配位化合物

配位化合物
配位化合物

第八章配位化合物

思考题

1. 以下配合物中心离子的配位数为6,假定它们的浓度均为0.001mol·L-1,指出溶液导电能力的顺序,并把配离子写在方括号内。

(1) Pt(NH3)6C14(2) Cr(NH3)4Cl3(3) Co(NH3)6Cl3 (4) K2PtCl6

解:溶液导电能力从大到小的顺序为[Pt(NH3)6]C14>[Co(NH3)]6Cl3>K2[PtCl6]>

[Cr(NH3)4Cl2]Cl

2. PtCl4和氨水反应,生成化合物的化学式为Pt(NH3)4Cl4。将1mol此化合物用AgN03处理,得到2molAgCl。试推断配合物内界和外界的组分,并写出其结构式。

解:内界为:[PtCl2(NH3)4]2+、外界为:2Cl-、

[PtCl2(NH3)4]Cl2

3.下列说法哪些不正确? 说明理由。

(1) 配合物由内界和外界两部分组成。不正确,有的配合物不存在外界。

(2) 只有金属离子才能作为配合物的形成体。不正确,有少数非金属的高氧化态离子也可以作形成体、中性的原子

也可以成为形成体。

(3) 配位体的数目就是形成体的配位数。不正确,在多齿配位体中配位体的数目不等于配位数。

(4) 配离子的电荷数等于中心离子的电荷数。

不正确,配离子电荷是形成体和配体电荷的代数和。(5) 配离子的几何构型取决于中心离子所采用的杂化轨道类型。正确

4.实验测得下列配合物的磁矩数据(B.M.)如下: 试判断它们的几何构型,并指出哪个属于内轨型、哪个属于外轨型配合物。

5.下列配离子中哪个磁矩最大?

[Fe(CN)6]3-[Fe(CN)6]4-[Co(CN)6]3-[Ni(CN)4]2-[Mn(CN)6]3-

可见[Mn(CN)6]4的磁矩最大

6.下列配离子(或中性配合物)中,哪个为平面正方形构型? 哪个为正八面体构型? 哪个为正四面体构型?

*7. 用价键理论和晶体场理论分别描述下列配离子的中心

离子的价层电子分布。 (1) [Ni(NH 3)6]2+ (高自旋) (2) [Co(en)3]3+ (低自旋)

解:(1) [Ni(NH3)6]2+(高自旋

)

4s4p

NH3

NH3NH3

NH3

NH3

NH

3

外轨型

晶体场理论

:

t2g

e g

2Co(en)23+(低自旋)

价键理论:

价键理论

:

内轨型

Ni2+ 3d8

Co3+3d6

晶体场理论

:t

2g

e g

(低自旋)

*8.构型为d1到d10的过渡金属离子,在八面体配合物中,哪些有高、低自旋之分? 哪些没有?

解:d4~d7构型的过渡金属离子在八面体配合物中有高、低自旋之分;d1~d3、d8~d10构型的没有高、低自旋之分。*9.已知:[Co(NH3)6]2+[Co(NH3)6]3+[Fe(H2O)6]2+

M n+的电子成对能269 251 2l0

E p/(kJ·mol-1)

△o/(kJ·mol-1) 121275 121

计算各配合物的晶体场稳定化能。

解:[Co(NH3)6]2+,Co2+(3d7).

CFSE=[5×(-0.4Δo)+2×0.6Δo] (kJ·mol-1)

=-96.8 kJ·mol-1.

[Co(NH3)6]3+,Co2+(3d6).

CFSE=[6×(-0.4Δo)+2E p] (kJ·mol-1)

=-156 kJ·mol-1.

[Fe(H2O)6]2+ Fe2+(3d6).

CFSE=[4×(-0.4Δo)+2×0.6Δo] (kJ·mol-1)

=-49.6 kJ·mol-1.

10. 试解释下列事实:

(1) 用王水可溶解Pt,Au等惰性较大的贵金属,但单独用硝酸或盐酸则不能溶解。

(2) [Fe(CN)6]4-为反磁性,而[Fe(CN)6]3-为顺磁性。

*(3) [Fe(CN)6]3-,为低自旋,而[FeF6]3-为高自旋。

(4) [Co(H2O)6]3+的稳定性比[Co(NH3)6]3+差得多。

解:(1)由于王水是由浓硝酸和浓盐酸组成的,浓硝酸将Pt和Au氧化形成的金属离子可与浓盐酸提供的高浓度的

Cl-形成稳定的[Pt(Cl)6]2-、[Au(Cl)4]-,使Pt4+和Au3+的浓度大大降低,从而促使Pt和Au的进一步氧化溶解。

(2) [Fe(CN)6]4-中Fe2+(3d6)的d电子分布为:t2g6e g0,即无成单的电子,故为反磁性;而[Fe(CN)6]3-中Fe3+(3d5)的d电子分布为:t2g5e g0,有成单的电子,故为顺磁性。

(3) 因为CN-为强场配体,Δo大,故电子易配对形成低自旋配合物;而F-为弱场配体,Δo小,故电子难易配对而形成高自旋配合物。

(4) 由于配体NH3的场强比H2O的大得多,所以[Co(H2O)6]3+的晶体场稳定化能比稳定性比[Co(NH3)6]3+小得多,而导致前者的稳定性比后者差。

11. 下列说法中哪些不正确? 说明理由。

(1)某一配离子的值越小,该配离子的稳定性越差。

正确

(2)某一配离子的值越小,该配离子的稳定性越差。

不正确,值越小,说明该配离子难易解离,即稳定性越好。

(3)对于不同类型的配离子,值大者,配离子越稳定。不正确,不同类型的配离子其配位数不相同,其稳定性不能按值的大小来比较。

(4)配合剂浓度越大,生成的配离子的配位数越大。

不正确,主要是形成具有特征配位数的配离子。

12. 向含有[Ag(NH3)2]+配离子的溶液中分别加入下列物质:

(1)稀HNO3(2)NH3·H2O (3)Na2S溶液

试问下列平衡的移动方向?

)2]+Ag+ + 2NH3

[Ag(NH

解:(1)平衡向右移动;(2) 平衡向左移动;(3) 平衡向右移动。

13. AgI在下列相同浓度的溶液中,溶解度最大的是哪一个?

KCN Na2S2O3KSCN NH3·H2O

解:AgI溶解后,分别生成的配离子为:[Ag(CN)2]-、[Ag(S2O3)2]3-、[Ag(SCN)2]-、[Ag(NH3)2]+它们的稳定常数分别为:1.26×1021、2.88×1013、3.72×107、1.12×107,由此可知AgI在KCN中的溶解度最大。

14. 根据配离子的值判断下列Eθ值哪个最小? 哪个最大?

(1)Eθ(Ag+/Ag) (2)Eθ{[Ag(NH3)2]+/Ag}

(3)Eθ{[Ag(S2O3)2]3-/Ag} (4)Eθ{[Ag(CN)2]-/Ag}

解:由14题可知[Ag(CN)2]-的稳定常数最大,这说明在体系中Ag+离子的浓度越小,根据Nernst方程式可知Eθ{[Ag(CN)2]-/Ag}的值最小,Eθ(Ag+/Ag)的值最大。

15. 判断下列转化反应能否进行。

(1) [Cu(NH3)4]2+ + 4H+─→ Cu2+ + 4NH4+(能)

(2) AgI + 2NH3─→ [Ag(NH3)2]+ + I-(不能)

(3) Ag2S + 4CN-─→ 2[Ag(CN)2]- + S2-(不能)

(4) [Ag(S2O3)2]3- + Cl-─→ AgCl↓+ 2S2O32-(不能)

第八章配位化合物-习题

1.指出下列配离子的形成体、配体、配位原子及中心离子的配位数。

2. 命名下列配合物,并指出配离子的电荷数和形成体的氧化数。

3. 写出下列配合物的化学式:

(1) 三氯·一氨合铂(Ⅱ)酸钾K[PtCl3(NH3)]

