数学建模飞机运输问题要点

数学建模飞机运输问题要点
数学建模飞机运输问题要点

多变量有约束最优化问题

摘要

本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。

对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。

问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。

关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

一、提出问题

一个运输公司每天有100吨的航空运输能力。公司每吨收空运费250美元。除了重量的限制外,由于飞机货场容积有限,公司每天只能运50000立方英尺的货物。每天要运送的货物数量如下:

(1)求使得利润最大的每天航空运输的各种货物的吨数。

(2)计算每个约束的影子价格,解释它们的含义。

(3)公司有能力对它的一些旧的飞机进行改装来增大货运区域的空间。每架飞机的改造要花费200000美元,可以增加2000立方

英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。在这种情况下,是否值

得改装?有多少架飞机时才值得改装?

二、提出假设

假设1:飞机每天最多只能运输50000立方英尺的货物。假设2:飞机每天最多只能运:100吨货物。

假设3:货物1每天都有30吨要运。

假设4:货物2每天都有40吨要运。

假设5:货物3每天都有50吨要运。

四、符号说明

数学建模飞机运输问题

多变量有约束最优化问题 摘要 本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。 对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。 问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。 关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

数学建模大赛货物运输问题

数学建模大赛货物运输 问题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题 提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的 最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了 较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。 耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方 案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所 以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆 时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6 吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货 车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方 案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司 所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的 双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输 车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分 别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车, 另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数应如何调度

#蔬菜运输问题--数学建模

蔬菜运输问题 2012年8月22日 摘要 本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。 关键词 最短路问题 floyd算法运输问题 一、问题重述 光明市是一个人口不到15万人的小城市。根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①L⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m). ①7 ② 5 4 8 3 7 A 7 ⑼ 6 B ⑥ 6 8 5 5 4 7 11 7 ⑾ 4 ③ 7 5 6 6 ⑤ 3 ⑿ 5 ④ ⑽ 8 6 6 10 C 10 ⑧ 5 11 ⑦图1 表1 菜市场每天需求(100 kg)短缺损失(元/100kg) ①75 10 ②60 8 ③80 5 ④70 10 ⑤100 10 ⑥55 8 ⑦90 5 ⑧80 8 (a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预

期的短缺损失为最小; (b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案 (c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增 产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。 二、问题分析 求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费和距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。 第二问规定各菜市场短缺量一律不超过需求量的20%,只需要在上题基础上加上新的限制条件,即可得出新的调运方案。 第三问可以在第二问的基础上用灵敏度分析进行求解,也可以建立新的线性问题进行求解。 三、模型假设 1、各个菜市场、中转点以及收购点都可以作为中转点; 2、各个菜市场、中转点以及收购点都可以的最大容纳量为610吨; 3、假设只考虑运输费用和短缺费用,不考虑装卸等其它费用; 4、假设运输的蔬菜路途中没有损耗; 5、忽略从种菜场地到收购点的运输费用。 四、符号说明 A收购点分送到全市的8个菜市场的供应量分别为a1,b1,c1,d1,e1,f1,g1,h1, B收购点分送到全市的8个菜市场的供应量分别为a2,b2,c2,d2,e2,f2,g2,h2, C收购点分送到全市的8个菜市场的供应量分别为a3,b3,c3,d3,e3,f3,g3,h3, 8个菜市场的短缺损失量分别为a,b,c,d,e,f,g,h(单位均为100kg)。 五、模型的建立和求解 按照问题的分析,首先就要求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。但由于它遍历计算的节点很多,所以效率较低,实际问题中往往要求网络中任意两点之间的最短路距离。如果仍然采用Dijkstra算法对各点分别计算,就显得很麻烦。所以就可以使用网络各点之间的矩阵计算法,即Floyd 算法。 Floyd算法的基本是:从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。i到j的最短距离不外乎存在经过i和j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(i,j)和d(i,k)+d(k,j)的值;在此d(i,k)和d(k,j)分别是目前为止所知道的i到k和k到j的最短距离。因此d(i,k)+d(k,j)就是i到j经过k的最短距离。所以,若有d(i,j)>d(i,k)+d(k,j),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(i,j)重写为

数学建模运输问题

数学建模运输问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd 算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd 算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需

求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j=位置上的数表示(其中∞表示两个客户之间无直接的 i j(,1,,10) 路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让 他先给客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车 一次能装满10个客户所需要的全部货物,请问货车从提货点出发给

数学建模城市垃圾运输问题概论

货运公司运输问题 数信学院14级信计班魏琮 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面根据车载重相对最大化思 想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.3333小时,费用为4864.0元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.3小时,费用为4487.2元。 针对问题三的第一小问,知道货车有4吨、6吨和8吨三种型号。经过简单的论证,排除了4吨货车的使用。题目没有规定车

子不能变向,所以认为车辆可以掉头。然后仍旧采取①~④公司 顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需 求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次 满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6 吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为19.6833小时,费用为4403.2元。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

