小型无人机实时仿真系统设计研究

小型无人机实时仿真系统设计研究
小型无人机实时仿真系统设计研究

小型无人机实时仿真系统设计研究

选择了基于MATLAB的仿真设计平台,建立了无人机系统六自由度数学模型,构建了基于xPC Target工作模式的无人机实时仿真系统。无人机实时仿真技术可有效解决飞控系统设计验证问题,大大降低无人机研制风险和试验费用。

标签:MATLAB;小型无人机;实时仿真

1 无人机系统六自由度数学模型的建立

根据无人机所受的力和力矩,以及无人机的重心、转动惯量等,由动力学和运动学方程即可求取无人机的六自由度运动方程。具体为:

x=Fx/m+Vyωz-Vzωy

y=Fy/m+Vzωx-Vxωz

z=Fz/m+Vxωy-Vyωx

x=[L-(Iz-Iy)ωyωz]/Ix

y=[N-(Ix-Iz)ωzωx]/Iy

z=[M-(Iy-Iz)ωxωy]/Iz

=ωysinγ+ωzcosγ

=ωx-tanθ(ωycosγ-ωzsinγ)

=(ωycosγ-ωzsinγ)/cosθ

=Vxsinθ+Vycosθcosγ-Vzcosθsinγ

=Vxcosψcosθ+Vy(sinψsinγ-cosψsinθcosγ)+Vz(sinφcosγ+cosψsinθsinγ)

=-V xsinφcosθ+Vy(cosψsinγ+sinθsinγ)+Vz(cosψcosγ-sinψsinθsinγ)

式中,[V,α,β,ωx,ωy,ωz,θγψ,x,H,z]T分别表示空速、迎角、侧滑角、滚转/偏航/俯仰角速率、俯仰角、滚转角、偏航角、纵向位移、高度、侧向位移。

2 无人机实时仿真系统

2.1 硬件系统

无人机设计手册及主要技术 内容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等内容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。 适用人群 本手册是国内第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论著150多篇。先后入选国家级“新世纪百千万人

才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀人才支持计划”,获得“ 国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“陕西省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。 无人机相关GJB标准-融融网 gjb 8265-2014 无人机机载电子测量设备通用规范 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规范 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规范 gjb 5433-2005 无人机系统通用要求 gjb 2347-1995 无人机通用规范 gjb 6724-2009 通信干扰无人机通用规范 gjb 6703-2009 无人机测控系统通用要求 gjb 2018-1994 无人机发射系统通用要求 无人机主要技术 一、动力技术 续航能力是目前制约无人机发展的重大障碍,业内人士也普遍认为消费级多旋翼续航时间基本维持在20min左右,很是鸡肋。逼得用户外出飞行不得不携带多块电池备用,造成使用操作的诸多不便,为此有诸多企业在2016年里做出了新的尝试。

无人机喷洒农药控制系统设计 陈爱国 (泰州学院,江苏泰州225300) 摘 要:农药喷洒采用无人机技术能减少环境污染、提高喷洒效率。现对无人机的控制量进行重点设计,使无人机能够精确跟踪无线指令,满足现代农业对农药喷洒的需求。 关键词:多旋翼无人机;农药喷洒;控制系统;设计 0 引言 我国是农业大国,其农药喷洒主要由人工完成,这种方式 已经严重威胁到工作人员的身心健康,且对农药的利用率低。无人驾驶飞机UAV(UnmannedAerialVehicle)是近年来发展比较快、在很多领域都有应用的一种新技术装备,在农业生产中使用多旋翼无人机技术进行农药喷洒作业有独特的优点,比如作业高度低、定点定向喷洒、解放人力、效率高、维修成本低等,特别是旋翼产生的涡流,可以使农药喷雾更好地附着在农作物上,提高农药防治病虫害的效率。 1 总体设计 无人机结构简单 、维修方便,其控制系统一般采用模块化设计,总体结构如图1所示。 图1 系统组成框图 多旋翼无人机的结构比较复杂,它需控制6个自由度,需 要利用精度高的传感器和精确的姿态数据。与无人机通讯采用无线方式,主要控制旋翼电机,控制电机的信号一般采用PWM波形即可,输出给电子调速器。 2 硬件设计 硬件的选择较为关键,在系统设计时需充分考虑微处理器的数据处理精度和浮点运算能力、传感器型号、各类芯片级联电平的匹配等问题。比如微处理器采用STM32F427VIT6,集成加速度和三轴陀螺仪的MPU6000芯片,电子罗盘采用HMC5843芯片,气压传感器采用MS5611芯片。在无线通讯时,直接采用PPM(PulsePositionModulation)方式对控制系统进行信号的控制,为了更好地控制无人机姿态,还需采用超声波测距模块,用来锁定无人机的高度。 硬件系统结构设计如图2所示,无人机运行时,旋翼电机产生的电流较大,且无人机姿势不断变化,其控制电流随之变化,会产生电磁干扰,造成通讯控制信号出错, 特别是超声波测距模块与控制芯片不能直接级联,需要进行电平转换, 如图3所示。 图2 硬件系统结构图 图3 电平转换电路 为了防止旋翼电机在姿态变化时,反向电压通过电子调速 器反馈给微处理器,可能造成电压过大烧毁器件,需要加接隔离电路。同时为了有效控制电机转速,采用高频PWM 信号控制电机转速,更需要隔离电路,如图4所示。 图4 隔离电路 3 软件设计 软件程序设计,必须满足无人机喷洒各种控制要求,主要 包含三大部分:第一,需要考虑无人机与遥控器之间的通讯联系,特别是各种姿态控制量发生变化时,无人机能及时响应,若发生通讯异常,一般采用中断程序来判断,执行中断后,无人机能执行既定程序并报警;第二,输入信号捕获,(下转第115页)