(2) 高氯酸六氨合钴(Ⅱ) [Co(NH3)6)] (ClO4)2

(3) 二氯化六氨合镍(Ⅱ) [Ni (NH3)6]Cl2

(4) 四异硫氰酸根·二氨合铬(Ⅲ)酸铵

NH4[Cr(NCS)4 (NH3)2]

(5) 一羟基·一草酸根·一水·一乙二胺合铬(Ⅲ)

[Cr(OH) (C2O4) (H2O) (en)]

(6) 五氰·一羰基合铁(Ⅱ)酸钠Na2[Fe(CN)5(CO)]

4.有下列三种铂的配合物,用实验方法确定它们的结构,其结果如下:

根据上述结果,写出上列三种配合物的化学式。

5. 根据下列配离子中心离子未成对电子数及杂化类型,试绘制中心离子价层d 电子分布示意图。

解:

Cu(NH 3)4

2+

3

33

3CoF 6

3-

dsp 2

杂化sp 3d 2杂化

6.巳知[MnBr 4]2-和[Mn(CN)6]3-的磁矩分别为 5.9和 2.8 B.M ,试根据价键理论推测这两种配离子价层d 电子分布情况及它们的几何构型。

解:已知[MnBr 4]2-和[Mn(CN)6]3-的磁矩分别为 5.9和 2.8 B.M 。

由:μ=

[MnBr4]2-中Mn2+的成单的电子数n=5;

[Mn(CN)6]3-中Mn3+的成单的电子数n=2。

[MnBr4]2-中Mn2+的价电子分布为:

sp3杂化

[MnBr4]2-的几何构型为正四面体。

[Mn(CN)6]3-中Mn3+的价电子分布为:

d2sp3杂化

3d

[Mn(CN)6]3-的几何构型为正八面体。

7.在50.0mL0.20mol·L-1AgNO3溶液中加入等体积的1.00mol·L-1的NH3·H2O,计算达平衡时溶液中Ag+,[Ag(NH3)2]+和NH3的浓度。

[][][]-1

-1

3232323323 ()0.10 ()0.50(())()()()() 2f

c Ag mol L c NH H O mol L K Ag NH Ag Ag NH c Ag c NH c Ag NH Ag NH ++

+

?

+

+

+

+==+混合后尚未反应前:又因较大,可以认为基本上转化为,

达到平衡时溶液中、、可解由下式计算:

:[]()

2322-1-12

()2 0.50-20.10 0.10 0.302 0.10-0.10- 0.302 0.10-0.100.3020.3f

f H O

Ag NH H O

mol L mol L x x x x K x x K x x x +

??+?+=

+≈+≈起始浓度/平衡浓度/较大,故很小,,[]-8-8-1-132-1

320 9.910()9.910 ()0.10 ()0.30x c Ag mol L c Ag NH mol L c NH H O mol L ++

=?=?≈≈即

8.10mL0.10mol·L -1 CuSO 4溶液与l0mL6.0mol·L -1 NH 3·H 2O 混合并达平衡,计算溶液中Cu 2+、NH 3及[Cu(NH 3)4]2+的浓度各是多少? 若向此混合溶液中加入0.010molNaOH 固体,问是否有Cu(OH)2沉淀生成?

[]2-1-132232342-1 ()0.050 () 3.0 :

4

()4 3.040.05 04c Cu mol L c NH mol L Cu NH H O Cu NH H O

mol L x ++

+==++-?+解:混合后尚未反应前:达到平衡时平衡浓度/()[]13

4

-172-17-12-13432 0.050-0.050- 2.09102.84 2.84 2.8 0.050-0.05 3.910() 3.910 ()0.05 (f f x x

x K x x K x x x x c Cu mol L c Cu NH mol L c NH H ??++

==?++≈≈=?=?≈较大,故很小,,即()()-1

-1-12-218222) 2.80.010(),0.0101000 ()0.520()() 9.810() ()sp O mol L molNaOH s c OH mol L mol L c Cu c OH J K Cu OH c c Cu OH -+-?

?

?≈??? ?

??

=?=?>若在此溶液中加入即:==故有沉淀生成。

9.通过计算比较1L 6.0mol·L -1 氨水与1L 1.0mol·L -1KCN 溶液,哪一个可溶解较多的

AgI?

[]-1

3232-1-1--1 1.0 6.0() ( )() .:

L mol L NH H O xmol AgI c Ag NH x mol L x mol L c I x mol L +

=设溶解的,则=实际上应略小于,达到平衡时解:

[]

[]

()

()32322-110

32 2()2 6.02

()9.410f

sp AgI NH H O Ag NH I H O mol L x x x K K Ag NH K AgI +

-

+

???

-+++-==?平衡浓度/

()

2

10

2

-4-4-1-1

-1

9.410

6.0-2 1.910, 1.9101.0 1.00.49x

x x mol L AgI L mol L KCN mol L AgI KCN AgI -=?=??即氨水可溶解。同上的方法可求出,的可溶解。可见可溶解较多的。

10.0.10g AgBr 固体能否完全溶解于100mL 1.00mol·L -1 氨水中? **

[][]-132-1-1--13232322-1 1.01.0 () ( )() . : 2()2 1.02 L mol L NH H O xmol AgBr c Ag NH x mol L x mol L c Br x mol L AgBr NH H O Ag NH Br H O

mol L x x +

+

-=+++-解:设溶解的,并设溶解达到平衡时=实际上应略小于,达到平衡时平衡浓度/[]()()()

6

322

63

2

-1332-132

() 5.9910

5.9910, 2.4101.021.0 1.0 2.4101001.0 2.41f

sp

x K K

Ag NH K AgBr x x x L mol L NH H O molAgBr ml mol L NH H O AgBr +

?

?

?----==?=?=?-??故可溶解;则可溶解克数为:

3-11-13200.1187.770.0450.1,0.1 100 1.0mol L L g mol g g g AgBr ml mol L NH H O --??=<即不能完全溶解于中

11.在50.0 mL 0.100mol·L -1 AgNO 3溶液中加入密度为0.932g·cm -3 含NH 3 18.2%的氨水30.0mL 后,再加水冲稀到100mL 。

(1)求算溶液中Ag +、[Ag(NH 3)2]+和NH 3的浓度。 (2)向此溶液中加入0.0745g 固体KCl ,有无AgCl 沉淀析出? 如欲阻止AgCl 沉淀生成,在原来AgNO 3和NH 3水的混合溶液中,NH 3的最低浓度应是多少?

(3)如加入0.120g 固体KBr ,有无AgBr 沉淀生成? 如欲阻止AgBr 沉淀生成,在原来AgNO 3 和NH 3水的混合溶液中,NH 3的最低浓度应是多少? 根据(2)、(3)的计算结果,可得出什么结论?

()()()-1

1321

1

321

1

1

0.932100018.2%17.01309.98 9.98100 2.9930 ()0.1000.050100(1) c NH H O g ml ml g mol L ml mol L c NH H O mol L ml

mol L ml c Ag mol L mol L ml

----+--=??÷÷==?

==?= ,混合稀释后:解:[]

()

3232-1710

2

10-1 2() 2.990.12 0.05-

0.05- 1.1210, 5.3510

2.892 () 5.3510 ((f f

Ag NH H O Ag NH mol L x x x K x

K x x x

c Ag mol L c Ag NH +

+

??

-+-+-+=?=?+?=?平衡浓度/较大,故可近似计算:=

即:[]-132-1

32))0.050 () 2.89mol L c NH H O mol L +

==

{}{}-1-1-1012-10(2) 0.0745(): ()0.074574.5510.1 0.010

()/()/ 5.35100.010

5.3510() 1.7710 , sp gKCl s c Cl g g mol L mol L J c Ag c c Cl c K AgCl AgCl AgCl -+??--?

