepts the signal and data of outer world; the output element processes result output for system; the hidden element cannot find by outer world, it between input element and output element. The weighted value represents the strength of connection between neurons. Artificial Neural Network adopted the mechanisms that completely different from traditional artificial intelligence and information processing technology. It conquers the flaw of traditional artificial intelligence in Intuitive handling and unstructured information processing aspect. It is adaptive, self-organized and learning timely, and widely used in schematic identification signal processing.

SOM神经网络

SOM神经网络

第4章 SOM自组织特征映射神经网络 生物学研究表明,在人脑的感觉通道上,神经元的组织原理是有序排列的。当外界的特定时空信息输入时,大脑皮层的特定区域兴奋,而且类似的外界信息在对应的区域是连续映像的。生物视网膜中有许多特定的细胞对特定的图形比较敏感,当视网膜中有若干个接收单元同时受特定模式刺激时,就使大脑皮层中的特定神经元开始兴奋,输入模式接近,与之对应的兴奋神经元也接近;在听觉通道上,神经元在结构排列上与频率的关系十分密切,对于某个频率,特定的神经元具有最大的响应,位置相邻的神经元具有相近的频率特征,而远离的神经元具有的频率特征差别也较大。大脑皮层中神经元的这种响应特点不是先天安排好的,而是通过后天的学习自组织形成的。 据此芬兰Helsinki大学的Kohonen T.教授提出了一种自组织特征映射网络(Self-organizing feature Map,SOM),又称Kohonen网络[1-5]。Kohonen认为,一个神经网络接受外界输入模式时,将会分为不同的对应区

域,各区域对输入模式有不同的响应特征,而这个过程是自动完成的。SOM网络正是根据这一看法提出的,其特点与人脑的自组织特性相类似。 4.1 竞争学习算法基础[6] 4.1.1 自组织神经网络结构 1.定义 自组织神经网络是无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。 2.结构 层次型结构,具有竞争层。典型结构:输入层+竞争层。如图4-1所示。 … 竞争层 … 图4-1 自组织神经网络结构 ·输入层:接受外界信息,将输入模式向竞争 层传递,起“观察”作用。

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

循环神经网络注意力的模拟实现

循环神经网络注意力的模拟实现 我们观察PPT的时候,面对整个场景,不会一下子处理全部场景信息,而会有选择地分配注意力,每次关注不同的区域,然后将信息整合来得到整个的视觉印象,进而指导后面的眼球运动。将感兴趣的东西放在视野中心,每次只处理视野中的部分,忽略视野外区域,这样做最大的好处是降低了任务的复杂度。 深度学习领域中,处理一张大图的时候,使用卷积神经网络的计算量随着图片像素的增加而线性增加。如果参考人的视觉,有选择地分配注意力,就能选择性地从图片或视频中提取一系列的区域,每次只对提取的区域进行处理,再逐渐地把这些信息结合起来,建立场景或者环境的动态内部表示,这就是本文所要讲述的循环神经网络注意力模型。 怎么实现的呢? 把注意力问题当做一系列agent决策过程,agent可以理解为智能体,这里用的是一个RNN 网络,而这个决策过程是目标导向的。简要来讲,每次agent只通过一个带宽限制的传感器观察环境,每一步处理一次传感器数据,再把每一步的数据随着时间融合,选择下一次如何配置传感器资源;每一步会接受一个标量的奖励,这个agent的目的就是最大化标量奖励值的总和。 下面我们来具体讲解一下这个网络。 如上所示,图A是带宽传感器,传感器在给定位置选取不同分辨率的图像块,大一点的图像块的边长是小一点图像块边长的两倍,然后resize到和小图像块一样的大小,把图像块组输出到B。 图B是glimpse network,这个网络是以theta为参数,两个全连接层构成的网络,将传感器输出的图像块组和对应的位置信息以线性网络的方式结合到一起,输出gt。 图C是循环神经网络即RNN的主体,把glimpse network输出的gt投进去,再和之前内部信息ht-1结合,得到新的状态ht,再根据ht得到新的位置lt和新的行为at,at选择下一步配置传感器的位置和数量,以更好的观察环境。在配置传感器资源的时候,agent也会

神经网络基本概念

二.神经网络控制 §2.1 神经网络基本概念 一. 生物神经元模型:<1>P7 生物神经元,也称作神经细胞,是构成神经系统的基本功能单元。虽然神经元的形态有极大差异,但基本结构相似。本目从信息处理和生物控制的角度,简述其结构和功能。 1.神经元结构 神经元结构如图2-1所示 图2-1

