构造几何图形解无理方程_组_

构造几何图形解无理方程_组_
构造几何图形解无理方程_组_

构造中位线巧解圆锥曲线题

构造中位线 巧解圆锥曲线题 徐志平 (浙江金华一中 321000) 在求一些与圆锥曲线有关的题目时,通常需要先构造出三角形或梯形的中位线,然后借助中位线的性质定理来求解,现举例加以分析说明。 1.求点的坐标 例1. 椭圆13 122 2=+y x 的一个焦点为1F ,点P 在椭圆上。如果线段1PF 的 中点M 在y 轴上,那么点M 的纵坐标是 ( ) A. 43± B. 2 2± C. 23± D. 43± M 的坐标,只需先求点P 的坐标即可。 连接PF 2,由于M 是PF 1的中点,O 是F 1F 2的中点, 所以MO 是21F PF ?的中位线,又轴x MO ⊥,则有 轴x PF PF MO ⊥22,//,3312=-=P x 2 3±=,43±=∴M y ,故选(D )。 例2.定长为3的线段AB 的两端点在抛物线y 2 =x 上移动,记线段AB 的中点 为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。 分析:利用抛物线的定义,结合梯形的中位线性质 定理可以解决问题。 解:抛物线的焦点)0,41(F ,准线 方程:41 -=x ,上分别作点A 、B 、M 的射影A 1、B 1、M 1,则由MM 1 是梯形AA 1B 1B )(21 )(21111BF AF BB AA MM +=+= ,在ABF ?可以取等号) 通径∴>≥+AB AB BF AF (,2 211=≥AB MM ∴M 到y 轴的最短距离= 。 4 5 4123=-即45=M x 。 ∴显然这时弦AB 过焦点),(04 1F 。设A (x 1,y 1),B (x 2,y 2),则有12 1x y = ① 22 2x y = ②,①-②得M y x x y y x x y y y y 21))((2121212121=--?-=-+

北师大版八年级上册构造法巧解二元一次方程组

构造法巧解二元一次方程组 根据二元一次方程组和方程组解的特点,构造出新的方程组,从而把问题破解是二元一次方程组的一个经典型问题.下面就和同学们谈谈这个话题. 一.由原来方程组中的一个方程与x=y构造新方程组,探求待定字母的值 例1 已知二元一次方程组???=-+=+3 )1(73x 4y k kx y 的解x,y的值相等,求k的值. 分析: 方程组的解一定是方程4x+3y=7的解,同时也一定是方程x=y的解,这 样我么就可以构造出新的方程组? ??==+y x y 73x 4,这个方程组是可以直接求解的,这样我们就把不能求解问题转化成了可以求解的问题,问题自然就解决了. 解: 设方程组的解为???==n y m x ,因为二元一次方程组? ??=-+=+3)1(73x 4y k kx y 的解x,y的值相等,所以x=y,所以得到方程组?? ?==+y x y 73x 4,解这个方程组得:???==11y x ,所以方程 组???=-+=+3)1(73x 4y k kx y 的解是???==1 1y x ,所以k+k-1=3,解得:k=2. 点评: 顺利构造出符合题意得新方程组是解题的关键. 二.由原来方程组中的一个方程与x=ky构造新方程组,探求待定字母的值 例2 已知二元一次方程组???=+=8 232-x ky x y 的解满足x是y的5倍,求k的值. 分析: 有解的特点可以构造出一个新的二元一次方程x=5y,这样就可以与x-2y=3构成一个新的可解的二元一次方程组. 解: 因为二元一次方程组???=+=8 232-x ky x y 的解满足x是y的5倍,所以x=5y, 所以构造方程组得???==y x y 532-x ,解这个方程组得? ??==15y x ,所以二元一次方程组???=+=8232-x ky x y 的解是???==1 5y x ,所以10+k=8,解得k=-2. 点评:将原来方程组的解转化成可解新方程组的解是数学转化思想的重要体现.