实用标准文案 监管场所无人机系统 建设方案 北京创羿兴晟科技发展有限公司 2018.9

目录 目录 目录 (1) 一、概述 (2) 1.1、背景 (2) 1.2、应用 (2) 1.3、方案依据标准规范 (3) 二、系统介绍 (5) 2.1、系统功能 (5) 2.2、功能及产品介绍 (5) 2.2.1、六旋翼无人机主机 (5) 2.2.2、航拍摄像 (12) 2.2.3、空中抛投 (25) 2.2.4、通信中继..................................... 错误!未定义书签。 2.3、无人机综合管控指挥平台 (29) 2.3.1、平台内容 (30) 2.3.2、软件架构 (31) 2.3.3、通信架构 (31) 2.3.4、客户端界面 (32)

一、概述 1.1、背景 无人机产业发展至今,已经成长为了一个完整的体系,在这个体系之下,无人机从功能上细分到了各个领域,除了航拍、植保等功用之外,无人机也在勘察、安检等领域拥有不错的发挥,其中安全巡逻无人机已经成为无人机市场中的一匹迅速崛起的黑马,并且还在不断地快速成长。运用高科技手段对监狱工作提供技术支持已刻不容缓。作为高度戒备监狱,监狱押犯规模大、在押罪犯刑期长、犯群结构复杂,为积极整合资源、推动高新技术应用、完善综合保障机制、增强突发事件应对能力。 无人机可完成包括巡航、实时监控、取证拍摄等一体化飞行及监控任务,并能将高清视频或高像素照片实时传输到执法终端。今后,它不仅会用于监管设施及周边区域的隐患排查,维护监管安全,为监狱指挥中心作出实时部署提供第一手资料;它还对开展隐蔽督察、视频督察、掌握狱情灾情和处置突发事件发挥重要作用。

无人机飞行路线控制系统设计 由于无人机是通过无线遥控的方式完成自动飞行和执行各种任务,具有安全零伤亡、低能耗、重复利用率高、控制方便等优点,因此得到了各个国家、各行各业的高度重视和广泛应用。尤其以美国为代表,无论是在军事、民用、环境保护还是科学研究中,都将无人机的使用发挥到淋漓尽致,其拥有全球最先进的“捕食者”和“全球鹰”战斗无人机、监测鸟类的“大乌鸦”无人机、民用用途的“伊哈纳”无人机等等。我国在无人机研制方面也取得了一定的成就,拥有技术卓越的“翔龙”和“暗箭”高空高速无人侦查机、多用途的“黔中”无人机、探测海洋的“天骄”无人机、中继通讯的“蜜蜂”无人机等等。在未来,随着现代化工业技术、信息技术、自动化技术、航天技术等高新技术的迅速发展,无人机技术将日趋成熟,性能日益完善,为此将拥有更为广阔的应用前景。为确保无人机能够有效地完成各种飞行任务,研发者开发了各种技术方式的飞行控制系统,完成对无人机的起飞、飞行控制、着陆以及相应目标任务等操作的控制。飞行路线控制是飞行控制系统中最基础也是最核心的功能控制部分,其它所有的飞行任务控制都是飞行路线控制的基础之上实现。目前对于无人机飞行路线的控制已有各种各样方式的系统,但大多数系统都存在一定缺陷,如有些系统操作过于繁杂,不够智能化;有些系统只能在视距范围遥 控无人机,严重限制了无人机的使用;有些系统过于专用化,不能适用于大多数类型的无人机;有些比较完善的系统,造价又过于昂贵,等等一系列问题。针对以上存在的这些问题,本课题提出了一种成本低、

遥控距离远、智能化、高效化、适用性广的无人机飞行路线控制系统设计方案。该系统方案包括两大部分,一部分是操作人员所处的地面监控系统,一部分是无人机端的受控系统,实现的机制主要是无人机不断地将自身的定位信息实时地传送给地面控制系统,地面控制系统将无人机位置信息通过电子地图可视化显示给操作人员,操作人员结合本次飞行任务,采用灵活的鼠标绘制方式在地图上绘制预定的飞行路线,地面控制系统对绘制路线进行自动处理生成可用的路线控制信息帧并发送给无人机受控系统,无人机受控系统接收到位置控制信息帧,不断结合实时的方位信息得到飞行控制信息,从而遥控无人机按照预定路线飞行。此外,为方便用户以后对历史数据的查看,以分析总结得到一些有价值的信息,地面监控系统还包含了对预定路线和无人机历史飞行路线的存储、查询和在地图中回放功能。基于GIS技术的地面监控系统的具体实现是在Windows操作系统上,采用Visual Basic作为系统开发环境并结合MSComm串口通信技术、Mapx二次开发组件技术、Winsock网络接口技术以及Access数据库技术完成软件设计,实现与无人机受控系统的无线通信、GIS系统操作和监控、历史数据存储和重现等,其中实验区域的电子地图采用Mapinfo Professional开发软件绘制完成,并创新性地设计并绘制了画面简洁的带高层信息的二点三维矢量地图,而对于绘制路线的优化和提取处理采用了垂距比值法和最小R值法。无人机端使用BDS-2/GPS双卫星系统对无人机实时位置进行高精度的定位,采用双串口单片机进行运算控制处理,实时的飞行控制信息采用了几何空间算法得到,另外采

