浅谈发电机纵向差动保护

浅谈发电机纵向差动保护
浅谈发电机纵向差动保护

龙源期刊网 https://www.360docs.net/doc/eb16670060.html,

浅谈发电机纵向差动保护

作者:宫平潘龙飞

来源:《硅谷》2010年第24期

摘要:简要介绍发电机纵向差动保护的工作原理及常见的几种动作特性和出口方式,同

时也针对发电机纵向差动保护运行过程中关于TA饱和、TA开路一些疑难问题进行探讨,提出相应的解决办法的观点,用来提高发电机纵向差动保护动作的选择性、速动性、灵敏性、可靠性,从而保证发电机及系统的安全稳定运行。

关键词:纵向差动保护;差动电流;制动电流;动作特性;相间故障;TA开路

中图分类号:TM3文献标识码:A文章编号:1671-7597(2010)1220147-02

发电机是电力系统中重要的组成部分,发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是十分贵重的电气设备,尤其是大型同步发电机组,对电力系统的影响可谓是举足轻重。发电机的主要故障类型有定子绕组相间短路、定子绕组匝间短路、定子绕组单相接地、转子绕组一点或两点接地等,对发电机破坏性最大的就是定子绕组相间短路,发电机纵向差动保护作为发电机定子绕组相间短路故障的主保护已广泛在电力系统中应用,在应用过程中,基于动作特性和出口方式还存在不同程度的问题,本文在大型同步发电机差动保护应用的角度,对发电机差动保护的基本原理、动作特性、出口方式、和运行时间过程中TA开路问题的处理方法简要的进行归纳和总结。

1 发电机差动保护原理

发电机纵差保护构成原理是基于基尔霍夫第一定律即∑I=0。∑I是发电机两侧电流的向量和。

公式代表的物理意义是:发电机正常运行或外部故障时,发电机中性点的电流等于发电机端的电流大小、方向相同,无电流流入差动继电器。当发电机内部故障时,若忽略负荷电流不计,发电机中性点的电流与发电机端的电流方向相反,流入差动继电器的电流为两个电流之和,纵差保护动作,切除发电机。

2 发电机纵差保护的几种动作特性

1)发电机双折线比率制动式完全纵差保护

发电机机端的二次电流向量为Is,中性点二次电流向量为In,那么差动电流

Id=│Is+In│,制动电流为Iz=1/2│Is-In│。

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

一 差动保护整定计算

一 差动保护整定计算 1.基本侧确定 按额定电压及变压器的最大计算容量计算各侧额定电流 A U S I N TN N 10531102000031 1=== A U S I N TN N 11563102000322== = 选择电流互感器变比 36.335 3105511===N CON CH I K n 399.976531156512=== N CON CH I K n 可选用变比为: 20050 21==CH CH n n 各侧电流互感器的二次额定电流为 A I K I N CON N .1250 1055112=== A I K I N CON N 5.78200311565222=== 所以选择10KV 侧为基本侧 2. 保护装置动作电流的确定 躲过电压器的励磁涌流 A I K I N rel O P 1502.81156*3.121=== 躲过外部短路时最大不平衡电流 A f U f K I K I er er ts unb rel O P 4.348)05.01.005.0(34.1*3.1)(3.1max .2=++=++== 所以选用A I O P 1502.8= 3.确定基本侧线圈匝数 A n I K I TA cal OP CON cal r OP 12.999200 31502.8...===

4.612.999 60..1===cal r OP O I AW W 应选用5匝 4. 动作电流整定 基本侧实际动作电流为: A W AW I O r OP 13.044.6 601.=== 保护一次动作电流 A I I n I b OP O TA OP 07.51513 13.04*200.Pr 2=== 5.灵敏度校验 21.331.507 316.1.min ≥===b OP CON sen I I K K 保护满足要求 2)过电流保护整定计算: 躲过最大负荷电流整定: A K I K I re l rel OP 296.4785 .0210*2.1max .1=== 考虑切除一台变压器后产生的过负荷 A I m m I N OP 210105*21 2==-= 考虑负荷中电动机启动的最大电流 A I K I N SS O P 210105*23=== 应选用:A I OP 102= 保护灵敏度校验 212372 .063.4min ≥===OP sen I I K 保护满足要求 3)过负荷保护 按躲过变压器的额定电流整定: 130A 85 .0051*05.1.1===re B N rel OP K I K I