解二元一次方程组的技巧

龙源期刊网 https://www.360docs.net/doc/eb17222342.html, 解二元一次方程组的技巧 作者:陈卓 来源:《初中生世界·七年级》2016年第08期 解方程(组)的能力是初中生计算能力的重要体现之一.不同的方程(组)都有通用的方法,而解二元一次方程组的关键在于消元,化“二元”为“一元”,将“陌生”的二元一次方程组转化为熟悉的一元一次方程,从而求解.同学们在掌握代入消元、加减消元法的同时,还要注意 观察和分析方程组中各方程的结构特点,开拓新思路,采用一些特殊方法,简捷求解,从而提高和培养自己的创新能力,下面举例说明: 一、整体代入法 【分析】此题常规解法是先化简再加减消元,虽能达到目的,但是比较麻烦,观察发现方程①与方程②中有相同的代数式4x+6y,所以把方程②代入方程①中,从而解出x的值进而求出y的值,则快人一步! 简解:将方程②整体代入到方程①,得2x+3×2=4,所以x=-1,将x=-1代入②,得4×(-1)+6y=2,得y=1,所以原方程组的解为x=-1, y=1. 【点评】解方程组时,有时可根据题目的特点整体代入,从而达到简化运算的目的,当然不是所有的题目都能像本题一样直接整体代入,有时须通过仔细观察,抓住方程组的特点,先将它作一些处理,然后再整体代入. 二、整体加减法 例2 解方程组 【分析】若先去分母,再化简求解,则十分麻烦,观察发现两个方程中都含有、,分别将其看作一个整体,将方程①与方程②进行整体加减消元,则简单明快. 【分析】对于这样系数较大的方程组,采取常规的解法,烦琐难算且易错!观察发现方程组的左边未知数的系数为轮换对称式,分别将两个方程整体相加、减,可构造一个简单方程组,从而简化计算过程. 【分析】按常规方法是寻找系数x或y的最小公倍数,再消元,运算量大,观察发现两个方程的常数项相同,所以两式相减消去常数项,再代入消元可获巧解. 四、整体构造法

巧构几何图形 证明代数问题

巧构几何图形证明代数问题 ——兼谈构造法 习题已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ac=bd,即 BC*AD=AB*CD ∴BC/AB=CD/AD 又∠B=∠D=90 ?? ∴Rt⊿ABC 相似于Rt⊿ADC 但为公共斜边,故 Rt⊿ABC?Rt⊿ADC ∴AB=AD,BC=CD,即b=c,a=d. 评注把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用 【例1】已知a,b是两个不相等的正实数,求证(a+b)/2 >ab

[证明] 以a+b为边长作正方形,然后过a,b的连接点作正方形各边的垂线(如图2),于是大正方形的面积为(a+b)^2,四个矩形的面积都是ab,这样得 (a+b)^2>4ab ab>0 ∴a+b>2ab 即(a+b)/2>ab 【例2】已知0<θ<∏/2,求证1AB ∴sinθ+cosθ>1(三角形两边之和大于第三边) 又⊿ABC的面积=(1/2)BC*AC≤(1/2)AB*CO=(1/4)AB^2(三角形面积不大于一边与这边上中线积的一半) ∴2BC*AC≤AB^2 又BC^2+AC^2≤AB^2 ∴(BC+AC)^2≤2AB^2,BC+AC≤2AB,即sinθ+cosθ≤2

【精品】2021年八年级数学解题技巧训练7构造中位线解题的五种常用方法含答案与试题解析

2021年八年级数学解题技巧训练7构造中位线解题的五种常用 方法含答案与试题解析 一、经典试题 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 二、技巧分类 技巧1 连接两点构造三角形的中位线 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN; (2)求∠MPN的度数. 技巧2 已知角平分线及垂直构造中位线 3.(2019秋?诸城市期末)如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为() A.3B.9 2C.5D. 15 2 4.(2018春?吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD ⊥AD于点D,E为BC中点.求DE的长.

技巧3 倍长法构造中位线 5.如图,△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°, M为AF的中点,求证:ME=1 2CF. 技巧4 已知两边中点,取第三边中点构造三角形的中位线 6.如图,在△ABC中,∠C=90°,CA=CB,E,F分别为CA,CB上一点,CE=CF,M,N分别为AF,BE的中点,求证:AE=√2MN. 7.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于 点N,求证:AN=1 3AC.

2021年构造中位线解题的五种常用方法 参考答案与试题解析 一.试题(共7小题) 1.如图,已知BD,CE分别为∠ABC,∠ACB的平分线,AM⊥CE于M,AN⊥BD于N.求 证:MN=1 2(AB+AC﹣BC). 【专题】证明题. 【解答】证明:延长AN、AM分别交BC于点F、G.如图所示:∵BN为∠ABC的角平分线, ∴∠CBN=∠ABN, ∵BN⊥AG, ∴∠ABN+∠BAN=90°,∠G+∠CBN=90°, ∴∠BAN=∠AGB, ∴AB=BG, ∴AN=GN, 同理AC=CF,AM=MF, ∴MN为△AFG的中位线,GF=BG+CF﹣BC, ∴MN=1 2(AB+AC﹣BC). 2.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边△ABD和等边△BCE,点P,M,N分别为AC,AD,CE的中点. (1)求证:PM=PN;