数学建模--运输问题

数学建模--运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第 一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题

数学建模 飞机的登机顺序安排问题

飞机的登机顺序安排问题 摘要 美国航空机场服务规划副总裁马克.都彭的话来说:“登机就好比是跟在一辆慢吞吞的卡车后行驶,又不能超车。”长期以来,航空公司为了使飞机按时出发费尽了心思。有的公司安排从后排开始登机,有的公司从靠窗座位开始,还有些公司设计出两者的组合方案。但实际情况却没有如航空公司所愿。 近年来随着民用航空业飞速发展,无论是航空公司还是旅客都希望缩短登机时间,这样航空公司可以赢得更多时间用于飞行获得丰厚利润,旅客也可以缩短旅途时间。然而随着乘坐飞机的旅客越来越多以及飞机的容量不断增加,使得登机时间却在不断加长。如何缩短登机时间这一问题亟待解决。 针对客机登机顺序问题,文章将登机过程类比于总线型局域网的数据传输过程,建立了总线状态模型,在此基础上建立了蒙特卡洛随机模拟模型。 总线状态模型的主要思想是:利用总线型局域网拓扑结构的原理,将客机登机所需时间转化为拓扑结构中总线从空载状态到负载状态再到空载状态所经过的时间。通过查阅相关资料文献,我们筛选出六种比较具有代表性的登机方案---Back to Front、Rotating Zone、Random、Reverse Pyramid、Outside in、block。对选择的不同机型进行模型求解,对模拟结果进行分析,得出不同飞机设计登机方案的原则。在此原则的基础上,提出新的方案,并对新方案进行模拟求解,最后从已有方案的六种方案和新提出的方案中提出适合各型飞机最优的登机方案。 关键词:客机、登机、总线状态模型、蒙特卡洛随机模拟模型 一.问题重述 航空公司可以自由的安排等待登机的旅客的登机顺序,首先安排有特殊需要的乘客登机就座已经成为惯例. 按照常规有特殊需要的轮椅旅客首先登机,紧跟着是头等舱的乘客(他们坐在飞机的前部). 然后是安排经济舱和商务舱的乘客按行排队登机,从飞机后排的乘客依次往前安排登机。从航空公司的角度来看,除了考虑到乘客的等待时间外,时间就是金钱,所以登机时间最好应该减小到最少. 只有飞机载客飞行,航空公司才能赚钱,而过长的登机时间将会限制飞机在一天内的飞行次数. 发展大型飞机,诸如空客A380-800客机(载客800人) 这样的最小化登机(离机)时间的问题就更显得重要了。 (1)针对不同的小型(85-210座)、中型(210-330座)和大型(450-800座)客机,设计制订并比较不同乘客人数的登机或离机程序.

数学建模大赛-货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.5007小时,费用为4685.6元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.063小时,费用为4374.4元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为 19.6844小时,费用为4403.2。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

数学建模运输问题

华东交通大学数学建模 2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

数学建模运输问题

华东交通大学数学建模2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求 解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

基于运输问题的数学建模

数学建模一周论文论文题目:基于运输问题的数学模型 1:学号: 2:学号: 3:学号: 专业: 班级: 指导教师: 2011年12 月29 日

(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示 (1)求最优调拨方案; (2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。 一论文摘要 一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。 针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型 Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x min x+3031x+3532x+4033x+5534x+2535x +30 25 Z= 并用管理运筹学软件软件得出最优解为: min

关键词:运输模型最优化线性规划 二.问题的重述和分析 A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地 i s和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i 将物品从产地运往销地的最优调拨方案。 A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道, 1 B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2 A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。把产地 1 B,2B,3B,4B,5B,正好满足这三个销地的需要。先将安排的部分配给销地 1 运输量列如下表中:

垃圾运输问题

B题:垃圾运输问题 某城区有36个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。现有一种载重 6吨的运输车。每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作 4小时。运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴。请你给出满意的运输调度方案以及计算程序。 问题: 1. 运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用) 2. 铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用) 3. 如果有载重量为4吨、6吨、8吨三种运输车,又如何调度?