中国民用航空局飞行标准司 编号:AC-91-FS-2015-XX 咨询通告下发日期:2015年XX月XX日 编制部门:FS

目录 1.目的 (3) 2.适用范围及分类 (3) 3.定义 (4) 4.民用无人机机长的职责和权限 (7) 5.民用无人机驾驶员 (8) 6.民用无人机使用说明书 (8) 7.禁止粗心或鲁莽的操作 (8) 8.摄入酒精和药物的限制 (8) 9.飞行前准备 (9) 10.限制区域 (9) 11.视距内运行(VLOS) (10) 12.视距外运行(BVLOS) (10) 13.民用无人机运行的仪表、设备和标识要求 (11) 14.管理方式 (11) 15.无人机云提供商须具备的条件 (13) 16.植保无人机运行要求 (14) 17.无人飞艇运行要求 (16) 18.废止和生效 (16)

1.目的 近年来,民用无人机的生产和应用在国内外蓬勃发展,特别是低空、慢速、轻小型无人机数量快速增加,占到民用无人机的绝大多数。为了规范轻小型民用无人机的运行,依据CCAR-91部,发布本咨询通告。 2.适用范围及分类 本咨询通告适用于轻小型民用无人机运行管理。其涵盖范围包括: 2.1空机重量小于等于116千克、起飞全重小于150千克的无人机,且动能不大于95千焦,校正空速不超过100千米每小时; 2.2植保类无人机; 2.3充气体积在4600立方米以下的无人飞艇; 2.4本咨询通告适用于除I类以外的所有轻小型无人机,某些特定条款中仅适用于特定类别无人机的内容将在条款中另行说明。 2.5 轻小型无人机运行管理分类:

空机重量(千克)0-11-7 7-15 15-116 起飞全重(千克)0-1.5 1.5-15 15-25 25-150 分类 I II III IV 植保无人机V 无人飞艇VI 超视距运行I、II类无人机VII 注①:当按照空机重量和起飞全重分类不同时,优先按空机重量分类。 注②:VII类无人机,不包括100米以内超视距运行。 注③:地方政府对于I、VII类无人机重量另有规定的,以地方政府的具体要求为准。 3.定义 3.1无人机(UA: Unmanned Aircraft),是一架由控制站管理(包括远程操纵或自主飞行)的航空器,也称远程驾驶航空器(RPA: Remotely Piloted Aircraft)。 3.2无人机系统(UAS: Unmanned Aircraft System),也称远程驾驶航空器系统(RPAS: Remotely Piloted Aircraft Systems),是指由无人机、相关控制站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统。 3.3无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵无人机的人。

中国民用航空局飞行标准司 编号:AC-61-FS-2013-20 咨询通告下发日期:2013年 11月18日 编制部门:FS 批准人:万向东民用无人驾驶航空器系统驾驶员管理暂行规定 1、目的 近年来随着技术进步,民用无人驾驶航空器(也称遥控驾驶航空器,以下简称无人机)的生产和应用在国内外得到了蓬勃发展,其遥控驾驶人员的种类和数量也在快速增加。面对这样的情况,局方有必要在不妨碍民用无人机多元发展的前提下,加强对民用无人机驾驶人员的规范管理,促进民用无人机产业的健康发展。 由于民用无人机在全球范围的发展速度非常快,国际民航组织已经开始为无人机及其相关系统制定标准和建议措施(SARPs)、空中航行服务程序(PANS)和指导材料的任务。这些标准和建议措施预计将在未来几年成熟,因此多个国家推出了临时性管理规定。鉴于此,本咨询通告也属于临时性管理规定,针对目前出现的无人机及其系统的驾驶员实施指导性管理,并将根据行业发展情况随时修订,最终目的是按照国际民航组织的标准

建立我国完善的民用无人机驾驶员监管措施。 2、适用范围 本咨询通告用于民用无人机系统驾驶人员的资质管理。其涵盖范围包括但不限于: (1)无机载驾驶人员的航空器; (2)有机载驾驶人员的航空器,但该航空器可由地面人员或母机人员实施完全飞行控制。 3、法规解释 无论驾驶员是否位于地面或航空器上,无人机系统和驾驶员必须符合民航法规在相应章节中的要求。由于无人机系统中可能没有机载驾驶员,原有法规有关驾驶员部分章节已不能适用,本文件对相关内容进行说明。 4、定义 本咨询通告使用的术语定义: (1)无人驾驶航空器(UA: Unmanned Aircraft),是一架由遥控站管理(包括远程操纵或自主飞行)的航空器,也称遥控驾驶航空器(RPA:Remotely Piloted Aircraft)。 (2)无人机系统(UAS: Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS: Remotely Piloted Aircraft Systems),是指一架无人机、相关的遥控站、所需的指令与控制