构造几何图形解决代数问题

构造几何图形解决代数问题 摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。 关键词 数形结合 解题 以形助数 教学 1.“以形助数”的思想应用 1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。 分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3] 例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。 B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。 1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 例:(2009山东理)若函数 ()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是 分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数 ()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

初中数学二元一次方程组

考点 课标要求 知识与技能目标 了解 理解 掌握 灵活应用 —兀一次方程组 二元一次方程的概念 V 二元一次方程组的概念 V 二元一次方程组的解法 V 要点解析 易错点1:代入法解二元一次方程组时,循环代入导致错误. 辨析:在利用代入法解二元一次方程组时,需要将方程组中某一个方程进行变形,然后将变形后的 方程代入到另一个方程中(注意不是变形前的方程) 易错点2:方程变形时,忽略常数项而出现错误. 辨析:在用加减法解二元一次方程组时,为了把两个方程中某一个未知数的系数化成相等或者互为 相反数,需要在方程两边同乘一个不等于零的数,此时不要忘记常数项,造成漏乘导致出现错解. 中考考纟 冈 二元一次方程组的概念及解法

知识精讲 二兀一次方程 含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式一一分母中不能含有字母; ②有两个未知数 "二元”; ③含有未知数的项的最高次数为1―― “一次”. 关于x、y的二元一次方程的一般形式:ax by c ( a 0且b 0 ). 二、二元一次方程的解 使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解?在写二元一次方程解的时候我们用大括号联立表示. 如:方程x y 2的一组解为1 ,表明只有当x 1 1和y 1同时成立时,才能满足方程. 般的,二元一次方程都有无数组解,但如果确定了一个未知数的值,那么另一个未知数的值也就随之确定了. 0是关于X、y的二元一次方程,则a b 1

已知方程 m 3 x |m 2 2y n 1 0是关于x 、y 的二元一次方程,则 m 【例3】 下列方程中,属于二元一次方程的是() A . x y 1 B . xy 5 4 【例2】 2 C . 3x y 89

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

构造几何图形巧解向量问题

运用向量几何运算巧解几个高考题 向量是高中数学中重要的数学概念和数学工具之一,它用代数的方法来研究几何问题,是数形结合的一个典范,体现了解析几何的本质。代数几何化、几何代数化等多角度思维是平面向量命题的特点,这就说明了平面几何和平面向量交汇点的将是高考试题命制的焦点和热点。 例1. 已知向量e a ≠,1=e ,对任意R t ∈,恒有e a e t a -≥-,则( ) (A) e a ⊥ (B) )(e a a -⊥ (C) )(e a e -⊥ (D) )()(e a e a -⊥+ 参考答案:R t ∈ ,恒有e a e t a -≥-,等价于22e a e t a -≥-恒成立,即 22)()(e a e t a -≥-恒成立,展开整理得0)12(22≥-?+?-e a t e a t ?R t ∈恒成立,则 0)12(4)2(2≤-?-?-=?e a e a ,整理得0)1(2≤-?e a ,1=?∴e a ,)(e a e -⊥∴,所以选(C)。 妙解:如下图作a OA =,e OB =,e t OC =, 则 e a -= e t a -=,又因为?R t ∈,恒有e a e t a -≥- ≤,则必有 OC AB ⊥,即)(e a e -⊥。 例2.设向量a ,b ,c 满足0 =++c b a ,c b a ⊥-)(,b a ⊥,若1=a ,则222c b a ++的值是 。 参考答案: )(,)(b a c c b a +-=⊥-,)()(b a b a --⊥-∴, 0)()(=+?-∴b a b a ,022=-∴b a ,1==∴b a ,又),(b a c +-=0=?b a 22)(2222=?++=+-=∴b a b a b a c ,4222=++∴c b a 。 妙解:如下图作a BD AB ==,b BC =,c CA =, b a ⊥,BC AB ⊥∴,又 CD BC BD b a =-=- ,又c b a ⊥-)(, C A

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

用三角形中位线定理解题

用三角形中位线定理解题 三角形中位线定理是平面几何中十分重要的定理,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何命题,如: 1.证明线段的倍分关系 例1 如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F. 证明:取CF的中点H,连接DH,则DH为△CBF的中位线,EF为△ADH的中位线,故DH=1 2 BF, EF=1 2 DH. 2.证明两线平行 例2 如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为垂足.求证DE∥ BC. 证明延长AD、AE交BC与CB的延长线于M、N. 由∠1=∠2,BD⊥AM,可得AD=DM;同理可得AE=EN.故DE为△ANM的中位线. ∴DE∥MN,即DE∥BC 3.证线段相等 例3 如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD 的中点,直线MN分别交AB、AC于P、Q.求证AP=AQ