=÷÷===??=?<=?加入故无沉淀形成。

阻止沉淀形成的条件为:{}{}-8-1--1

32-87

--1-1-10()

() 1.7710

()/0.05 ()0.502 1.7710 1.1210(3) ()0.12119.00.10.0101 ()/()/ 5.35100.0101sp K AgCl c Ag c mol L c Cl c c NH H O mol L

c Br g g mol L mol L J c Ag c c Br c ?

+??

+??-≤

?≥???=÷÷===??==12-13-11-1--1

32-117

5.410()

5.3510 ,()

() 5.3010

()/0.05 ()9.18 5.310 1.1210(2)(3)sp sp K AgBr AgBr AgBr K AgBr

c Ag c mol L c Br c c NH H O mol L

AgCl -?

?

+??

=?>=?≤

?≥???故有沉淀形成。

阻止沉淀形成的条件为:==由、计算结果看出,32NH H O AgBr 能溶于稀,而必须在浓氨水中才能溶解。

12.计算下列反应的平衡常数,并判断反应进行的方向。 (1) [HgCl 4]2- +4I - [Hgl 4]2- + 4Cl -

已知:

([HgCl 4]2-

) = 1.17×1015

;([HgI 4]2- = 6.76×1029

(2) [Cu(CN)2]- + 2NH 3 [Cu(NH 3)2]+ + 2CN -

已知

: {[Cu(CN)2]-}=1.0×1024

{[Cu(NH 3)2]+}

=7.24×1010

(3) [Fe(NCS)2]+ + 6F -

[FeF 6]3- + 2SCN -

巳知:

{[Fe(NCS)2]+}= 2.29×103

[(FeF 6)3-=

2.04×1014

[][]

[]{}{}

[]{}{}[][][][]

22-4442-

22444

222-4414

-232322 (1) 44()()()

() ()()

()() 5.7810 (2) ()2()22 f

f HgCl I

HgI Cl c HgI c Cl K HgI c Hg K

c Hg

K HgCl c HgCl c I K Cu CN NH H O Cu NH CN H O -

-

-

-

-

?+

?

-+

-??-

+

++=?

==?+++值很大,故反应向右进行。解:[][][][]

[][]322143-

2636210(())

(())

7.2410, (3) ()62() (())

8.9110, f

f f f

K Cu NH K K Cu CN K Fe NCS F FeF SCN K FeF K K Fe NCS K +

?

?

-

?-?+

-

--

?

?

+

??=

=?++=

=?值很小,故反应向左进行。值很大,故反应向右进行。

13. 已知:E θ(Ni 2+/Ni)=-0.257V ,E θ(Hg 2+/Hg)= 0.8538V , 计算下列电极反应的E θ值。 (1) [Ni(CN)4]2- + 2e -Ni + 4CN - (2) [HgI 4]2- + 2e -

Hg + 4I -

2---422-314

222222-42-4 (1) [()] 2 4(/)-0.257,( [()]) 1.9910 20.0592(/)(/)lg ()

2

4[()][()]f Ni CN e Ni CN E Ni Ni V K Ni CN Ni e Ni

E Ni Ni E Ni Ni c Ni Ni CN Ni CN Ni CN Ni ?+?+-

+

?

+

++-+→+==?+=++已知对于电极反应:电对/的标准电解:极电势为:-122-3142422-32-1

2-2241.0()([()])1 1.9910

()()()

() 5.03100.0592

([()])(/)lg ()

2

f mol L c Ni c Ni CN K c Ni c CN c Ni c Ni mol L E Ni CN Ni E Ni Ni c Ni +?+-++?

+

+===?=?=+当配离子和配体的浓度均为下的电极电势,此时对应的为:

所以:/[][][]

[]242229422424 -1.183(2) 24 (/)0.853 () 6.7610(1)0.05921

()(/)lg 2 ()

f

f V

HgI e Hg I E Hg Hg V K HgI E HgI Hg E Hg Hg K HgI -

-

-

?+-

?-

?

+

-

?

++==?=+=同的解法:/ -0.0295V

*14. 已知: E θ(Cu 2+/Cu)=0.340V , 计算出电对[Cu(NH 3)4]2+/Cu 的E θ值。并根据有关数据说明: 在空气存在下,能否用铜制容器储存1.0mol·L -1的NH 3 水? [假设p (O 2)=100 kPa 且E θ(O 2/OH -)=0.401V]

[][][]2343

221334222222242344()24(/)0.340,(()) 2.0910 20.0592 (/)(/)lg ()

2

4()( 4 f

Cu NH e Cu NH E Cu Cu V K Cu NH Cu e Cu

E Cu Cu E Cu Cu c Cu Cu Cu NH H O

Cu NH H O

Cu +

-

+

?

+

?

+-

+

?

+

+++

+

++==?+=+++已知对于电极反应:其中的浓度可由下列平衡式求得:电对解:[][][]234-1223413

24232-14-1

2234) 1.0()(())

1 2.0910

()()()

() 4.8100.0592

(())(/)lg 2

f

NH Cu mol L c Cu c Cu NH K c Cu c NH c Cu c Cu mol L E Cu NH Cu E Cu Cu c +

++

?++++

?

?

+

===?=?=+/的标准电极电势为:当配离子和配体的浓度均为下的电极电势,此时对应的为:

所以:/2-132-324-1()

-0.054() 1.0 1.0 Cu V

c NH H O mol L NH H O

NH OH mol L x x x

++=+-=在的溶液中:平衡浓度/25

323-3-1--

22-2 () 1.810 1.0 4.210,() 4.210

44 (/)0.401x

K NH H O x

x c OH mol L O H O e OH E O OH V

?---?==?-=?=?++=即对于电极反应:

金属有机多孔配位聚合物的研究进展

金属有机多孔配位聚合物的研究进展 多孔材料在物质分离、气体储存和异相催化等领域有着广泛的应用。传统的无机多孔材料包括硅藻土和沸石等天然多孔材料和名目繁多的(如,活性炭、活性氧化铝、蛭石、微孔玻璃、多孔陶瓷等)人工多孔材料。天然无机多孔材料的结构类型有限,人造无机多孔材料虽然可克服这一缺点(通过改变制备工艺,人们可以制备从微孔、中孔到大孔等各类多孔材料),但是人造多孔材料的缺点是无法获得均匀孔结构。近年来"无机!有机杂化配合物作为一种新型的多孔材料引起了人们的广泛关注。人们将这种配合物定义为金属有机类分子筛"其孔洞处在纳米的数量级" 又称纳米微孔配位聚合物,这类材料的功能可以通过无机物种或有机桥联分子进行调节,过渡金属可以将其还原转化为沸石性主体,从而产生一些有趣的具有磁性和光谱特性的孔洞,而有机物质可以调节孔道尺寸、改变孔的内表面,还具有化学反应性或手性,可以弥补传统分子筛的许多不,在异相催化、手性拆分、气体存储、离子交换、主客体化学、荧光传感器以及光电磁多功能材料等领域显示出良好的应用前景。 和无机多孔材料相比,这类分子材料具有(1)结构多样性:MOFs是由金属离子(node)和有机配体(linker或spacer)通过配位键形成的配位聚合物,有机配体分子的多样性和金属离子配位几何的多样性导致了它们构成的配位聚合物结构的多样性(2)分子设计和分子剪裁的可行性:调节有机配体的几何性质和选择不同配位几何的金属离子可调控配位聚合物孔的结构(3)制备条件温和:在常压或几十个大气压,200度左右或更低的温度下反应等优点,因而对MOFs 的研究备受化学和材料科学工作者的关注。 由于配位聚合物的形成可以看作具有各自配位特征的配体和金属离子之间的合理识别与组装,因此,配体的几何构型和配位性能及金属离子的配位趋向和配位能力对配位聚合物的结构起着决定作用。此外,阴离子、溶剂、反应物配比、溶液的pH、合成方法(水热或溶剂热,溶液法、扩散法、溶胶法)、反应温度等也对配位聚合物的结构有重要的影响。作为一个重要组成部分,金属离子在配位聚合物的形成中起到极其重要的作用,配体的配位信息就是通过金属离子,根据它们配位点化学本性和几何学的规则来识别的。首先,金属离子本身的特性决定