1) 细胞体:由细胞核、细胞质和细胞膜等组成。 2) 树突:胞体上短而多分支的突起,相当于神经元的输入端,接收传入的神经冲 动。 3) 轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神经末梢,传出神经 冲动。 4) 突触:是神经元之间的连接接口,每一个神经元约有104~106 个突触,前一个 神经元的轴突末梢称为突触的前膜,而后一个神经元的树突称为突触的后膜。一个神经元通过其轴突的神经末梢经突触,与另一个神经元的树突连接,以实现信息传递。由于突触的信息传递是特性可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。 5) 细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后能产生兴奋,此时细胞膜内外由电位差,称为膜电位。其电位膜内为正,膜外为负。 2. 神经元功能 1) 兴奋与抑制:传入神经元的冲动经整和后使细胞膜电位提高,超过动作电 位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。传入神经元的冲动经整和后使细胞膜电位降低,低于阈值时即为抑制状态,不产生神经冲动。 2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强与减弱, 因此神经元具有学习与遗忘的功能。 二.人工神经元模型 ,<2>P96 人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。图2-2显示了一种简化的人工神经元结构。它是一个多输入单输出的非线形元件。 图2-2 其输入、输出的关系可描述为 =-= n j i j ji i Q X W I 1 2-1 )I (f y i i = 其中i X (j=1、2、……、n)是从其他神经元传来的输入信号;

AI翻转课堂教案-第4章 人工神经网络与深度学习教案

第四章人工神经网络与深度学习课题名称:人工神经网络与深度学习 学习过程:

络曾历经质疑、批判与冷落,同时也几度繁荣并取得了许多瞩目的成就。从20世纪40年代的M-P神经元和Hebb学习规则,到50年代的Hodykin-Huxley方程感知器模型与自适应滤波器,再到60年代的自组织映射网络、神经认知机、自适应共振网络,许多神经计算模型都发展成为信号处理、计算机视觉、自然语言处理与优化计算等领域的经典方法,为该领域带来了里程碑式的影响。目前模拟人脑复杂的层次化认知特点的深度学习已经成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究和应用的一个新高潮。 (三)神经元 人脑中的信息处理单元是神经细胞,而人工神经网络的计算单元就是人工神经元,,一个人工神经元的结构如图所示。 (1)来自其他神经元的输入信号为(x1, x2, ..., xn)。 (2)每一个输入信号都有一个与之对应的突触权重(w1, w2, ..., wn),权重(weight)的高低反映了输入信号对神经元的重要性。 (3)线性聚合器(∑)将经过加权的输入信号相加,生成一个“激活电压”(activation voltage)。 (4)激活阈值(activation threshold)或bias(θ)给神经元的输出设置一个阈值。 (5)激活电位(activation potential)u是线性聚合器和激活阈值之差,如果u≥0,神经元产生的就是兴奋信号,如果u<0,神经元产生的是抑制信号。 (6)激活函数(activation function)g将神经元的输出限制在一个合理的范围内。 (7)神经元产生的输出信号(y),可以传递给与之相连的其他神经元。 将上述信息用公式可表示为:

BP神经网络的Matlab语法要点

1. 数据预处理 在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。 (1) 什么是归一化? 数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如 (0.1,0.9) 。 (2) 为什么要归一化处理? <1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。 <2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。 <3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。 <4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。 (3) 归一化算法 一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式: <1> y = ( x - min )/( max - min ) 其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到[ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。 <2> y = 2 * ( x - min ) / ( max - min ) - 1 这条公式将数据归一化到[ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。 (4) Matlab数据归一化处理函数 Matlab中归一化处理数据可以采用premnmx ,postmnmx ,tramnmx 这3个函数。 <1> premnmx 语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t) 参数: pn:p矩阵按行归一化后的矩阵 minp,maxp:p矩阵每一行的最小值,最大值