证明取BC中点F,连接MF与NF. ∵BM=ME,BF=FC. 同理可得NF∥BD,且 又BD=CE,∴MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3, ∴∠1=∠2,故AP=AQ. 4.证两角相等 例4 如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E分别为MN与BC的中点,AP∥DE交BC于P. 求证:∠BAP=∠CAP. 证明连接BN并取中点Q,连接DQ与EQ,则DQ∥BM,且DQ=1 2 BM,EQ∥CN,且EQ= 1 2 CN, 又BM=CN. ∴DQ=EQ,故∠1=∠2, 又∵∠1=∠BAP,∠2=∠CAP, ∴∠BAP=∠CAP. 5.证比例式 例5 如图5,AD为△ABC的中线,过点C的任一直线与AD、AB分别相交于E与F,求

典中点平行四边形专训5 构造中位线解题的五种常用方法

典中点平行四边形专训5 构造中位线解题的五种常用方法 ?名师点金? 三角形的中位线具有两方面的性质: 一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接 连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线。 典例剖析:如图,在△ABC 中,BD,CE 分别平分∠ABC,∠ACB,AM ⊥CE 于点M,AN ⊥BD 于点N. 求证:MN=21(AB+AC-BC) 解题秘方:图中不存在中点,但结论与三角形中位线定理很类似,因此应设法寻找中点,再构造三角形的中位线.要证明MN=2 1(AB+AC-BC),可找以MN 为中位线的三角形,故延长AM 交BC 于点F,延长AN 交BC 于点G,易证明2MN=FG,而FG=BC+FC-BC.又易证明BG=AB,FC=AC,故问题得解。 方法1:连接两点构造三角形的中位线 1.如图,点B 为AC 上一点,分别以AB,BC 为边在AC 同侧作等边△ABD 和等边△BCE,点P,M,N 分别为AC,AD,CE 的中点。 (1)求证PM=PN ; (2)求∠MPN 的度数。 方法2:已知角平分线及垂直构造中位线 2.如图,在△ABC 中,点M 为BC 的中点,AD 为△ABC 的外角平分线,且AD ⊥BD.若AB=12,AC=18,求DM 的长。

3.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC,BD ⊥AD 于点D,点E 为BC 的中点,求DE 的长。 方法3:倍长法构造三角形的中位线 4.如图,在△ABC 中,∠ABC=90°,BA=BC ,△BEF 为等腰直角三角形,∠BEF=90°,M 为AF 的中点, 求证ME=21CF 方法4:已知两边中点,取第三边中点构造三角形的中位线 5. 如图,在△ABC 中,∠C=90°,CA=CB,E,F 分别为CA,CB 上一点,CE=CF,M,N 分别为AF 、BE 的中点, 求证AE=2MN 方法5:已知一边中点推理得出另一边中点再取第三边中点构造三角形的中位线 6.如图,在△ABC 中,AB=AC,AD ⊥BC 于点D,点P 是AD 的中点,连接BP 并延长交AC 于点N ,求证AN=3 1AC

构造法之构造几何图形

构造法之构造几何图形 构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面摘一些典型例题,分成几个专题,方便大家学习。 例1:已知,则x 的取值范围是() A 1≤x≤5 B x≤1 C1<x <5 D x≥5 分析:根据绝对值的几何意义可知:表示数轴上到1与 5的距离之和等于4的所有点所表示的数。如图3,只要表示数 的点落在1和5之间(包括1和5),那么它到1与5的距离之和都等于4,所以1≤ x≤5,故选A 。 例2.求)40()4(4122≤≤-+++x x x 的最小值. 分析:本题单纯用代数方法处理,简直无从下手,注意式中的特征,构造直角三角形,转化为在直线上求一点,使它到两定点的距离之和最小. 解:如图3,作AB=4,AC ⊥AB ,BD ⊥AB ,且AC=1,BD=2,P 为AB 上一点,设AP=x ,则2 2 )4(4,1x PD x PC -+=+=,问题转化为找出P 点的位置,使PC+PD 最小.如图4,作C 关于AB 的对称点C ′,连结C ′D 交AB 于P ,由⊿PAC ′ ∽⊿PBD ,得214=-x x ,求得3 4 =x ,所以22)4(41x x -+++的最小值是5. 例3: 已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 证:构造边长为1的正△ABC ,D ,E ,F 为边上三点, D D 图3 A B C B P 图4 A C ′ C