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

发电机纵差保护

发电机纵差保护 收藏此信息打印该信息添加:不详来源:未知 输入电流的不同分类 发电机差动保护由三个分相差动元件构成。若按由差动元件两侧输入电流的不同进行分类,可以分成完全纵差保护和不完全保护两类。其交流接入回路分别如图1(a)和图1(b)所示。

图1发电机纵差保护的交流接入回路 在图1中:Ja、Jb、Jc-分别为发电机A、B、C三相的差动元件; A、B、C-发电机三相输入端子。

由图1可以看出,发电机完全纵差保护与不完全纵差保护的区别是:对于完全纵差保护,在发电机中性点侧,输入到差动元件的电流为每相的全电流,而不完全差动保护,由中性点输入到差动元件的电流为每相定子绕组某一分支的电流。 1完全纵差保护 发电机完全纵差保护,是发电机相间故障的主保护。由于差动元件两侧TA的型号、变比完全相同,受其暂态特性的影响较小。其动作灵敏度也较高,但不能反应定子绕组的匝间短路及线棒开焊。 2不完全纵差保护 不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路。但是,由于在中性点侧只引入其一分支的电流,故在整定计算时,尚应考虑各分支电流不相等产生的差流。另外,当差动元件两侧TA型号不同及变比不同时,受系统暂态过程的影响较大。

全国继电保护技木竞赛考题与答案 收藏此信息打印该信息添加:用户发布来源:未知 一、判断题(20题,每题0.5分,要求将答案填在答题卡的相应位置) 1.二次回路中电缆芯线和导线截面的选择原则是:只需满足电气性能的要求;在电压和操作回路中,应按允许的压降选择电缆芯线或电缆芯线的截面。(×) 2.为使变压器差动保护在变压器过激磁时不误动,在确定保护的整定值时,应增大差动保护的5次谐波制动比。(×) 3.对于SF6断路器,当气压降低至不允许的程度时,断路器的跳闸回路断开,并发出“直流电源消失”信号。(√) 4.在双侧电源系统中,如忽略分布电容,当线路非全相运行时一定会出现零序电流和负序电流。(×) 5.在电压互感器二次回路通电试验时,为防止由二次侧向一次侧反充电,将二次回路断开即可。(×) 6.在正常工况下,发电机中性点无电压。因此,为防止强磁场通过大地对保护的干扰,可取消发电机中性点TV二次(或消弧线圈、配电变压器二次)的接地点。(×) 7.为提高保护动作的可靠性,不允许交、直流回路共用同一根电缆。(√) 8.比较母联电流相位式母差保护在母联断路器运行时发生区内故障,理论上不会拒动。(×)

母线差动保护的整定计算

母线差动保护的整定计算 计算母差保护的主要工作量在于以下几个值的计算,计算方法如下: 1 比率差动元件的比率差动门坎按包括检修方式的各种运行方式下,母线发生各种类型短路的最小总短路电流(相电流)有足够灵敏度计算,灵敏度≥4,并尽可能躲过母线出线最大负荷电流。 比率差动门坎要整定得躲过母线出线最大负荷电流是为了防止CT断线时母线差动保护误动。 2低电压闭锁元件 以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。复合电压闭锁包括母线线电压(相间电压),母线三倍零序电压,和母线负序电压。其动作表达式为: 以上三个判据中的任何一个被满足,则该段母线的电压闭锁元件动作。 U set按母线对称故障有足够灵敏度整定,灵敏度≥1.5。且应在母线最低运行电压下不动作,而在故障切除后能可靠返回。一般取65%至70%U e。 U0set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的零序分量。一般取6至10V。 U2set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的负序分量。一般取4至8V。 1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为0.2In,定值范围为0.1In~0.5In。 2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In~0.5In。 3. 失灵保护零序定值:按躲过最大零序不平衡电流整定, 定值范围为0.1~20A。 4. 低功率因素角定值:整定值范围为45~ 90 ,整定步长为1度。 5. 低功率因素过流定值:表示线路有流,定值范围为0.1~20A 。 6. 负序过流定值:按躲过最大不平衡负序电流整定,定值范围为0.1~20A 。 7. 失灵跳本开关时间:失灵保护动作时,将以该时间定值跳开本开关。定值范围为0.01~20S,整定步长为0.01S。 8. 失灵动作时间:失灵保护动作时,将以该时间定值跳开相邻开关。定值范围为0.01~20S,整定步长为0.01S。