第一章 飞行原理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学, 请跳过这一章直接往下看。 第一节 速度与加速度 速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺〔公尺 /秒〕 0 加速度即速度的改变率, 我们常用的单位是〔公尺 /秒/秒〕,如果加速度是负数, 则代表 减速。 第一定律:除非受到外来的作用力,否则物体的速度 (V )会保持不变。 没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合 力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降, 这时升力与重力的合力仍 是零,升力并未减少,否则飞机会越掉越快。 第二定律:某质量为 m 的物体的动量(P = mv )变化率是正比于外加力 F 并且发生在力的方向 上。 此即着名的 F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机 起飞滑行时引擎推力大于阻力, 于是产生向前的加速度,速度越来越快阻力也越来越大, 引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。 第三定律:作用力与反作用力是数值相等且方向相反。 第三节 力的平衡 如果不平衡就是合力不为零,依牛顿第二定律就会产生加 X 、Y 、Z 三个轴力的平衡及绕 X 、Y 、Z 三个轴弯矩的平衡。 轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻 力、推力〔如图1-1〕,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空 气产生,我们可以把力分解为两个方向的力,称 X 及y 方向〔当然还有一个z 方向,但对飞 机不是很重要,除非是在转弯中〕,飞机等速直线飞行时X 方向阻力与推力大小相同方向相反, 故X 方向合力为零,飞机速度不变,y 方向升力与重力大小相同方向相反,故 y 方向合力亦为 第二节 顿三大运动定律 迟早 你踢门一脚,你的脚也会痛, 因为门也对你施了一个相同大小的力 作用于飞机的力要刚好平衡, 速度,为了分析方便我们把力分为

1、空中交通管制单位为飞行中的民用航空器提供的空中交通服务中含有(1 分) A.飞行情报服务B.机场保障服务C.导航服务 2、空域管理的具体办法由________制定(1 分) A.民用航空局B.中央军事委员会C.国务院和中央军事委员会 3、空域通常划分为①机场飞行空域②航路.航线③空中禁区.空中限制区和空中危险区 ________(1 分) A.①②B.①③C.①②③ 4、机场标高指着陆区______的标高。(1 分)p143 A.最高点B.最低点C.平均海拔 5、______主要用于飞行区域内重点目标的标注,如建筑物、禁飞区、人口密集区等易影响飞行安全的区域(1 分) A.场地标注B.任务区域标注C.警示标注 6、飞机过载和载荷因子是同一概念________(1 分) A.是B.不是C.不确定 过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,载荷因子:是飞行时的作用于飞机的全部负荷和飞机总重。 7、无人机特殊飞行许可颁发前,由局方检察官或局方认证人员或__________进行检查以确定位于预期的飞行是安全的。(1 分) A.适当认证修理站 B.经验丰富的无人机飞行员 C.经验丰富的有人机飞行员 8、无人机系统无线电资源的使用__________局方无线电管理部门的许可证。(1 分)A.需要B.不需要C.一般情况下不需要 9、关于粗猛着陆描述正确的是________(1 分) A.粗猛着陆就是使飞机接地的动作太快 B.不按规定的着陆高度、速度及接地角,导致受地面撞击力超过规定 C.粗猛着陆时前轮先接地 10、谁对民用无人驾驶航空器系统的维护负责(1 分) A.签派B.机长C.运行人 11、可能需要处置的危机情况不包括:______ (1 分) A.动力装置故障B.任务设备故障C.舵面故障 12、活塞发动机在慢车状态下工作时间过长,易带来的主要危害是________(1 分) A.电嘴挂油积炭B.滑油消耗量过大C.气缸头温度过高

无人机的城市可视化管理系统技术方案书

目录 1. 项目背景 ...................................... 错误!未定义书签。 2. 系统结构 ...................................... 错误!未定义书签。 硬件系统 ...................................... 错误!未定义书签。 巡检无人机................................ 错误!未定义书签。 软件系统 (6) 账户注册、登录............................ 错误!未定义书签。 3. 售后及运维 .................................... 错误!未定义书签。 4. 相关案例 ...................................... 错误!未定义书签。 5. 公司介绍 ...................................... 错误!未定义书签。

1.项目背景 随着城市管理精细化程度的提升,要求我们在城市日常管理中的方法不断推陈出新,探索新的高效的管理手段是大势所需。无人机作为一项空中视野的管理工具,在城市管理中有不可或缺的地位。无人机可以搭载采集数据所需的设备,在特殊情况下进行空中数据采集;其在采集过程中的图像和视频可以实时回传到管理中心,使得地面控制人员实时掌握信息,并根据掌握的信息控制和调整无人机的飞行状态和路径;无人机”在整治脏乱差、监督占道经营、流动设摊、高空违建、建筑工地管理、四位一体巡查河道等取证方面优势更明显,通过航拍,执法死角一览无遗,提高了市容环境综合整治效率。 但目前城市管理部门在无人机的使用上没有很好的管理过程,不论是采购的无人品牌型号不一,使用的能力高低不等,使用的模式和目标也没有统一的合理的规划,没有引入先进科技对无人机进行科学管控,导致无人机在城市管理上没有得到很好的利用。只有通过规范统一的进行无人机采购,使用培训,才能建立良好的无人机操控基础;引入先进技术,才能精准控制无人机进行作业;对功能模块进行标准配备,才能更科学地进行高效执行和集中管理。