第9章 配位化合物习题

第9章配位化合物 一判断题 1 价键理论认为,配合物具有不同的空间构型是由于中心离子(或原子)采用不同杂化轨道与配体成键的结果。() 2 价键理论能够较好地说明配合物的配位数、空间构型、磁性和稳定性,也能解释配合物的颜色。() 3 价键理论认为,在配合物形成时由配体提供孤对电子进入中心离子(或原子)的空的价电子轨道而形成配位键。() 4 同一元素带有不同电荷的离子作为中心离子,与相同配体形成配合物时,中心离子的电荷越多,其配位数一般也越大。() 5 在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。() 6 所有八面体构型的配合物比平面四方形的稳定性强。() 7 所有金属离子的氨配合物在水中都能稳定存在。() 8 价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。() 9 所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。() 10 内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。() 11 内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。() 12 不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。 13 [Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。() 14 [Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。() 15 K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。() 16 Fe2+的六配位配合物都是反磁性的。() 17 在配离子[AlCl4]-和[Al(OH)4]-中,Al3+的杂化轨道不同,这两种配离子的空间构型也不同。() 18 已知E(Cu2+/Cu) = 0.337V,E([Cu(NH3)4]2+/Cu) = -0.048V,则E([Cu(CN)4]2-/Cu) < -0.048V。() 19 已知E(Ag+/Ag) = 0.771V,E([Ag(NH3)2]+/Ag) = 0.373V,则E([Ag(CN)2]-/Ag) > 0.373V。() 20 按照价键理论可推知,中心离子的电荷数低时,只能形成外轨型配合物,中心离子电荷数高时,才能形成内轨型配合物。() 21 以CN-为配体的配合物,往往较稳定。() 22 Ni2+的平面四方形构型的配合物,必定是反磁性的。() 23 Ni2+的四面体构型的配合物,必定是顺磁性的。() 24 磁矩大的配合物,其稳定性强。() 25 所有Ni2+的八面体配合物都属于外轨型配合物。() 26 所有Fe3+的八面体配合物都属于外轨型配合物。() 27 已知K2[Ni(CN)4]与Ni(CO)4均呈反磁性,所以这两种配合物的空间构型均为平面正方形。() 28 按照晶体场理论,对给定的任一中心离子而言,强场配体造成d轨道的分裂能大。()。 29 按照晶体场理论可知,强场配体易形成高自旋配合物。()。 30 晶体场理论认为配合物的中心离子与配体之间的作用力是静电引力。() 31 具有d0、d10结构的配离子都没颜色,因为不能产生d-d跃迁。()

第9讲络合物(配位化合物)化学基础

第9讲络合物(配位化合物)化学基础 【竞赛要求】 配位键。重要而常见的配合物的中心离子(原子)和重要而常见的配位(水、羟离子、卤离子、拟卤离子、氨分子、酸根离子、不饱和烃等)。螯合物及螯合效应。重要而常见的络合剂及其重要而常见的配合反应。配合反应与酸碱反应、沉淀反应、氧化还原反应的联系(定性说明)。配合物几何构型和异构现象基本概念。配合物的杂化轨道理论。八面体配合物的晶体场理论。Ti(H2O)+3 的颜色。路易斯酸碱的概念。 6 【知识梳理】 一、配合物基本知识 1、配合物的定义 由中心离子(或原子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单元的化合物都称作配位化合物,简称配合物,也叫络合物。 [Co(NH3)6]3+,[Cr(CN)6]3–,Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。 [Co(NH3)6]Cl3、K3[Cr(CN)6]、Ni(CO)4都是配位化合物。[Co(NH3)6]、[Cr(CN)6] 也是配位化合物。判断的关键在于是否含有配位单元。 思考:下列化合物中哪个是配合物 ①CuSO4·5H2O ②K2P t Cl6 ③KCl·CuCl2 ④Cu(NH2CH2COO)2 ⑤KCl·MgCl2·6H2O ⑥Cu(CH3COO)2 注意:①配合物和配离子的区别 ②配合物和复盐的区别 2、配合物的组成 中心离子 内界单齿配体 配位体多齿配体 配合物螯合配体 外界 (1)配合物的内界和外界 以 [Cu(NH3)4]SO4为例: [Cu(NH3)4]2+ SO-2 4 内界外界 内界是配位单元,外界是简单离子。又如 K3[Cr(CN)6] 之中,内界是[Cr(CN)6]3–,外界是 K+。可以无外界,如 Ni(CO)4。但不能没有内界,内外界之间是完全电离的。 (2)中心离子和配位体 中心离子:又称配合物的形成体,多为金属(过渡金属)离子,也可以是原子。如 Fe3+、Fe2+、Co2+、Ni2+、Cu2+、Co等,只要能提供接纳孤对电子的空轨道即可。 配位体:含有孤对电子的阴离子或分子。如NH3、H2O、Cl-、Br-、I-、CN-、CNS-等。 (3)配位原子和配位数 配体中给出孤对电子与中心离子直接形成配位键的原子,叫配位原子。配位单元中,中心离子周围与中心离子直接成键的配位原子的个数,叫配位数。 配位化合物 [Cu(NH3)4]SO4的内界为 [Cu(NH3)4]2+,中心Cu2+的周围有4个配体 NH3,每个NH3中有1个N原子与Cu2+配位。N 是配位原子,Cu 的配位数4。(注意:配体的个数与配位数不是同一个概念) 若中心离子的电荷高,半径大,则利于形成高配位数的配位单元;而配体的电荷高,半径大,利于低配位数。 (4)常见的配体 单齿配体:一个配体中只能提供一个配位原子与中心离子成键。如H2O、 NH3 、CO等。单

配位聚合物材料

配位聚合物材料 配位聚合物是指通过有机配体和金属离子间的配位键形成的,并且具有高度规整的无限网络结构的配合物。配位聚合物的设计与合成是配位化学研究的重要内容。 配位聚合物研究需要把有机配体的结构和不同配位能力的给体原子与具有不同配位倾向性的金属离子综合考虑,是无机、有机、固态、材料化学的交叉科学。由有机配体和金属离子形成任何复合物物种原则上都是一个自组装过程,配体聚合物的设计重点在于配体的设计和金属离子的选择,二者相互作用产生重复单元,按被控方式形成确定的结构。在自发过程中,充分利用了两类组分的结构和配位性质:金属离子一方面像结合剂一样把具有特定功能和结构的配体结合在一起;另一方面,又作为中心把配体定位在特定的方位上。虽然配位聚合物的结构也有可能展现出不同于组成成分的性质,但是设计最终目的仍是通过预先设计结构单元来控制最终产物的结构和功能,在非线性光学材料、磁性材料、超导材料及催化等多方面都有极好的应用前景。 配位聚合物在多孔材料、催化、发光、磁学、药物存储和运输等方面具有潜在白勺应用价值,是当今化学、材料科学、生命科学等分析领域白勺热点课题之一。羧酸类配体配位才能强、配位方式灵敏,还可以将金属离子连接成刚性次级构造单元(SBU),和金属离子配位组装可以生成许多构造新颖、性质共同白勺配位聚合物材料。本论文在配位聚合物晶体工程白勺指导下,分别以1,5-二硝基萘-3,7-二甲酸(H2NNDC)和2,2',4,4'-联苯四甲酸(2,2’,4,4’-H4bptc)为桥联配体,同过渡金属离子或者镧系金属离子配位组装,或引入联吡啶类中性桥联配体或螯合配体辅助配位,构筑了32个新颖白勺零维、一维、二维和三维构造白勺化合物,在晶体构造分析白勺基础上分析了部分配位聚合物白勺磁性、稳定性和发光性质。分析工作主要分为以下几个部分:1.1,5-二硝基萘-3,7-二甲酸配合物:以H2NNDC为桥联配体,或者辅以不同长度白勺联吡啶类桥联共配体(4,4'-联吡啶(4,4’-bipy)、1,2-二吡啶基乙烯(bpe)、1,4-二氮杂二环[2.2.2]辛烷(dabco))和螯合端基共配体(1,10-邻菲啰啉),通过水热、溶剂热法分别合成了25个零维、维、二维和三维构造白勺配合物,测定了它们白勺晶体构造,从晶体工程角度讨论了合成方法、反响条件和共配体对配合物构造白勺影响,并分析了其中多孔材料白勺热稳定性、客体分子交换性质以及部分配合物白勺磁学性质。(1)以H2NNDC为桥联配体,分别同Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)和Mn(Ⅱ)合成了一系列构造各异白勺配合物。配合物1中白勺NNDC配体白勺羧基氧和Co(Ⅱ)双齿配位,在氢键和π-π堆积作用下形成共同白勺三维超分子构造,磁性测试表示配合物1具有铁磁性。配合物2和3是一维链构造,配合物2依靠氢键形成简单立方白勺三维超分子拓扑网络,配合物3则依靠氢键和π-π堆积作用形成共同白勺三维超分子梯子构造。配合物4是具有线性白勺三核锰单元([Mn3(COO)6])白勺简单立方拓扑网络,羧基采用syn-syn方式桥联Mn(Ⅱ),配合物4存在反铁磁耦合作用。(2)在以H2NNDC为