发电机纵差动保护培训资料

发电机纵差动保护培训资料 本厂1、2号发动机负粗电流不得大于8℅IN。因此,在发电机上(尤其是大型发电机)应装设定子匝间短路保护。(2)发电机不同相匝间短路时,必将出现环流的短路电流。。 电机网消息:发电机纵差动保护培训资料1、发电机纵差动保护原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外部故障,而且还要求无延时地切除内部故障,为此而设置发电机纵差动保护。在发电机中型点侧配置一组电流互感器,在发电机出口配置一组电流互感器,其保护范围为两电流互感器之间的发电机定子绕组及引出线。 两电流互感器是同一电压等级、同变比、可同型及特性尽可能相近的,其不平衡电流比较小。为防止外部短路暂态不平横电流的影响,差动继电器可选用带中间速饱和电流器的继电器。 发电机纵差动保护培训资料 不平衡电流计算只考虑两电流互感器不一致而产生的不平蘅电流。Ibp.max =KftqKtxfiI(3)dmax Kftq—非周期分量影响系数BCH—2继电器取1 Ktx—同型系数取0.5 fi=0.1 ID(3)max —外部短路最大短路电流周期分量为了防止电流互感器二次回路断线引起保护误动,设计有电流互感器二次回路断线监视装置,在发电机电流互感器二次回路断线后延时发信。 正常运行时发出断线信号后,运行人员应将差动保护退出,以防在断线情况下发生外部短路时差动保护误动。2、发电厂330KV发电机差动保护蒲城发电厂1、2号发动机采用单星形中型点经中值电阻(1000欧)接地接线方式,差动保护采用BCH—12型差动继电器,保护范围是中型点CT与发电机出口CT之间、反映相间短路和单相接地故障,此保护未设CT断线闭锁,依靠躲过单相CT断线二次不平衡电流来闭锁CT断线。 发电机另外与主变共设置一套差动保护,保护范围是330KV两个出口开关CT、发电机中性点CT、厂高变低压侧两分支CT之间的接地、相间短路。3、发电机纵差动保护的评价1)发电机纵差动保护不能反映定子绕组匝间短路;2)发电机定子绕组不同地点发生短路时,由于定子绕组多点感应电动势不同及短路阻抗不同,所以短路电流大小不同,中性点附近短路或接地,差动保护不灵敏。 同步发电机构纵差动保护一、发电机纵差动保护的作用原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外故障,而且还要求无延时地切除内部故障。由变压器差动保护的讨论可知,差动保护可以满足作为发电机主保护的基本要求。 二、发电机纵差动保护的特点由于被保护的对象是定子绕组,因此,当定子一相绕组发生匝间短路时,绕组两端的电流仍同方向,流人差动继电器的只有不平衡电流,差动继电器不会动作,故它不能反应匝间短路。在定子绕组不同地点相简短路时,由于定子绕组各点感应电动势不同,以及短路回路阻抗不同,所以短路电流的大小不一样。 经分析得出如下结论:1)当过渡电阻不为零时,在中性点附近短路时,差动保护可能不动作,即在中性点附近经电弧电阻短路时,可能出现死区。因此,要求发电机纵差动保护灵敏度尽可能高,尽可能减少它的死区。 2)由于发电机电压系统的中性点一般不接地的或经大阻抗接地,单相接地时的短路电流较小,差动保护不能动作。 故必须设置独立的接地:保护。 大容量发电机应采用负序反时限过流保护。。