前言 森林是人类社会极其重要的自然资源,是人类生存与发展的基础。保护好森林资源是人类自 身发展的需要。森林是陆地上最为重要的生态系统,能够防止风沙、净化空气、气候条件、 涵养水源、保持水土、维持大气平衡,保护着地球的生态平衡,是国家及其重要的资源。保 护森林资源,改善生态环境,是生态建设的主要目标,也是林业建设的一项重要内容,然而 林业经常存在火灾、病害、人为砍伐等隐患问题。 传统人工巡护方式,劳动强度大,效率低,且信息获取不准确,而卫星对森林资源的信息获取,由于获取周期长,时效性差,无法满足实时监控的需求。传统载人飞机改善了时效性差、人工巡护的问题,基本满足实时监测的需求,但在森林火灾等环境恶劣的环境下,飞行安全 将会受到严重威胁,且其受环境、空域等影响较大,维护成本较高,不能满足林业的日常化 管理。寻求一门新的高科技手段应用到森林资源监测、森林防火及林业执法中,已成为林业 管理的一项迫在眉睫、亟待解决的重大课题。 单位所遇到的问题: 对森林巡视工作的管理目标是能降低成本、提高工作效率以及管理水平。在目前阶段巡视工 作的主要管理难点有三个: ?个别林区分布原因,导致巡视工作难度大,巡视人员的巡视工作存在一定的危险性。 ?无法与现有巡护管理系统实现地上空中全方位监控管理。 ?现有无人机操作复杂,需要人员控制,巡视效果不佳。 为此我公司研发了一套针对于林业单位的《无人机智能巡护管理系统》,进而有效的利用无 人机,实现无人机自动巡航、悬停拍照等功能,为林业单位实现无人机巡护的智能化、人性 化管理。 建设目的 1. 与现有人工巡护方式结合,提高巡护工作效率,降低人工成本 2. 巡护区域无盲区,对管网工作实现全覆盖管理。 3. 实现实时环境监测,隐患快速上报。 4. 实现隐患点精准锁定,智能分析,报警推送。 5. 实现无人机自动巡护,自动取证,自动分析,自动上报,自动起返航。 6. 实现多架无人机协同巡护,低电量任务自动转移,保证巡护工作的顺利完成。 7. 构建大数据分析系统,实现多数据综合分析汇总表,为企业生产运营以及发展部署提供相 应的参考依据 工作原理描述 无人机智能巡护管理系统主要是利用无人机高清摄像头实现巡护现场的定点取证,现场监测 以及隐患分析等工作,与传统无人机不同的时,该系统的设计理念为全自动运行,定期给无 人机制定相应的巡护任务,无人机可实现自动起飞,自动返航,关键点自动取证环境自动等 功能,实现了真正的“无人操作”无人机。

www?ele169?com | 27实验研究 0 引言 多旋翼无人机是集合多项现代高新科技的成果,无人机 行业的蓬勃发展是中国崛起、中国航空产业崛起的重要体现,多旋翼无人机具有系统安全性好、可靠性高、负载能力强等特点,具有非常广阔的应用前景。多旋翼无人机的作业方式相比于传统的人工作业方式,大大提高了作业效率、降低作业成本与风险。在无线通信技术与图像处理技术快速发 展的背景下,多旋翼无人机逐渐向智能化的方向发展,另外, 独特的机械结构使多旋翼无人机更加灵活。随着无人机在人们生活中的进一步普及,无人机故障的影响也会越来越大,在大多数故障中,主要是控制器故障后果最为严重,所以飞行控制器的结构健康管理始终受到人们高度重视。1 多旋翼无人机任务需求分析 多旋翼无人机飞行控制系统主要服务于公安消防、公共 安全、勘察搜救等领域,对无人机的飞行安全、可靠性等要求较高,针对多旋翼无人机所应用的特殊场合,其飞行控制 系统需要具备以下性能指标:首先要具备机载飞控系统与地面站两部分,由机载飞控 系统来进行控制律的运算,通过电机控制指令对地面站发送的信息进行接收。地面站会显示无人机当前的飞行状态以及 主控件的基本性能。其次要具有良好的传感器以及多种飞行模式,传感器主要对无人机飞行姿态、高度、位置等信息进行采集,通过机载计算机对相应数据进行处理,多旋翼无人机存在多种飞行模式,需要根据实际情况选择最佳飞行模 式。最后,多旋翼无人机飞行控制系统要具有多种读取遥控 信号的方式,实现多种多旋翼无人机的飞行控制。还要具有在线调整及保存相关的控制参数功能、在异常情况下应急处理功能等。根据多旋翼无人机飞控系统的要求指标,提出了飞控系统具体的设计要求: ■1.1 飞行控制处理器 飞行控制处理器需要对传感数据进行收集并处理,对控 制律进行运算,保持与地面站之间通信畅通。飞行控制处理器只有缩短调节电机转速的指令周期,才能更好的发挥控制性能。由于飞行控制处理器面临的任务众多,所以要求飞控处理器处理速度快、计算能力强。飞控处理器必须快速对传感器数据进行读取,第一时间与无线通信设备进行连接,实现与地面站之间的通信,另外飞控处理器必须具备存储空间大、低功耗、体积小等特点。 ■1.2 传感器传感器需要选择精度较高的传感器以及通信距离较远的无线通信设备,满足飞控系统的性能指标,确保传感器使用简单、通信接口通用。 ■1.3 软件开发多旋翼无人机的飞控软件系统要有很强的可靠性与稳定性,具备通信链路异常状况下的紧急处理,具备相应的备份程序,避免无人机在飞行过程中发生故障,另外地面站要具备故障报警功能。飞行控制系统的采样频率不易过小以免出现控制输出调节量滞后造成严重后果。2 多旋翼无人机飞行控制系统总体架构设计多旋翼无人机飞行控制系统总体架构由机载部分与地面站部分组成,机载部分主要由飞控处理模块、传感器模块、电源模块、执行机构构成。地面部分与机载部分之间的信息交互 主要通过无线通信模块来完成。飞控系统总体架构如图1所示。图1 飞控系统总体架构 ■2.1 飞控系统硬件平台设计当前的飞行控制系统控制芯片多采用ARM、DSP 等高 速处理器,单处理器的使用会抑制控制系统的进一步拓展,多旋翼无人机飞行控制系统设计研究张建学 (中国民航飞行学院计算机学院,四川广汉,618307)摘要:多旋翼无人机具有优良的操作性能、维护简单、成本较低等特点,已经成为微小型无人机的主流,获得了广大的消费群体。飞控系统作为无人机的核心技术,始终是无人机学术与工程领域研究的热点。本文以多旋翼无人机为研究对象,根据多旋翼无人机的结构特点,对飞行控制系统进行设计与研究,从硬件原理与软件原理对多旋翼无人机飞行控制系统的构建过程进行详细介绍。关键词:多旋翼;无人机;飞控系统