《配位化合物与配位滴定法》习题答案

《配位化合物与配位滴定法》习题答案 9-1 命名下列配合物,并指出中心离子、配位体、配位原子和中心离子的配位数。 (1)[CoCl 2(H 2O)4]Cl (2)[PtCl 4(en)] (3)[Ni Cl 2(NH 3)2] (4)K 2[Co(SCN)4] (5)Na 2[SiF 6] (6)[Cr(H 2O)2(NH 3)4]2 (SO 4)3 (7)K 3[Fe(C 2O 4)3] (8)(NH 4)3[SbCl 6]·2H 2O 9-2 已知磁矩,根据价键理论指出下列配离子中中心离子的杂化轨道类型和配离子的空间构型。 (1)[Cd(NH 3)4]2+ (μ=0 B M) (2)[PtCl 4]2- (μ=0 B M) (3)[Mn(CN)6]4- (μ=1.73 B M) ( 4 ) [CoF 6]3- (μ=4.9 B M)

(5)[BF 4]- (μ=0 BM) (6)[Ag(CN)2]- (μ=0 B M) 9-3 解释下列名词 (1)配位原子 (2)配离子 (3)配位数 (4)多基(齿)配位体 (5)螯合效应 (6)内轨型和外轨型配合物 (7)高自旋和低自旋配合物 (8)磁矩 答:见教材。 9-4 选择适当试剂,实现下列转化。 Ag →AgNO 3→AgCl ↓→[Ag(NH 3)2]Cl →AgBr ↓→Na 3[Ag(S 2O 3)2]→AgI ↓→K[Ag(CN)2] →Ag 2S ↓ 答:转化路线: ↓?→???→?→?→???→?↓?→????→?↓?→???→?- - - - - ?S Ag ]K[Ag(CN)AgI ])O [Ag(S Na AgBr ]Cl )[Ag(NH AgCl AgNO Ag 22232323NH 32232233 S KCN I O S Br O H Cl HNO 要点:应记忆题给各常见配合物和沉淀物的稳定转化顺序。 9-11 用EDTA 标准溶液滴定金属离子M ,试证明在化学计量点时, (1)() ' 2 1MY pK pMY pM -= (2))(lg 2lg )(lg M c K MY c MY += 证明:

配位聚合物的应用及其研究进展

配位聚合物在光电磁材料中的应用 姓名:吴娜学号:10207010 摘要:配位聚合物由于其特殊的结构及其在光电磁等方面优异的性能引起了科学家的广泛关注。本文综述了金属有机化合物在光电磁材料中的应用,并对新型多功能材料在设计、合成与应用方面的广阔前景作了展望。 关键词:配位聚合物;多功能材料;非线性光学;材料化学 引言: 配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2)分子化;(3)巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1 配位聚合物在光学材料中的应用 配位聚合物的光学性质研究主要集中在光致发光、电致发光以及非线性光学等方面[8]。 1.1光致发光和电致发光材料 当外界光照射到某些物质的时候,这些物质会发射出各种波长和不同强度的可见光,而当外界光停止照射时,这种发射光也随之消失,我们称这种发光现象叫光致发光( PL);当

配位化合物

第十章配位化合物 1.无水CrCl3和氨作用能形成两种配合物,组成相当于CrCl3?6NH3及CrCl3?5NH3。加入AgNO3溶液能从第一种配合物水溶液中几乎所有的氯沉淀为AgCl,而从第二种配合物水溶液中仅能沉淀出相当于组成中含氯量2/3的AgCl,加入NaOH并加热时两种溶液都无NH3味。试从配合物的形式推算出它们的内界和外界,并指出配离子的电荷数、中心离子的氧化数和配合物的名称。 答:第一种:[Cr(NH3)6]Cl3离子的电荷数3+: 即[Cr(NH3)6]3+,Cr(Ⅲ),三氯化六氨合铬(Ⅲ)。 第二种:[CrCl(NH3)5]2+ , Cr(Ⅲ) , 二氯化一氯?五氨合铬(Ⅲ)。 2.命名下列配合物,并指出中心离子及氧化数,配位体及配位数。 (1)[Co(NH3)6]Cl2 (2)K2[PtCl6] (3)Na2[SiF6] (4)[CoCl(NH3)5]Cl2(5)[Co(en)3]Cl3(6)[CoCl(NO2)(NH3)4]+ 答:命名中心离子氧化数配位体配位数 (1)二氯化六氨合钴(Ⅱ) +2 NH3 6 (2)六氯合铂(Ⅳ)酸钾+4 Cl- 6 (3)六氟合硅(Ⅳ)酸钠+4 F- 6 (4)二氯化一氯?五氨合钴(Ⅲ) +3 Cl- , NH3 6 (5)三氯化三(乙二胺)合钴(Ⅲ) +3 En 6 +3 Cl- , NO2- , NH3 6 (6)一氯?一硝基?四氨合钴(Ⅲ)配离 子 3.写出下列配合物的化学式 (1)二硫代硫酸合银(Ⅰ)酸钠(2)三硝基三氨合钴(Ⅲ) (3)氯化二氯三氨一水合钴(Ⅲ)(4)二氯二羟基二氨合铂(Ⅳ)(5)硫酸一氯一氨二(乙二胺)合铬(Ⅲ) (6)二氯一草酸根一(乙二胺)合铁(Ⅲ)离子 答:(1) Na3[Ag(S2O3)2] (2) [Co (NO2)3(NH3)3] (3) [CoCl2 (NH3)3(HO2)]Cl (4) [PtCl2(NH3)2(OH)2] (5) [CrCl(NH3)(en)2]SO4(6) [FeCl2(C2O4)(en)]- 4.根据价键理论指出下列配离子的成键情况和空间构型 (1) [Fe(CN)6]3-(2) [FeF6]3-(3) [CrCl(H2O)5]2+(4) [Ni(CN)4]2- 答:(1)d2sp3杂化轨道成键,八面体。(2)sp3d2杂化轨道成键,八面体。(3)sp3d2杂化轨道成键,八面体。(4)dsp2杂化轨道成键,平面正方形。5.根据实验测得的有效磁矩,试确定下列配合物是内轨型或外轨型,说明理由,并以它们的电子层结构表示之 (1)[Mn(SCN)6]4-μ=6.1 B.M. (2)[Mn(CN)6]4-μ=1.8 B.M. (3)[Co (NO2)6]3-μ=0 B.M. (4)[Co (SCN)4]2-μ=4.3 B.M. (5)K3[FeF6] μ=5.9 B.M. (6)K3[Fe(CN)6] μ=2.3 B.M. 答:(1)有五个成单电子,外轨型配合物。