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

7UT61差动保护的整定计算原则

7UT61变压器差动保护的整定计算原则    西门子差动保护继电器7UT61是继承了7UT51的保护原理、并在其第四代保护的软硬件平 台基础上发展起来的,因此原有的7UT51的整定计算与保护运行经验对7UT61的整定计算极 具参考价值。7UT61的整定计算原则结合了自身的保护原理、并符合国家电力行业标准《大 型发电机变压器继电保护整定计算导则》DL/T 684-1999。  下图是7UT61的差动保护原理图,保护原理如上所述。      作为典型的两卷变压器保护,7UT61主要的整定计算项目有:  1、 差动门槛值IDIFF> 2、 比率制动特性曲线1的制动系数k1和曲线1的基准点(曲线1的反向延长线与横坐标的交叉点)  3、 比率制动特性曲线2的制动系数k2和曲线2的基准点(曲线2的反向延长线与横坐标的交叉点)  4、 差动速断定值IDIFF>>  5、 二次谐波制动  6、 高次谐波制动  7、 CT饱和附加制动  8、 差动动作时间    一、 差动门槛值IDIFF> 差动保护动作门槛值即最小保护动作电流,其整定原则为躲过变压器额定负载下的最大 不平衡电流(见导则)。   即 IDIFF> =Krel*(Ker+△U)*Ie 式(3-1)  式中:Ie为主变二次额定电流,整定时继电器定值选项中本身以Ie为单位  Krel为可靠系数,一般取1.3-1.5  Ker为主变各侧电流互感器的比误差,按照规程,一般可取0.06  △U为变压器调压引起的误差,一般可取调压范围中偏离额定值的最大值(百分 值)。

按照此计算公式,得到的差动保护动作门槛值往往很小,导则中建议取  0.3---0.5Ie  而最近江苏电网连续几次出现主变差动保护误动,且都是差动电流稍大于门槛值的情况。主要是在区外故障切除后电流有效值下降后在主变各侧的电流中仍存在较大的非周期分量及励磁涌流,而此时CT饱和制动及涌流制动都不一定有效。因此,最直接有效的方法就是再提高差动保护的门槛值。而实际上变压器本身的非电量保护是变压器本体故障的主要保护,原来老式的电磁型差动继电器的动作电流为1.3---1.5Ie,只要其接线正确,误动的情况很少;而换了很灵敏的微机保护之后,其误动的情况反而增加。因此,可以考虑进一步提高差动保护的门槛动作值至0.5----0.8。    二、差动速断值IDIFF>>  差动速断保护本质上是纵差保护中的一个辅助保护,当内部故障电流很大时,防止由于电流互感器饱和引起纵差保护延迟动作。 差电流速断整定值应按躲过变压器初始最大励磁涌流或外部短路最大不平衡电流整定(见导则)。对于7UT61来说,差动速断保护是不带任何闭锁和制动的,只要差动电流一达到速断定值,立即无条件跳闸,而其对于外部故障具有自动识别功能,且一般主变空载投入时的最大励磁涌流都要大于最大不平衡电流。因此,我们可以按照躲过主变空载投入时的最大励磁涌流来整定差电流速断定值:   即 IDIFF》=K*Ie 式(3-2)  其中 K的大小视变压器容量和系统电抗大小,一般有  6300KVA以下 7----12  6300---31500KVA 4.5----7  40000----120000KVA 3---6  120000KVA以上 2---5  容量越大,系统电抗越大,K取值越小    三、比率制动特性曲线1的制动系数k1及曲线1的基准点  比率制动特性曲线1是过原点的直线,主要考虑在负荷状态下及区外故障时CT未达到饱和状态时的CT误差,此时CT误差基本与穿越电流大小成比例。  按照导则可按下式整定K1,即:  K1=Krel(Kap*Kcc*Ker+△U) 式(3-3)  但是考虑到7UT61的制动电流为两侧电流的绝对和,而非绝对和的一半,因此可按下式整定: K1=Krel(Kap*Kcc*Ker+△U)/2 式(3-4)  其中: Krel、△U、Ker 同式(3-1),但Ker应比式(3-1)中大,可取0.1  Kap为非周期分量系数,可取1.5—2.0  Kcc为CT的同型系数,可取1.0    一般K1取0.25—0.5左右。如果采用两段式比率制动特性,K1可取小一点,而采用一段式比率制动特性时,可相对取大一点。  由于差动保护本身极其灵敏,一般都能满足灵敏系数高于2的要求  曲线1的基准点一般设置为零点。    四、比率制动特性曲线2的斜率K2及曲线2的基准点  含两段比率制动特性的差动保护由于其原理的先进性及灵活性,正越来越多的被其他国