无人机编程技术及智能系统设计 1.无人机编程技术 1.1.无人机编程技术综述 无人机本身是个非常综合性的系统。就基本的核心的飞行控制部分来说,一般包括内环和外环。内环负责控制飞机的姿态,外环负责控制飞机在三维空间的运动轨迹。高端的无人机,依靠高精度的加速度计和激光陀螺等先进的传感器(现在流行的都是基于捷连惯导而不是平台式),计算维持飞机的姿态。低端的型号则用一些MEMS器件来做姿态估算。但它们的数学原理基本是相同的。具体的算法根据硬件平台的能力,可能采用离散余弦矩阵/四元数/双子样/多子样. 高端的无人机,AHRS/IMU采用的基本都是民航或者军用的著名产品。例如全球鹰的利顿LN-100G/LN-200等。这些系统价格昂贵但精密,内部往往是零锁激光陀螺之类。例如LN-100G的GPS-INS组合,即使丢失GPS,靠惯性器件漂移仍可以控制在120m/min。低端的无人机就没那么精密讲究了,一般都依赖GPS等定位系统来进行外环控制,内环用MEMS陀螺和加速度计进行姿态估算。 如果把无人机看成一个完整的系统,那么还需要很多其他支持,例如任务规划,地面跟踪等等.进行无人机编程,得看你具体是指哪方面。如果是飞控系统,你得需要比较扎实的数学知识,对各种矩阵运算/控制率什么的有深刻的了解。如果只是希望现有的带飞控的平台去做一些任务,那么需要根据具体的平台来考虑。有些平台提供了任务编辑器,甚至更灵活的任务脚本。 1.2.无人机编程模块分类: 模块分类最粗的分法就是两个模块,一个模块负责飞行,维持飞机航线和姿态,以及和地面控制的通信,另一个模块就是功能模块,因为无人机总是要完成一些任务,具有一定功能的,如果再细分的话飞行模块里还有姿态控制,航线控制,GPS定位,电源或者燃料的管理等等。功能那一部分就看无人机要完成的任务了。如果说编程的话任何一个部分都可以通过程序自动划实现的。 1.硬件接口编程:如控制器和各传感器之间 2.控制算法程序实现,控制姿态调整的算法,编队飞行的算法,自主飞行智能算法等等。这些算法需要在主控器上通过机器语言(程序)实现。 3.传感器数据处理。如陀螺仪的角速度,强磁计的偏航信息,加速度计

无人机概述及系统组成 无人机( UAV)的定义 无人机驾驶航空器(UA: Unmanned Aircraft ),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭 载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统( UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的 型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任 务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航 空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航 空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人 工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖

毕业设计(论文)开题报告
题目:基于 STM32 的微型四旋翼无人机控制系统设计—软件设计
院 (系) 专 班 姓 学 导
电子信息工程学院
业电气工程及其自动化 级 名 号 师
2017 年 3 月 9 日

1. 毕业设计(论文)综述(题目背景、国内外相关研究情况及研究意义) 1.1 题目背景 微型无人机飞行器(MUAV,Mirco Unmanned Aerial Vehicle)是一种内置 控制系统,可以远程操控实现自主飞行的设备。其类型包括固定翼微型飞行器、 仿生扑翼微型飞行器及旋翼式微型飞行器。由于它具有隐蔽性强,低成本、低损 耗、零伤亡、高机动性等优点,使其迅速从军事领域拓宽到农业、民用和科研等 领域。在军事领域,因为具有零伤亡,战场生存能力强等特点,非常适合执行高 危险和人类无法参与的任务。在民用上,他也可以代替载人机完成一些任务,比 如救援搜索,灾情勘探,气象监测等。 MUAV 飞行性能主要包括,起飞着陆性能,姿态变换性能。而这些性能的优劣 取决于核心部件--飞行控制系统。随着数字处理器处理速度和能力的不断提高, 设计先进的控制系统已经是大势所趋。先进的飞行控制系统使微型无人机能在没 有外界干预的情况下自主飞行,完成预先规定的任务。由于微型无人机身有限的 负载能力和体积限制, 现在的一些导航系统和飞行控制系统很难直接在微型无人 机上使用,所以对微型无人机的飞行控制系统的研究意义重大! 1.2 国内外相关研究情况 国外对于四旋翼的研究非常的活跃,加拿大的雷克海德大学里面的相关研究 人员很早就证明了采用四旋翼设计思路能够实现飞行器的稳定飞行,澳大利亚的 卧龙岗大学相关研究人员已经对四旋翼有了精确的模型建立。各国研究人员也 以此引发了一个四旋翼的研究热潮。下面对部分研究机构所设计的四旋翼做一个 介绍 1)Microdrones MD4-1000 四旋翼无人飞行
MD4-1000 四旋翼无人机是由德国 MICRODRONES 公司生产, 可垂直起降自动驾 驶。机体云台都是采用特殊的碳纤维材料,机身重量轻、强度高,机臂可折叠, 方便运输。姿态、高度以及航向参考系统集成了加速度计、陀螺仪、电子罗盘、 气压高度计、温度计、湿度计等高精度传感器,相比 MD4-200,它的任务载荷大, 抗风能力强,续航时间更长,姿态控制更加稳定。