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

找中点构造三角形中位线解题(教师)

找中点构造三角形中位线解题 三角形的中位线定理,是一个非常有价值的定理。它是一个在三角形中遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。现介绍几种在不同条件下寻找中点的方法,供同学们学习时参考。 一、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 二、应用时注意的几个细节: ①定理的使用前提:三角形。 ②定理使用时,满足的具体条件:两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的,利用此定理可证明线段平行,从而可证明两角相等; 大小上:等于第三边的一半。利用此定理可证明两条线段之间的倍分关系; 三、应用举例 1、如果已知三角形两边中点,就直接连接构成三角形的中位线 例1、如图,在四边形ABCD 中,AB=CD ,E 、F 、G 分别是AD 、BC 、BD 的中点,H 是EF 的中点,试说明线段GH 与线段EF 的位置关系; 简析:在△ABC 中,E 、G 分别是AD 、BD 的中点,可连接EG ,则 有AB EG 2 1 =;在△BCD 中,G 、F 分别是BD 、BC 的中点,可 连接GF ,则有CD FG 2 1 =, 而AB=CD ,所以EG FG =,即△ EFG 是等腰三角形,又H 是底边EF 的中点,由等腰三角形的三线合一定理可知GH ⊥EF. 2、如果已知三角形一边中点,则可以取另一边的中点连接起来构成三角形的中位线 例2、如图1所示,在三角形ABC 中,∠B=2∠C ,AD 是三角形的高,点M 是边BC 的中点,求证:DM= 2 1 AB 。 分析:看到结论的表达形式,我们就想到,三角形的中位线 定理,有这样的特点,因此,我们就可以构造AB 上的中位线,再证明这条中位线与DM 是相等的。 H G F E D C B A

构造方程解方程

构造方程解方程(组)(初二) 武汉实验外国语学校胡春洪 解方程(组)时,对于一些难以直接下手的问题,如果仔细观察题目的特点,巧妙构造新方程,往往可使局面立即改观,使解方程(组)的过程大大简化.本文将举例说明构造方程巧解方程(组)的几种方法,希望对读者能有所启发. 1.利用方程的根的定义构造方程 例1 已知a、b、c是互不相等的实数,且abc≠0,解关于x、y、z的方程组 0的3个根,从而t3-zt2+yt-x=0还可写成(t-a)(t-b)(t-c)=0,即t3-(a+b+c)t2+(ab+bc+ca)t-abc=0 与方程t3-zt2+yt-x=0比较,立即得 x=abc,y=ab+bc+ca,z=a+b+c. 2.应用韦达定理逆定理构造方程 例2 解方程(6x+7)2(3x+4)(x+1)=6 分析原方程可化为 (6x +7)2(6x+8)(6x+6)=72. 设(6x+7)2=a,-(6x+8)(6x+6)=b, 则a+b=1,a·b=-72, ∴a,b是方程t2-t-72=0的两根, 分析注意到 (x+1)(y+2)=xy+2x+y+2, ∴方程②可化为(x+1)(y+2)=36, 又由①可知x+1≥0,y+2≥0,

则m+n=7,m·n=6, ∴m、n是方程t2-7t+6=0的两根, 解这个方程,得 3.运用公式法构造方程 例4 解方程 分析如果平方去根号,那将会很繁.注意到(2x2+x+1)- 联系①,可分离出新方程 分析不难发现(5+x)+(4-x)=9,联想到公式 a3+b3=(a+b)[(a+b)2-3ab],利用这个公式,并结合原方程,即可分离出新方程 联系①、②,又可构造新方程 y2-3y+2=0③ =1,y2=2,从而 解方程③,得y 1 =-4,x2=3. ∴x 1 =-4,x2=3. 经检验,原方程的根为x 1 4.宾主易位构造方程 例6 解方程 分析直接解方程,难度可想而知.但是如果改变一下角度,设y= 我们不解x,转而求y,局面立即大开.显然x≠0,

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

(完整版)初中数学_巧添辅助线__解证几何题

巧添辅助线 解证几何题 [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以 归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。 一、倍角问题 研究∠α=2∠β或∠β=1 2 ∠α问题通称为倍角问题。倍角问题分两种情形: 1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=1 2 ∠α,然后证明∠1=∠β;或把 ∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一) 2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。倍角三角形问题常用构 造等腰三角形的方法添加辅助线(如图二) [例题解析] 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC= 1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠ A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

相关文档
最新文档