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部 故障时,I1 与 I2 反向流入,KD的电流为1 1 TA I n - 2 2 TA I n = 1 I' - 2 I'≈0 ,故KD不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD的电流为: 1 1 TA I n + 2 2 TA I n = 1 I' + 2 I'=2k TA I n 当2k TA I n 大于KD的整定值时,即 1 I' - (3) max max / unb st unp i k TA I K K f I n = ≠0 ,KD动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部

故障时, 2 k TA I n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取; Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop= (Krel 为可靠系数,取)。越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。对于大、中型发电机,即使轻微故障也会造成严重后果。为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。显然,图所示的

发电机的差动保护整定计算.doc

百度文库- 让每个人平等地提升自我 1、发电机差动保护整定计算 (1)最小动作电流的选取 =~I gn/n a式中:I gn——发电机额定电流 n a——电流互感器变比 0.2 * 10190 取=(~) I gn/n a= = 12000/ 5 本保护选择 =1A (2)制动特性拐点的选择 当定子电流等于或小于额定电流时,差动保护不必具有制动特 性,因此,拐点 1 电流选择大于发电机额定电流,本保护选拐 点 1 为 5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选 拐点 2 值为 40A。 (3)制动系数的选取 按照外部短路电流下,差动保护不误动来整定。 =K rel *K ap*K cc*K er 式中: K rel——可靠系数,取~ K ap——非周期分量系数,取~ 2 K cc——互感器同型系数,取 K er ——互感器变比误差系数,取 取各系数最大值,则 =*2**= 考虑到电流互感器的饱和或其暂态特性畸变的影响,为安全起 见,宜适当提高制动系数值,取K1=30%,根据厂家说明书K2推荐值为 80%-100%,本保护取 K2=80%。

原保护为单斜率,定值为K1=30%。 保护动作于全停,启动快切,启动断路器失灵。 2、主变差动及速断保护整定计算 (1)最小动作电流的选取 按躲过变压器额定负载时的不平衡电流来整定。 =K rel (K er +△U+△m)I n/n a式中: I n——变压器额定电流 n a——电流互感器变比 K rel——可靠系数,取~ K er——电流互感器的变比误差, 10P型取 *2 ,5P 型和 TP型取 *2 △U——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值) △m——由于电流互感器变比未完全匹配产生的误差,初设时取 在工程实用整定计算中可选取 =(~)I n/n a,一般工程宜采用不 0.4 * 882.7 小于 I n/n a。取 =n a== 本保护选取 = (2)制动特性拐点的选择 拐点 1 定值要求大于强迫冷循环情况下的额定电流,小于紧急 情况下的过负荷电流,本保护取5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选拐点 2 值为 40A。 (3)制动系数的选取 按区外短路故障,差动保护不误动来整定。

发电机差动保护原理

发电机差动保护原理

5.1 发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ≥ I op.0 ( I res ≤ I res.0 时) I op ≥ I op.0 + S(I res – I res.0) ( I res > I res.0 时) 式中:I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res.0为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零; b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于1.2倍的额定电流。 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护