相关系数,回归模型,自组织竞争神经网络

高等教育学费标准的研究 摘要 本文从搜集有关普通高等学校学费数据开始,从学生个人支付能力和学校办学利益获得能力两个主要方面出发,分别通过对这两个方面的深入研究从而制定出各自有关高等教育学费的标准,最后再综合考虑这两个主要因素,进一步深入并细化,从而求得最优解。 模块Ⅰ中,我们将焦点锁定在从学生个人支付能力角度制定合理的学费标准。我们从选取的数据和相关资料出发,发现1996年《高等学校收费管理暂行办法》规定高等学校学费占生均教育培养的成本比例最高不得超过25%,而由数据得到图形可知,从2002年开始学费占教育经费的比例超过了25%,并且生均学费和人均GDP 的比例要远远超过美国的10%到15%。由此可见,我国的学费的收取过高。紧接着,我们从个人支付能力角度出发,研究GDP 和学费的关系。并因此制定了修正参数,由此来获取生均学费的修正指标。随后,我们分析了高校专业的相关系数,从个人支付能力角度,探讨高校收费与专业的关系,进一步 得到了高校收费标准1i i y G R Q = Q R G y ig g i =1 在模块Ⅱ中,我们从学校办学利益获得能力出发,利用回归分析对学生应交的学杂费与教育经费总计、国家预算内教育经费、社会团体和公民个人办学经验、社会捐投资和其他费用的关系,发现学杂费与教育经费总计成正相关,与其他几项费用成负相关。对此产生的数据验证分析符合标准。然后,再根据专业相关系数来确定学校收取学费的标准。从而,得到了学校办学利益的收费标准2i i i y y R = 。 在模块Ⅲ中,为了获取最优解,我们综合了前面两个模块所制定的收费指标,并分别给予不同权系数,得到最终学费的表达式12i i C ay by =+。然后,我们从学 校收费指标的权系数b 考虑,利用神经网络得到的区域划分,根据不同区域而计算出的权系数b 的范围。最终得到的表达式 ]12345**(1)(1.0502 1.1959 1.3108 1.36360.7929)**b i i C R G Q b x x x x x R =-+----;由此便可得到综合学费标准C 的取值范围。然后,我们随机选取了同一区域不同专业,并根据表达式计算这些专业的学费,结果发现对社会收益大,个人收益小的专业如地质学的学费范围为:3469.8~3506.3元之间;对社会收益小,个人收益大的专业如广告设计的学费范围为:7931.0~8014.5元之间。与通常高校实现的一刀切政策有了明显的优点。 最后,我们从本论文研究方向考虑,为优化高校费用标准的制定提出参考意见,如建立反馈制度和特殊生补贴制度的建议。 【关键字】相关系数 回归模型 自组织竞争神经网络

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.360docs.net/doc/eb15772286.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

竞争型神经网络与自组织神经网络

竞争型神经网络是基于无监督学习的神经网络的一种重要类型,作为基本的网络形式,构成了其他一些具有组织能力的网络,如学习向量量化网络、自组织映射网络、自适应共振理论网络等。与其它类型的神经网络和学习规则相比,竞争型神经网络具有结构简单、学习算法简便、运算速度快等特点。竞争型神经网络模拟生物神经网络系统依靠神经元之间的兴奋、协调与抑制、竞争的方式进行信息处理。一个竞争神经网络可以解释为:在这个神经网络中,当一个神经元兴奋后,会通过它的分支对其他神经元产生抑制,从而使神经元之间出现竞争。当多个神经元受到抑制,兴奋最强的神经细胞“战胜”了其它神经元的抑制作用脱颖而出,成为竞争的胜利者,这时兴奋最强的神经元的净输入被设定为 1,所有其他的神经元的净输入被设定为 0,也就是所谓的“成者为王,败者为寇”。一般说来,竞争神经网络包含两类状态变量:短期记忆变元(STM)和长期记忆变元(LTM)。STM 描述了快速变化的神经元动力学行为,而 LTM 描述了无监督的神经细胞突触的缓慢行为。因为人类的记忆有长期记忆(LTM)和短期记忆(STM)之分,因此包含长时和短时记忆的竞争神经网络在理论研究和工程应用中受到广泛关注。 竞争性神经网络模型图 自组织特征映射神经网络(简称SOM),是由输入层和输出层组成的单层神经网络,主要用于对输入向量进行区域分类。SOM是一种无导师聚类,能将一维输入模式在输出层映射成二维离散图形,此图形分布在网格中,网格大小由m*n 表示,并保持其拓扑结构不变,从而使有相似特征的神经元彼此靠近,不同特征的神经元彼此远离,最终实现区分识别样品的目的。SOM 通过学习输入向量的分布情况和拓扑结构,靠多个神经元的协同作用来完成模式分类。当神经网络接受外界输入模式时,神经网络就会将其分布在不同的对应区域,并且记忆各区域对输入模式的不同响应特征,使各神经元形成有序的空间分布。当输入不同的样品光谱时,网络中的神经元便随机兴奋,经过SOM 训练后神经元在输出层有序排列,作用相近的神经元相互靠近,作用不同的神经元相互远离。在神经网络的应用中,对于待识别的输入模式属于哪一类并没有任何先验知识,只能是把相似的模式样品划归为一类,而将不相似的分离开,从而实现样品的类内相似性和类间