配位化合物

配位化合物 知识点一:基本概念 一、定义和组成 1.配位键 由一个原子提供一对电子与另一个接受电子的原子形成的共价键。 2.配位键的表示方法 如:A →B :A 表示提供孤电子对的原子,B 表示接受共用电子对的原子。 3.配位化合物 (1)定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。 (2)组成 如[Cu(NH 3)4]SO 4 (3)形成条件 ??? 配位体有孤电子对? ?? ?? 中性分子:如H 2 O 、NH 3 和CO 等。 离子:如F - 、Cl - 、CN - 等。中心原子有空轨道:如Fe 3+、Cu 2+、Zn 2+ 、Ag +等。 【练习1】下列分子或离子中都存在着配位键的是( ) A .NH 3、H 2O B .NH + 4、H 3O + C .N 2、HClO D .[Cu(NH 3)4]2+ 、PCl 3 【练习2】既有离子键又有共价键和配位键的化合物是( ) A .NH 4NO 3 B .NaOH C .H 2SO 4 D .H 2O 【练习3】下列物质:①H 3O + ②[B(OH)4]- ③CH 3COO - ④NH 3 ⑤CH 4中存在配 位键的是( )

A .①② B .①③ C .④⑤ D .②④ 【练习4】下列不属于配合物的是( ) A .[Cu(H 2O)4]SO 4·H 2O B .[Ag(NH 3)2]OH C .KAl(SO 4)2·12H 2O D .Na 3[AlF 6] 【练习5】下列化合物中哪些是配合物( ) ①CuSO 4·5H 2O ②K 2PtCl 6 ③KCl ·CuCl 2 ④Cu(NH 2CH 2COO)2 ⑤KCl ·MgCl 2·6H 2O ⑥Cu(CH 3COO)2 A .①③④⑥ B .②③⑤ C .①② D .①③⑤ 二、配合物的分类和命名 1、 分类: ⑴简单配合物:由形成体和单齿配体直接配位形成的配合物称简单配合物(也称单核配合物)。如()[] 443SO NH Cu 、()[] O H SO O H Cu 2442?等。 其特点是: ① 在中心离子周围按一定空间构型整齐地排列着一定数目的配体。 ② 在水溶液中往往逐级离解,形成一系列中间配离子,并存在着一定的平衡关系。 ③ 大量的水合物,是以H 2O 为配体的简单配合物。 ⑵螯合物:由中心离子和多齿配体结合而成的配合物称为螯合物,俗称内络盐。此类配体也称螯合剂,它与中心离子结合时犹如螃蟹的双螯钳住中心离子似的。 其特点如下: ① 螯合物中有环状结构。 ② 若中心离子相同,且配位原子也相同时,螯合物一般比简单配合物稳定。 ③ 在水溶液中很少发生逐级离解现象。 ④ 一般具有特征颜色。 ⑤ 往往不溶于水,但却溶于有机溶剂中。 在分析化学上,螯合剂被广泛地用作滴定剂、显色剂、沉淀剂、掩蔽剂和萃取剂等进行分离和分析测定。 ⑶特殊配合物:除简单配合物和螯合物外,还有许多其它类型的配合物。 如:多核配合物、多酸配合物、羰基配合物、夹心配合物等。 2、 配合物的化学式 3、 配合物的命名: 配体数→配体名称→合→中心原子(氧化数) 如:[Co(NH 3)6] 3+ 六氨合钴(Ⅲ)离子

第四章 配位化合物 习题

第四章配位化合物 1、举例说明什么叫配合物,什么叫中心离子(或原子)。 答:配合物的定义是:由一个中心离子(或原子)和几个配位体(阴离子或原子)以配位键相结合形成一个复杂离子(或分子)通常称这种复杂离子为结构单元,凡是由结构单元组成的化合物叫配合物,例如中心离子Co3+和6个NH3分子以配位键相结合形成 [Co(NH3)6]3+复杂离子,由[Co(NH3)6]3+配离子组成的相应化合物[Co(NH3)6]Cl3是配合物。 同理,K2[HgI4]、 [Cu(NH3)4]SO4等都是配合物。 每一个配位离子或配位分子中都有一个处于中心位置的离子,这个离子称为中心离子或称配合物的形成体。 2、什么叫中心离子的配位数,它同哪些因素有关。 答:直接同中心离子(或原子)结合的配位原子数,称为中心离子(或原子)的配位数。影响中心离子配位数的因素比较复杂,但主要是由中心离子和配位体的性质(半径、电荷)来决定。 (1)中心离子的电荷越高,吸引配位体的能力越强,因此配位数就越大,如Pt4+形成PtCl62-,而Pt2+易形成PtCl42-,是因为Pt4+电荷高于后者Pt2+。 (2)中心离子半径越大,其周围可容纳的配位体就越多,配位数就越大,例如Al3+的半径大于B3+的半径。它们的氟配合物分别是AlF63-和BF4-。但是中心离子半径太大又削弱了它对配位体的吸引力,反而配位数减少。 (3)配位体的负电荷增加时,配位体之间的斥力增大,使配位数降低。例如:[Co(H2O)6]2+和CoCl42-。 (4)配位体的半径越大,则中心离子周围容纳的配位体就越小,配位数也越小。例如AlF63-和AlCl4-因为F-半径小于Cl-半径。 2、命名下述配合物,并指出配离子的电荷数和中心离子的氧化数 根据配合物分子为电中性的原则,由配合物外界离子的电荷总数确定配离子的电荷数、中心离子氧化数。

第十一章配位化合物

第十一章 配位化合物 一. 是非题: 1. 因[Ni(NH3)6]2+ 的K s=5.5×108, [Ag(NH3)2]+ 的K s=1.1×107, 前者大于后者,故溶液中 [Ni(NH3)6]2+比[Ag(NH3)2]+稳定() 2. H[Ag(CN)2]- 为酸,它的酸性比HCN强() 3. 因CN-为强场配体,故[30Zn(CN)4]2-为内轨型化合物() 二. 选择题: 1. 在[Co(en)(C2O4)2]-中,Co3+的配位数是() A.3 B.4 C.5 D.6 E.8 2. 下列配离子中属于高自旋(单电子数多)的是() A. [24Cr(NH3)6]3+ B. [26FeF6]3- C. [26Fe(CN)6]3- D. [30Zn(NH3)4]2+ E. [47Ag(NH3)2]+ 3. 下列分子或离子能做螯合剂的是() A.H2N-NH2 B.CH3COO- C.HO-OH D.H2N-CH2-NH2 E.H2NCH2CH2NH2 4. 已知[25Mn(SCN)6]4-的μ=6.1×AJ?T-1,该配离子属于() A.外轨 B.外轨 C.内轨 D.内轨 E.无法判断 5. 已知H2O和Cl-作配体时,Ni2+的八面体配合物水溶液难导电,则该配合物的化学式为 () A. [NiCl2(H2O)4] B. [Ni (H2O)6] Cl2 C. [NiCl(H2O)5]Cl D. K[NiCl3(H2O)3] E. H4[NiCl6] 三. 填充题: 1. 配合物[Cr(H2O)(en)(C2O4)(OH)]的名称为,配位数为。 2. 配合物“硝酸氯?硝基?二(乙二胺)合钴(III)”的化学,它的 外层是。 3. 价键理论认为,中心原子与配体间的结合力是。 四. 问答题:

配位聚合物的应用研究

Seminer ?摘要专业年级博士研究生电子邮箱 配位聚合物的应用研究 研究组姓名 选题意义 配位聚合物(coordination polymers)是有机配体与金属离子通过自组装过程形成的具有周期性网络结构的晶体材料。它结合了复合高分子和配位化合物两者的特点,是一类具有特殊性质的杂化材料。作为新型功能性分子材料,配位聚合物的设计与合成,结构及其性能的研究越来越受到各个领域科学家的重视,形成了跨越多个学科的热点研究领域。 报告内容 具有三维空旷网络结构的金属有机骨架材料(metal-organic framework,MOFs)是一种稳定的配位聚合物材料。MOFs材料在溶剂分子脱除后能保持骨架结构稳定,具有超大的比表面积和孔体积。稳定性的提高大大拓展了MOFs 材料的应用领域,成为MOFs材料发挥其特殊性质的基础。MOFs材料可以用于类分子筛载体、气体存储和分离、非线性光学、分子磁体、手性拆分、发光材料、光电转化、催化等众多领域。其中MOFs在多相不对称催化和光催化领域的应用由于其重要性逐渐受到科学家的重视。 使用具有手性催化活性的有机分子作为配体,可以得到具有手性催化活性的MOFs材料。这是一种特殊的多相化方式,催化剂负载量大,活性中心均匀分布,开放的孔道有利于底物与活性中心接近。在手性催化中具有重要应用的卟啉、席夫碱、联萘配体都已成功合成了MOFs材料,而且材料具有较好的手性选择性。以光学纯的手性酒石酸衍生物为配体,合成具有手性孔道的MOFs材料,不仅可以成功地拆分外消旋的配位化合物,而且还成功实现了对酯交换反应的不对称催化作用。 理论计算表明,MOFs材料也是一种合适的半导体材料,能带带隙在1.0到5.5eV之间。有机部分吸收光子的能量,能够发生从有机到无机部分的电荷转移。从而像半导体一样,能作为电子给体和受体。光激发后,MOFs材料能发生光致变色、光催化产氢、光催化氧化有机物等反应。 前景展望 由于作为配位聚合物组成部分的金属离子和有机配体的高度可调性和配位方式的多样性,配位聚合物具有无限的组成和结构可裁性,这是其它材料所无法比拟的。作为一种新型的功能性分子材料,易功能化的特性使配位聚合物具有广泛的应用领域。越来越多的具有特定结构和特殊性质的材料被不断的开发出来,在各个领域发挥着重要作用。经过合理设计,定向合成具有特定拓扑结构或预期功能特性的配位聚合物材料,将是一个最重要的研究方向。

第6章 配位滴定法(课后习题及答案)

第六章 配位滴定法 思考题与习题 1.简答题: (1)何谓配位滴定法?配位滴定法对滴定反应有何要求? 答:以配位反应为基础的地点分析方法称为配位滴定法。配位滴定法要求配位反应按一定的反应式定量进行,且能进行完全;反应必须迅速;可以用适当的方法确定终点。 (2)EDTA 与其金属离子配合物的特点是什么? 答:EDTA 具有广泛的配位性能;EDTA 与金属离子配位时可生成的螯合物稳定性高,配位反应的完全程度高;EDTA 与金属离子形成配位化合物的配位比几乎均为1:1;EDTA 与金属离子形成的配合物大多能溶于水;配位反应迅速;EDTA 与无色离子形成的配合物也无色,便于用指示剂确定终点。 (3)配位滴定可行性的判断条件是什么? 答:MY M K c lg ≥6 (4)配位滴定中可能发生的副反应有哪些?从理论上看,哪些对滴定分析有利? 答:配位滴定副反应包括:EDTA 的酸效应,金属离子的水解效应,金属离子与其他配位剂的配位反应,干扰离子效应,配合物与氢离子、氢氧根离子的副反应等。配合物与氢离子、氢氧根离子的副反应对滴定分析有利。 (5)何谓指示剂的封闭现象?怎样消除封闭? 答:如果指示剂与某些金属离子形成的配位化合物极其稳定,以至于加入过量的滴定剂也不能将金属离子从金属-指示剂配合物中夺取出来,溶液在化学计量点附近就没有颜色变化,这种现象称为指示剂受到了封闭。可加掩蔽剂消除指示剂的封闭现象。 (6)提高配位滴定选择性的条件与措施有哪些? 答:1)控制酸度;2)分别采用配位掩蔽法、沉淀掩蔽法、氧化还原掩蔽法掩蔽干扰离子;3)分离干扰离子。 2.名词解释 (1)酸效应

答:由于H+的存在使配位剂参加主反应能力降低的现象。 (2)酸效应系数 答:定量表示酸效应进行的程度的系数称为酸效应系数。 (3) 配位效应 答:由于存在其他配位剂L 与金属离子M 配位使金属离子参加主反应能力降低的现象。 (4)配位效应系数 答:定量表示配位效应进行的程度的系数称为配位效应系数。 (5)金属指示剂的变色点 答:]n I []MIn ['=当点。变,此即指示剂的变色时,指示剂发生颜色突 3.计算题: (1)用EDTA 滴定法检验血清中的钙。取血清100μl ,加KOH 溶液2滴和钙红指示剂1~2滴,用0.001042mol/LEDTA 滴定至终点,用去0.2502ml 。计算此检品中Ca 2+含量(Ca 2+mg/100ml )。若健康成人血清中Ca 2+含量指标为 9~11mg/100ml ,此检品中Ca 2+含量是否正常?(尿中钙的测定与此相似,只是要用柠檬酸掩蔽Mg 2+) 解: E D T A C a S Ca ()100Ca%(0.0010420.2502)40.0810010.45(mg /100ml)(40.08g/mol)0.1 cV M V M ??=???=== (2)精密称取葡萄糖酸钙(C 12H 22O 14Ca·H 2O )0.5403g ,溶于水中,加入适量钙指示剂,用0.05000mol/LEDTA 滴定至终点,用去23.92ml 。计算此样品中葡萄糖酸钙含量。(1222142C H O Ca H O M =448.7) 解:

配位聚合物的应用与进展

配位聚合物的应用与进展 王雄化学化工与材料学院应用化学1班 20133443 摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型, 在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。 关键词:配位聚合物;有机配体;合成方法;应用;催化 引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化; (3) 巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1.配位聚合物的分类 1998年,R obson教授根据聚合物框架结构的不同将其分为三大类:一维链

第七章 配位化合物

第七章 配位化合物 一、单项选择题 1. 下列物质中不能作为配体的是 ( B ) A. NH 3 B. NH 4+ C. OH - D. NO 2- 2. 下列离子或化合物中,具有顺磁性的是 ( B ) A. Ni(CN)- 24 B. CoCl - 24 C. Co(NH 3)+ 36 D. Fe(CO)5 3.在配合物[Co(NH 3)4(H 2O)]2(SO 4)3中,中心离子的配位数为 ( B ) A. 4 B. 5 C. 9 D. 12 4. 配离子[Co(NH 3)6]2+的空间构型为 ( A ) A. 八面体 B. 四方锥形 C. 四面体 D. 三角双锥 5. EDTA 是四元弱酸,当其水溶液pH ≥ 12时,EDTA 的主要存在形式为 ( C ) A. H 4Y ; B. H 3Y -; C. Y 4-; D. HY 3- 6.下列关于价键理论对配合物的说法正确的是 ( C ) A. 任何中心离子与任何配体都可形成外轨型化合物; B. 任何中心离子与任何配体都可形成内轨型化合物; C. 中心离子用于形成配位键的原子轨道是经过杂化的等价轨道; D. 以sp 3d 2和d 2sp 3杂化轨道成键的配合物具有不同的空间构型。 7.下列物质中能被氨水溶解的是 ( B ) A. Al(OH)3 B. AgCl C. Fe(OH)3 D. AgI 8. 下面哪一个不属于EDTA 与金属离子形成螯合物的特点 ( B ) A. 具有环状结构 B . 稳定性差 C. 配位比一般为1:1 D. 易溶于水 9. 下列说法欠妥的是: ( C ) A. 配合物的形成体(中心原子)大多是中性原子或带正电荷的离子。 B. 螯合物以六员环、五员环较稳定。 C. 配位数就是配位体的个数。 D. 二乙二胺合铜(Ⅱ)离子比四氨合铜(Ⅱ)离子稳定。 10. AgCl 在11mol L -?氨水中比在纯水中的溶解度大,其原因是 ( B ) A. 盐效应 B. 配位效应 C. 酸效应 D. 同离子效应 11. 离子以dsp 2杂化轨道成键而形成的配合物,其空间构型是 ( A ) A. 平面正方形 B. 四面体形 C. 直线形 D. 八面体形 12. 22Cu(en)+的稳定性比234Cu(NH )+ 大得多,主要原因是前者 ( B ) A. 配体比后者大; B. 具有螯合效应; C. 配位数比后者小; D. en 的分子量比NH 3大。 13. Al 3+与EDTA 形成 ( A ) A. 鳌合物 B. 聚合物 C. 非计量化合物 D. 夹心化合物 14.下列说法中错误的是 ( D ) A. 配体的配位原子必须具有孤电子对。 B. 配离子的配位键愈稳定,其稳定常数愈大。 C. 配合物的颜色最好用晶体场或配位场理论解释。 D. 配合物的颜色最好用价键理论来解释。 15. 下列几种物质中最稳定的是 ( A ) A. [Co(en)3]Cl 3 B. [Co(NH 3)6] (NO 3)3 C. [Co(NH 3)6]Cl 2 D. Co(NO 3)3