该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: ??????????=?-Λ?2.2223sen j e e I U R P ? 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2. U ?的角度)。 故障分量负序方向保护的动作判据可表示为: P e I U R ε>?????????Λ?22' 2.22'sen j e I I ?-ΛΛ?=? 实际应用动作判据综合为: u U ε>??2 i I ε>??2 ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > εP (εu 、εi 、εP 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保

电动机差动保护及差动速断保护的整定计算

电动机差动保护及差动速断保护的整定计算目前,国内生产及应用的微机型电动机的差动保护,由差动速断元件和具有比率制动特性的差动元件构成。差动速断元件没有制动特性,实质上是差流越限的高定值元件。与发电机差动保护一样,差动元件的动作特性为具有二段折线式的比率制动特性。对电动机差动保护的整定计算,就是要整定计算差动元件的初始动作电流Idz0、拐点电流Izd0、比率制动系数及差动速断元件的动作电流。 1、差动元件的初始动作电流Idz0 与发电机差动保护相同,电动机差动元件的初始动作电流,应按照躲过电动机额定工况下的最大不平衡电流来整定。即:Idz0=Krel×IHeδmax=Krel(K1+K2)IN IHeδmax-最大不平衡电流 Krel-可靠系数,取1.5~2 IN-电动机的额定电流 K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取0.1。K2-通道调整及传输误差,取0.1。 综上所述,得Idz0=(0.3~0.4)IN,实取0.4IN(TA二次值)。 2、拐点电流Izd0 在厂用电压切换的暂态过程中,由于电动机两侧差动TA二次回路中的暂态过程不一致,将在差动回路产生较大的差流。因此,为防止电动机差动保护误动,应减少拐点电流。为此拐点电流可取Izd0=

(0.5~0.6)IN。(TA二次值) 3、比率制动系数KZ 电动机的启动电流很大,最大启动电流高达电动机额定电流的8倍以上。另外电动机电源回路上发生短路故障时,电动机将瞬间供出较大的电流。 为了防止在上述过程中差动保护误动,差动元件的比率制动系数KZ 应按躲过电动机启动及电源回路故障时产生的最大不平衡电流来整定。 KZ=Krel×(IHeδmax/Imax) Krel-可靠系数,取1.15~1.2 IHeδmax-最大不平衡电流,它等于(K1+K2+K3)Imax Imax-电动机启动或电源回路故障时电动机的最大电流,取8IN。 K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取0.1。K2-通道调整及传输误差,取0.1。 K3-暂态特性系数,可取0.1~0.2。 综上所述,KZ=(1.15~1.2)×(0.1+0.1+0.2)=0.46~0.48 实际可取KZ=0.5。 要说明的是,在电动机自启动的瞬间,由于两侧差动TA二次回路负载相差很大,可能造成两侧电流之间的相位变化较大,因此,若按此时的差流来整定差动元件,则差动元件的动作灵敏度将大大降低。为此,要求电动机差动元件速度不要太快,可增加(80~100)ms的延时。

电动机差动保护整定计算实例

电动机差动保护整定计算实例 已知参数:电动机型号YK3200-3/1430,Pn=3200 KW,Un=10KV,COSφ=0.9,二侧CT变比nl=300/5,起动电流倍数为3。 根据上述条件,按规程规定应配电动机差动保护,按本公司型号,差动保护为:MMPR-22C 、MMPR-20H。 一、整定计算 按本公司微机保护设置的功能有:差动速断、比率制动的差动保护,因此需整定的参数有:差动速断电流、比率制动动作的差动电流及比率制动系数。 ①差动速断电流 此定值是本公司保护为躲过启动时的不平衡电流而设置的,为躲过启动最大不平衡电流,推荐整定值按下式计算: ,:可靠系数,取1.5 则: ②②比率差动电流 现行的关于差动整定计算的原则有以下两种: a) =1.3~1.5 ,考虑躲CT断线 b) =0.2~0.5 ,考虑差动灵敏度及匝间短路 以上两种计算原则都是国家出版物中给出的,我们建议用户根据自己的具体情况选择。 ③比率制动系数:一般整定为0.5。 二、关于微机型差动保护的详细资料参见本公司《产品汇编之二》,保护定值计算完毕后按相应型号的《使用说明书》将定值输入装置即可。