递归神经网络

递归神经网络概述 一、引言 人工神经网络的发展历史己有60多年,是采用物理可实现的系统模仿人脑神经细胞的结构和功能,是在神经生理学和神经解剖学的基础上,利用电子技术、光学技术等模拟生物神经网络的结构和功能原理而发展起来的一门新兴的边缘交叉学科,(下面简称为神经网络,NeuralNetwork)。这些学科相互结合,相互渗透和相互推动。神经网络是当前科学理论研究的主要“热点”之一,它的发展对目前和未来的科学技术的发展将有重要的影响。神经网络的主要特征是:大规模的并行处理、分布式的信息存储、良好的自适应性、自组织性、以及很强的学习能力、联想能力和容错能力。神经网络在处理自然语言理解、图像识别、智能机器人控制等方面具有独到的优势。与冯·诺依曼计算机相比,神经网络更加接近人脑的信息处理模式。 自从20世纪80年代,Hopfield首次提出了利用能量函数的概念来研究一类具有固定权值的神经网络的稳定性并付诸电路实现以来,关于这类具有固定权值神经网络稳定性的定性研究得到大量的关注。由于神经网络的各种应用取决于神经网络的稳定特性,所以,关于神经网络的各种稳定性的定性研究就具有重要的理论和实际意义。递归神经网络具有较强的优化计算能力,是目前神经计算应用最为广泛的一类神经网络模型。 根据不同的划分标准,神经网络可划分成不同的种类。按连接方式来分主要有两种:前向神经网络和反馈(递归)神经网络。前向网络主要是函数映射,可用于模式识别和函数逼近。递归神经网络因为有反馈的存在,所以它是一个非线性动力系统,可用来实现联想记忆和求解优化等问题。由于神经网络的记亿信息都存储在连接权上,根据连接权的获取方式来划分,一般可分为有监督神经网络、无监督神经网络和固定权值神经网络。有监督学习是在网络训练往往要基于一定数量的训练样木。在学习和训练过程中,网络根据实际输出与期望输出的比较,进行连接权值和阂值的调节。通常称期望输出为教师信号,是评价学习的标准。最典型的有监督学习算法是BP(BackProPagation)算法。对于无监督学习,无教

零基础入门深度学习(7) - 递归神经网络

[关闭] 零基础入门深度学习(7) - 递归神经网络 机器学习深度学习入门 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。 文章列表 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络 往期回顾 在前面的文章中,我们介绍了循环神经网络,它可以用来处理包含序列结构的信息。然而,除此之外,信息往往还存在着诸如树结构、图结构等更复杂的结构。对于这种复杂的结构,循环神经网络就无能为力了。本文介绍一种更为强大、复杂的神经网络:递归神经网络(Recursive Neural Network, RNN),以及它的训练算法BPTS (Back Propagation Through Structure)。顾名思义,递归神经网络(巧合的是,它的缩写和循环神经网络一样,也是RNN)可以处理诸如树、图这样的递归结构。在文章的最后,我们将实现一个递归神经网络,并介绍它的几个应用场景。 递归神经网络是啥 因为神经网络的输入层单元个数是固定的,因此必须用循环或者递归的方式来处理长度可变的输入。循环神经网络实现了前者,通过将长度不定的输入分割为等长度的小块,然后再依次的输入到网络中,从而实现了神经网络对变长输入的处理。一个典型的例子是,当我们处理一句话的时候,我们可以把一句话看作是词组成的序列,然后,每次向循环神经网络输入一个词,如此循环直至整句话输入完毕,循环神经网络将产生对应的输出。如此,我们就能处理任意长度的句子了。入下图所示: 然而,有时候把句子看做是词的序列是不够的,比如下面这句话『两个外语学院的学生』:

神经网络算法简介

神经网络算法简介 () 人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式。 神经网络是一种运算模型[1],由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 神经元示意图: ●a1~an为输入向量的各个分量 ●w1~wn为神经元各个突触的权值 ●b为偏置 ●f为传递函数,通常为非线性函数。以下默认为hardlim() ●t为神经元输出 ●数学表示

●为权向量 ●为输入向量,为的转置 ●为偏置 ●为传递函数 可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。 单个神经元的作用:把一个n维向量空间用一个超平面分割成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。 该超平面的方程: 权向量 偏置 超平面上的向量 单层神经元网络是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每一个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。示意图: 通常来说,一个人工神经元网络是由一个多层神经元结构组成,每一层神经元拥有输入(它的输入是前一层神经元的输出)和输出,每一层(我们用符号记做)Layer(i)是由Ni(Ni代表在第i层上的N)个网络神经元组成,每个Ni上的网络