金属配位化合物

第7章金属配位化合物 一、要点 1.配位化合物 是含有配位个体的由简单化合物形成的一类复杂的化合物。 配位个体由配位共价键结合起来的相对稳定的结构单元叫做配位个体。 内界和外界就配合物整体而言,配位个体的结构单元叫做配合物的内界,而配位 个体以外的部分叫做外界。 2.中心原子(离子) 处于配合物内界结构单元中心部位的原子或离子叫中心原子或中心离子。 3.配位体 配位个体中与中心原子结合的分子或离子叫做配位体,简称配体。 4.配位原子 配体中直接键合于中心原子的原子叫配位原子,它是电子对的给予体。 5.配位数 与中心原子成键的配位原子数叫做配位数。 6.单齿和多齿配位体 只含有一个配位原子的配位体叫做单齿配位体,含有两个或两个以上的配位原子的 配位体叫做多齿配位体。 7.螯合物 多齿配位体以两个或两个以上配位原子配位于中心原子形成的配合物称做螯合物。 8.配位场的价键理论 以中心原子内价电子轨道的杂化和配位体中配位原子间轨道的重叠为基石讨论配 合物的成键情形是配位场价键理论的核心。 9.外轨和内轨 配位体形成前后,中心原子的d电子排布没有变化,配位原子的孤对电子填在外层 轨道而得的杂化轨道上,这样的一类化合物叫外轨型化合物。配位体形成前后中心 原子的d电子排布发生了变化,原来由单电子占据、后腾空了的(n-1)d轨道参与杂 化,这样的一类化合物叫内轨型配合物。 10.晶体场理论 晶体场理论是一种改进了的静电理论,该理论将配位体看作点电荷或偶极子,除考 虑配位体阴离子负电荷或极性分子偶极子负端与中心原子正电荷间的静电引力外, 着重考虑配位体上述电性对中心原子d电子的静电排斥力,即着重考虑中心原子5 条价层d轨道在配位体电性作用下产生的能级分裂。 11.高自旋和低自旋 代表了晶体场理论中电子自旋的两种状态,当成对能大于分裂能,配合物中的单电 子数较多,称之为高自旋配合物;而当分裂能大于成对能时,配合物中的电子尽可 能成对,单电子数较少,称之为低自旋配合物。晶体场理论中的高自旋配合物和低 自旋配合物分别对应于价键理论中的外轨型配合物和内轨型配合物。 12.分裂能和成对能 晶体场理论中,e g和t2g两组轨道间的能量差叫八面体晶体场的分裂能,用符号10D q 或?o表示;若要将两个自旋方向相同的电子填入到一个轨道中,而填入轨道需要 克服的能量称之为成对能,以符号P表示。成对能和分裂能的相对大小是决定配

配位聚合物的应用与进展

配位聚合物的应用与进展

————————————————————————————————作者: ————————————————————————————————日期:

配位聚合物的应用与进展 王雄化学化工与材料学院应用化学1班20133443 摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型,在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。 关键词:配位聚合物;有机配体;合成方法;应用;催化 引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁 性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3)巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1.配位聚合物的分类 1998年,R obson教授根据聚合物框架结构的不同将其分为三大类:一维

(完整版)配位化合物习题及解析

《配位化合物》作业参考解析 1. 下列说法正确的是 A. 配合物的内界和外界之间主要以共价键相结合 B. 中心原子与配体之间形成配位键 C. 配合物的中心原子都是阳离子 D. 螯合物中不含有离子键 【B】A、D:一般认为配合物的内界和外界之间主要以离子键相结合,因此螯合物中内界和外界之间是可以存在离子键的;C:中心原子可以是阳离子,也可以是中性原子,例如[Ni(CO)4];B:中心原子与配体化合时,中心原子提供杂化过的空轨道,配体提供孤对电子,而形成配位键。 2. 下列配合物命名不正确的是 A. [Co(H2O)(NH3)3Cl2]Cl 氯化二氯·三氨·一水合钴(Ⅲ) B. [Cr(NH3)6][Co(CN)6] 六氰合钴(Ⅲ)酸六氨合铬(Ⅲ) C. K[Co(NO2)3Cl3] 三硝基·三氯合钴(Ⅲ)酸钾 D. H2[PtCl6] 六氯合铂(Ⅳ)酸 【C】根据配体命名顺序,先无机后有机,先阴离子后中性分子,同类配体根据配位原子在字母表中的先后顺序进行命名。对于C中的配合物而言,NO2-以N原子为配位原子时,命名为硝基,带一个负电荷,氯离子也是阴离子,同类配体,根据配位原子在字母表中的先后顺序,Cl-离子在前,NO2-离子在后,因此该配合物应该命名为“三氯·三硝基合钴(Ⅲ)酸钾”。 3. 下列配离子具有正方形或者八面体形结构,其中CO32-最有可能作为双齿配体的是 A. [Co(NH3)4(CO3)]+ B. [Co(NH3)5(CO3)]+ C. [Pt(en)(NH3)(CO3)] D. [Pt(en)2(NH3)(CO3)]2+ 【A】根据题意,配离子具有正方形结构时,配位数为4,形成四个配位键;具有八面体结构时,配位数为6,形成6个配位键。B:[Co(NH3)5(CO3)]+ 配离子中,已有5个氨作为配体,氨是单齿配体,形成5个配位键,因此该配离子中,CO32-离子只能是单齿配体,这样就形成了6个配位键;C:[Pt(en)(NH3)(CO3)] 配合物中,乙二胺(en)为双齿配体,形成2个配位键,氨为单齿配体,形成1个配位键,因此CO32-离子只能是单齿配体,这样就形成了4个配位键;D:[Pt(en)2(NH3)(CO3)]2+ 配离子中,乙二胺(en)为双齿配体,2个en形成4个配位键,氨为单齿配体,形成1个配位键,因此CO32-离子只能是单齿配体,这样就形成了6个配位键;A:[Co(NH3)4(CO3)]+ 配离子中有4个氨为配体,形成4个配位键,因此CO32-离子必须是双齿配体,这样就形成了4个配位键,如果CO32-离子是单齿配体,那么配离子的配位数为5,这与题意不符。 4. 下列分子或者离子的中心原子发生了dsp2杂化的是 A. BF3 B. [Zn(NH3)4]2+ (μ = 0 ) C. [Ni(CN)4]2-(μ = 0 ) D. 【C】A:BF3分子为正三角形,中心原子B发生sp2杂化;[Zn(NH3)4]2+ (μ = 0 )的配位数为4,中心原子提供4个杂化空轨道,由于Zn2+离子的价层电子排布为3d10,d轨道已经全部排满电子,因此只会发生sp3杂化,形成四个杂化轨道;D:NH4+离子是正面体结构,因此中心原子N原子发生了sp3杂化;C:[Ni(CN)4]2-(μ = 0 )的配位数为4,中心原子提供4个杂

相关文档
最新文档