对超过2000KW的电动机,除配差动保护外,尚需配电流保护(即本公司MMPR-12C、MMPR-10H等综合保护)。关于综合保护的算例参见“电动机保护整定计算实例”。 变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH、UM、UL(KV),各侧二次电流分别为IH、IM、IL(A),各侧电流互感器变比分别为nH、nM、nL。 一、各侧二次额定电流的计算 式中为接线系数,当CT按Y形接线时,;按△形接线时,。 二、差动速断电流整定 按躲过励磁涌流及区外故障时的不平衡电流整定,一般按6~12倍额定电流整定。对于大型变压器可取较小值,对于小型变压器取较大值。 三、差动电流整定 按躲过正常运行时的不平衡电流整定。为了防止装置误动及保证区内匝间短路的灵敏度,一般取0.3~0.5倍额定电流。 四、平衡系数的计算 以高压侧为基准,将中、低压侧二次电流分别乘以相应的平衡系数使其与高压侧电流相等。 ,

发电机差动保护原理

发电机差动保护原理 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ? ( I res ? 时) I op ? + S(I res – ( I res > 时) 式中:I op 为差动电流,为差动最小动作电流整定值,I res 为制动电流,为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图 5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零;

b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于倍的额定电流。 发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护 该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2.U ?的角度)。 故障分量负序方向保护的动作判据可表示为: 实际应用动作判据综合为: ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > ?P (?u 、?i 、?P 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保护极性图 图5.2.1.2 故障分量负序方向保护逻辑框图 5.2.2发电机纵向零序过电压及故障分量负序方向型匝间保护 本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及

差动保护整定计算

差动保护整定计算 1. 理论分析 差动保护是最易满足“四性”要求的一种性能优良的继电保护。它还具备选相能力强,适应能力强等优点,因而作为主保护广泛地应用于线路、发电机、变压器、母线、电抗器等电气设备。根据基尔霍夫电流定律,只要被保护设备无短路电流分支,理论上差动继电器的动作量等于零,具有极高的安全性;被保护设备发生横向短路纵向差动继电器的动作量大于零,发生纵向短路横向差动继电器的动作量大于零,具有极高的灵敏性。设两侧差动继电器 的电流为n m I I ,,它们之间的相对关系为n m m n n I I I I I ≥=,* ,若TA 无误差,区外故障1*-=n I ,事实上,TA 不可能完全真实地传变一次电流。使得区外故障1* -≠n I 。TA 误差包括相对误差和绝对误差,大电流和小电流TA 都会产生较大误差,如:5P20是指20的短 路电流最大误差不超过5%。实际应用中,TA 的传变误差使差动继电器的动作量产生的不平衡输出与理想情况存在很大的差异,这种差异主要表现在,区外短路不平衡的电流随短路电流增加而增加,人们自然想到利用短路电流作制动量。因此,对差动继电器的研究归根结底是对制动量的研究。 1.1 现行差动继电器简评 现行的差动继电器有如下几种: ()||||||n m n m I I K I I +>+ (1)模值和制动 ()|||,|max ||n m n m I I K I I >+ (2)最大值制动 ||||n m n m I I K I I ->+ (3)相量和差制动 ?cos ||||||2n m res n m I I S I I ->+ (4)标积制动 ()(){}||||||||n m n m n m I I I I K I I +-+>+ (5)复式制动 相量和差制动与标积制动等价 利用关系式??cos ||||4||cos ||||2||2222n m n m n m n m n m I I I I I I I I I I +-=++=+ 等价是指临界条件等价,将(3)式取等号,两边平方 222||||n m n m I I K I I -=+ 222||cos ||||4||n m n m n m I I K I I I I -=+-?, ?cos ||||4)1(||22n m n m I I K I I -=-- 将(4)式取等号

相关文档
最新文档