无人机航测管理信息系统研究 发表时间:2019-12-12T15:24:36.310Z 来源:《工程管理前沿》2019年22期作者:李俊霖 [导读] 随着无人机技术的快速发展,促进了测绘领域的快速发展,推动了测绘技术向现代化、智能化发展的进程摘要:随着无人机技术的快速发展,促进了测绘领域的快速发展,推动了测绘技术向现代化、智能化发展的进程。无人机航测技术已广泛的应用于测绘领域中,如地形测量、位置测量和交通道路等方面。与传统的测绘技术相比而言,无人机航测技术具有明显的优势,因此,在测绘领域得到了广泛的应用和快速的发展。 关键词:无人机;航测管理;信息系统;研究 1无人机航测技术概述 (1)无人机航测技术的原理。无人机航测是以无人机为载体,将数码相机等小型航拍设备装载到无人机上,通过操作无人机,使其按照预先设定好的航线进行飞行,并由航拍设备对待测区域进行数据信息和影像信息收集的一种技术。该种技术是结合了多种现代化技术和手段,具有效率高、成本低、操作灵活等优点,在各个领域得到了广泛的应用。特别是在测绘领域,无人机航测技术的应用能够获得准确、可靠的数据和影像信息,为工程测绘、建设提供了重要依据,有利于工程项目的建设。(2)无人机航测技术的优势。就作业周期来说,无人机的飞行高度在一定程度上决定着作业周期的长短。无人机的飞行高度通常控制在1000m以内,此飞行高度对空域要求不高,在一定程度上提高了无人机飞行的效率,缩短了无人机的作业周期,为后续的工作开展提供充裕的时间。(3)采集的数据信息准确度高。与传统的人机航测相比,无人机航测可以到达一些环境复杂、恶劣的地区进行探测,并且能够采用分辨率较高的摄像头,对测区进行航摄,极大程度上提高了工作质量和增加了工作效果,从而获得高精度的数据信息,进而为工程制定施工方案提供支持。 2无人机航测技术的优点分析 2.1具有高的影像数据分辨率 无人机航测技术是结合无人机技术、GPS定位技术、摄影技术等新型测绘技术,是立足于低空飞行,借助高分辨率的摄影技术实现的。就目前的无人机航测技术来说,在无人机航测过程中所获得的影像数据分辨率可达厘米级。与传统的测绘技术相比,无人机航测技术具有更为宽泛的应用,可是弥补传统测绘技术中人工无法到达的地方,且所获得的数据较传统技术获得的更为准确,较低或消除了由测绘人员操作而存在的误差。因此,无人机航测技术被广泛的应用于矿山地形测量、大面积地形测量等方面。 2.2具有高的数据获取效率 传统的测绘技术所需要的人力、物力资源十分巨大,且所获得的测绘数据周期过长,降低了测量的社会经济效益。无人机航测技术是以现代化的遥测遥控技术、GPS定位技术、低空飞行技术和数据通信技术等为基础发展起来的新兴技术,该技术不需用繁杂的人工操作,具有灵活便捷、采集数据精度高和使用范围大的优点,提高了单位时间内数据采集效率,降低了测绘成本,取得了更高的社会经济效益,具有广阔的应用前景。 2.3具有较强的社会经济效益 无人机航测技术的使用成本较低,且该技术融合了现代化的网络技术、通讯技术、计算机技术等,因此,在无人机航测技术的应用过程中更为便捷,能够实现高效获取航拍数据的目的,导致无人机航测技术的社会经济效益明显提高。此外,无人机航测技术在低空飞行过程中,可以获取较大范围内的航拍影像数据,极为显著的缩短了测绘周期,不仅提供了更高精度的测绘成果,更能节省大量的测绘时间,为现代测绘技术的快速发展奠定了基础。 3无人机航测技术在现代测绘中的应用 无论是无人机航测技术应用于地质灾害防治领域还是地形测绘方面,都是通过航空影像而实现的,其早阶段的操作流程也基本相同。基于此,本文以无人机航测技术在矿山测绘中的应用为例(图1),简要的分析该技术的应用状况。 3.1航测项目中航线的设计和地面控制在使用无人机航测技术过程中,先要充分分析测绘范围的实际情况,如矿山地形环境、面积等状