神经网络介绍资料

神经网络简介 神经网络简介: 人工神经网络是以工程技术手段来模拟人脑神经元网络的结构和特征的系统。利用人工神经网络可以构成各种不同拓扑结构的神经网络,他是生物神经网络的一种模拟和近似。神经网络的主要连接形式主要有前馈型和反馈型神经网络。常用的前馈型有感知器神经网络、BP 神经网络,常用的反馈型有Hopfield 网络。这里介绍BP (Back Propagation )神经网络,即误差反向传播算法。 原理: BP (Back Propagation )网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP 神经网络模型拓扑结构包括输入层(input )、隐层(hide layer)和输出层(output layer),其中隐层可以是一层也可以是多层。 图:三层神经网络结构图(一个隐层) 任何从输入到输出的连续映射函数都可以用一个三层的非线性网络实现 BP 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 单个神经元的计算: 设12,...ni x x x 分别代表来自神经元1,2...ni 的输入; 12,...i i ini w w w 则分别表示神经

元1,2...ni 与下一层第j 个神经元的连接强度,即权值;j b 为阈值;()f ?为传递函数;j y 为第j 个神经元的输出。若记001,j j x w b ==,于是节点j 的净输入j S 可表示为:0*ni j ij i i S w x ==∑;净输入j S 通过激活函数()f ?后,便得到第j 个神经元的 输出:0 ()(*),ni j j ij i i y f S f w x ===∑ 激活函数: 激活函数()f ?是单调上升可微函数,除输出层激活函数外,其他层激活函数必须是有界函数,必有一最大值。 BP 网络常用的激活函数有多种。 Log-sigmoid 型:1 (),,0()11x f x x f x e α-= -∞<<+∞<<+,'()()(1())f x f x f x α=- tan-sigmod 型:2()1,,1()11x f x x f x e α-=--∞<<+∞-<<+,2(1()) '()2 f x f x α-= 线性激活函数purelin 函数:y x =,输入与输出值可取任意值。 BP 网络通常有一个或多个隐层,该层中的神经元均采用sigmoid 型传递函数,输出层的神经元可以采用线性传递函数,也可用S 形函数。 正向传播:

人工神经网络发展概述.

人工神经网络发展概述 摘要:人工神经网络是二十世纪科学技术所取得的重大成果之一,是人类认识自然道路上的又一座里程碑。本文简要介绍了人工神经网络的概念,回顾了人工神经网络的产生背景及发展历程,并简要阐述了其在信息处理和控制等领域的应用。随着人们对人工神经网络不断地探索和研究并将其与一些传统方法相结合,将推动人工智能的发展,在以后的生产生活中发挥更大的作用。 关键词:人工神经网络,发展,应用 1.人工神经网络的定义 目前关于人工神经网络的定义尚不统一,国际著名的神经网络专家,第一个计算机公司创始人和神经网络实现技术的研究领导人Hecht-Nielson给人工神经网络的定义是:人工神经网络是由多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,该系统是靠其状态对外部输入信息的动态响应来进行信息处理的。美国国防高级研究计划局关于人工神经网络的定义是:人工神经网络是一个由许多简单并行工作的处理单元组成的系统,其功能取决于网络的结构,连接强度以及各单元的处理方式。 结合人工神经网络的来源,特点及定义,可将其表述为:人工神经网络是模仿脑细胞结构和功能,脑神经结构以及思维处理问题等脑功能的新型信息处理系统。 2.人工神经网络产生的背景 自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。 另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。3.人工神经网络的发展 3.1早期阶段 人工神经网络的研究可追溯到19世纪Freud在心理分析时期之前所做的一切初步工作。1943年美国心理学家Warren S McCulloch与数学家Water H Pitts合作,用逻辑的数学工具研究客观事件在形式神经网络中的描述,首先提出了神经元的数学模型,简称为MP模型,从此开创了对神经网络的理论研究。1957年,Frank Rosenblatt首次提出并设计制作了著名的感知器,掀起了研究人工神经网络的高潮。 3.2低谷阶段 在第一次神经网络研究热潮中人们忽视了其本身的局限性1969年Minskyh和Papert经过多年的研究提出了对当前成果的质疑,指出当前的网络只能应用于简单的线性问题却不能有效地应用于多层网络,由此开始了神经网络的低谷期。现在的神经网络主要是根据Kohonen 的工作来实现的,1980年福岛邦彦发表的新认知机是视觉模式识别机制模型,它与生物视觉理论结合综合出一种神经网络模型,使它像人类一样具有一定模式识别能力。在低谷时期

相关文档
最新文档