无人机仿真平台及虚拟测试解决方案 概述 近年来无人机在国防和民用领域发展迅速。无人机操控人员的训练、无人 机仿真测试的需求的越来越大。为此,本方案搭建了无人机作战仿真推演平台,该平台能够通过错综复杂的战场仿真来实现进行无人机驾驶员的操控训练,无 人机的智能算法测试,无人机作战性能测试等功能。同时具有功能完善的人机 交互终端和三维视景显示功能。方案介绍1.1 系统架构如下图所示,无人平台仿真平台主要包括四部分内容:作战想定及推演系统、地面站系统、装备仿 真系统(包括无人机系统、有人机系统和其他武器装备系统)、三维视景系统。图中括号内为各子系统中有代表性的货架产品、定制模型和相关硬件平台。系 统各个部分可以通过实时网络进行数据传输。无人装备仿真平台系统组成1.2 系统功能1.2.1 作战想定生成及推演系统作战想定生成及推演系统以Presagis 公司战场仿真推演平台软件STAGE 为核心,可生成作战环境、集成武器装备 模型、植入无人机智能算法、编辑作战想定、完成战场推演功能。1.2.1.1 作战想定生成系统作战想定生成系统包括作战兵力生成和作战任务部署两个部分。 作战兵力生成:主要完成战场中兵力的生成和部署,为整个测试环境提供敌、我、临、指四方面的兵力部署情况以及传感器、武器携带情况,主要由 STAGE 的兵力模型编辑部分完成。?作战兵力设置:STAGE 提供大量作战实体的数学模型,并可以根据需要对这些参数进行设置,自定义武器装备。如果 自带模型不能满足要求,可以接入第三方的细粒度模型或接入半实物仿真系统;?作战兵力布署:根据作战想定对作战实体进行布置。可以精确地布置实体的位置,如设置飞机的坐标、朝向等,也可以在指定区域按一定规则随机布置兵力,如地面防空导弹阵地、地面雷达阵地。

龙源期刊网 https://www.360docs.net/doc/eb18260281.html, 多旋翼无人机飞行控制系统设计与实现研究作者:明志舒黄鹏刘志强李乐蒙高凯 来源:《科技资讯》2017年第29期 摘要:随着社会的进步和国民经济的发展,现代高新科技的发展得到了前所未有的推 进,为各行业的进步和发展提供了良好的保障。近些年来出现的多旋翼无人机,是一种集合多项现代高新科技的成果,具有定点悬停功能,能够实现在现代军事、工业、农业等各个领域的应用。本文就四旋翼无人机为例,探讨了多旋翼无人机飞行控制系统的设计以及实现。 关键词:多旋翼无人机飞行控制系统设计与实现研究无人机飞行控制系统 中图分类号:V249 文献标识码:A 文章编号:1672-3791(2017)10(b)-0057-02 1 飞行控制系统的硬件设计 本文设计的飞行控制系统在硬件方面主要分为控制器、传感器、电源、执行机构和遥控接收等模块,具体论述如下。 1.1 控制器 我们利用美国德州仪器公司所研发的TMS320F28335当作控制器当中的主芯片,可以说它是当下功能最为强大的一种芯片,具备对信号加以处理的功能,而且还有嵌入式控制以及针对事件加以管理的功能。该芯片的外部接口基本原则为:将飞控系统作为基础而定。该芯片不管是在引脚数目上,还是在引脚功能方面都非常贴合飞控系统的全部要求,所以说只要针对芯片的接口加以少量地拓展就可以了。其主要的特征为:(1)利用到了哈弗总线结构。(2)其代码安全模块利用到了128位密码对Flash加以保护,保证相关寄存器在数据方面的安全。(3)TMS320F28335的应用,实现了对开发时间大幅度的节约,这主要是其利用到了目前应用比较广泛的C/C++语言。(4)1K×16 OTP ROM以及8K×16形式的Boot ROM,供给出了两个用于采样的电力,继而实现了对两个通道上信号实施的同步采集,所以有着非常高效的处理能力以及运算的精度,确保了信号所具备的时效性以及高速性。 1.2 传感器 1.2.1 陀螺仪 陀螺仪能够对检测指示器中的数据加以显示,是自动控制系统当中的一个非常重要的组成。应用的陀螺仪是MPU6050三轴形式的陀螺仪,具有16位的模拟、数字转换器,使输出模拟量实现向可输出数字量的转化。 1.2.2 加速度传感器

无人机概述及系统组成 无人机(UAV)的定义 无人机驾驶航空器(UA:Unmanned Aircraft),是一架由遥控站管理(包括远程操纵或自主飞行)、不搭载操作人员的一种动力空中飞行器,采用空气动力为飞行器提供所需的升力,能够自动飞行或远程引导;既能一次性使用也能进行回收;能够携带致命性和非致命性有效负载。 以下简称无人机。 无人机系统的定义及组成 无人机系统(UAS:Unmanned Aircraft System),也称无人驾驶航空器系统(RPAS:Remotely Piloted Aircraft System),是指一架无人机、相关的遥控站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统,无人机系统包括地面系统、飞机系统、任务载荷和无人机使用保障人员。 无人机系统驾驶员的定义 无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵飞行控制的人。 无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 无人机和航模的区别 一、定义不同 无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人驾驶飞行器。航空模型是一种重于空气的,有尺寸限制的,带有或不带有动力装置的,不能载人的航空器,就叫航空模型。 二、飞行方式不同 唯一的区别在于是否有导航飞控系统,能否实现自主飞行。通俗来说,无人机可以实现自主飞行,而航模不可以,必须由人来通过遥控器控制。也就是无人机的本身是带了“大脑”飞行,可能“大脑”受限于人工智能,没有人脑灵光。但是航模的“大脑”始终是在地面,在操纵人员的手上。 三、用途不同 无人机更偏向于军事用途或民用特种用途,而航空模型更接近于玩具。昆明劲鹰无人机专业从事航测无人机设备的设计、生产、销售、及航测航拍服务,费用低、技术强、工期短、精度高,是中国技术顶尖的航测航拍无人机设计制造及航飞服务商。

相关文档
最新文档