垃圾运输问题的模型及其求解 摘要:本文通过垃圾运输问题的模型建立与求解,总结出这类问题的一般性解法,即根据实际问题构造恰当的有向或无向赋权图,把问题转化成图论中的TSP问题,通过解决这类TSP问题,从而使原问题获得满意的解答. 关键词:垃圾运输问题; TSP问题 图论是一支应用性很强的学科分支,它对自然科学、工程技术、经济管理和社会现象等诸多问题,能够提供很好的数学模型加以解决,所以,在国内外大学生数学建模竞赛中,常会出现用图论模型去解决的实例,如垃圾运输问题,统筹问题等. 1有关概念 定义1[ 1 ] 设G = (V, E) 是连通无向图, (1) 经过G的每一个顶点正好一次的路,称为G的一条哈密顿路或H路; (2) 经过G的每一个顶点正好一次的圈,称为G的一条哈密顿圈或H圈; (3) 含H圈的图称为哈密顿图或H图. 定义2[ 1 ] 设D = (V, A ) 是连通有向图, (1) 经过D的每一个顶点正好一次的圈,称为D的生成圈; (2) 含生成圈的图称为哈密顿图或H图. 定义3[ 1 ] 设G是完全(有向或无向) 赋权图,在G中寻找权最小闭迹的问题称为TSP问题(即Trave ling Salesman Problem) . 若此闭迹是H圈,则称此闭迹为最佳H圈. 容易证明:在满足条件w ( vi vj ) +w ( vj vk ) 下, TSP问题可转化为寻找最佳H圈的问题,这可通过构造一个完全图来实现. 2垃圾运输问题 例1某城区有若干个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回. 假定运输 图1运输车线路图 车的线路已确定下来共10条(如图1所示). 为了节省费用, 运输车在每条线路上总是先从远离处理厂的垃圾集中点开始运送垃圾. 现有6辆载重6吨的运输车及装垃圾用的铲车, 它们的平均速度为40 km /h (夜里运输,不考虑塞车现象) ,每个垃圾点需要用10 min的时间装车,每台运输车每日平均工作4 h. 运输车重载运费1. 8元/吨km;运输车和装垃圾用的铲车空载费用0. 4元

航班延误问题 数学建模

题目:航班延误问题 作者:王镱嬴 班级:信息13-1班学号:120133803014

航班延误问题 摘要 航班延误相对于航班正常,是指航班服务的迟延耽误,即航班在进港或离 港时超过了民航主管部门批准的航班时刻表所载明的一定时间,俗称民航航班 的“晚点”或“误点”。根据《民航航班正常统计办法》,航班延误具体是指 航班降落时间比计划降落时间(航班时刻表上的时间)延迟30分钟以上或航班 取消的情况。 近几年,由于航班延误而引起的航空公司与乘客之间的纠纷事件越来越多,如果不能及时解决航班延误事件,二者矛盾会更加激化。本文基于收集到的数据,建立了时间序列模型,对题目进行深入研究,做出了判断,分析出国内航 班延误的真实原因。最后本文基于航班总数的时间序列数据,建立模糊综合评 价模型,针对航班延误问题,提出了预防措施、善后措施及改进措施。 针对问题一,首先,我们对原始数据进行了处理,得到航班总数,正常航 班数,不正常航班数的时间序列数据,并对其进行整理分析,绘制出我国航班 变化情况折线统计图;其次,我们根据各种影响航班延误的主要因素的数据进 行分析,根据上述指标统计得到的数据对空管、机场、航空公司等进行一级评估,得到每一个单位在延误中延误等级,最后在对整体进行评估,得到考虑了空管、机场、航空公司影响情况下的航班综合延误等级。最后我们得出结论:我 们不认为题目所论述的结论是正确的。 针对问题二,首先,本文对原始数据进行了整理,得到了各航班延误原因 比例图,紧接着作出这个比例图的直方图,进而依据数据特征并结合现实具体 情况来分析航班延误的四个主要影响因素,即恶劣天气的影响、航空交通管制、航空公司的运行管理和空中流量等影响因素,并提出了其他影响航班延误的原因。 针对问题三,我们从航班延误时间最短和航班延误成本最小两个点入手, 为航空公司在航班延误上提出了合理的预防措施,善后措施和改进措施等。预 防措施有:1.预订机票时使用民航资源网数据分析中心的“航线运力数据分析 系统”提前查询航线航班历史准点率信息,尽量选择预定历史准点率高的航班 机票;2.使用“非常准”等网站的航班延误智能预报、航班不正常跟班服务;3.关注天气措施,出发当天及时与航空公司及机场的问询处取得联系;4.投保航 班延误保险。善后措施有:1.及时要求改签其他航班;2.要求提供餐食(处于

飞机追击问题数学建模

飞机追击问题 摘要 本文讨论的是关于我方飞机追及不明敌机的问题。其大概的思路是建立平面直角坐标系,建立微分方程模型,得到一个二阶方程, 通过降阶法化为一阶方程,使用微分思想,推导出所求的方程表达式,因而得到我方飞机追击敌机的轨迹方程。通过分析假设敌我双方飞机形成固定夹角下在不同时刻下双方的位置,进而推导出求解公式。 关键词:追击、平面直角坐标系、微分方程、降阶法

1. 问题重述: 我军飞机在基地巡航飞行时,发现正北方向120 km 处有一敌机以90 km/h 的速度向正东方向行驶. 我方飞机立即追击敌机, 我方飞机速度为450 km/h ,自动导航系统使飞机在任一时刻都能对准敌机。求出我飞机在何时何处能拦截敌机以及当敌机以135km/h 的速度与我飞机成固定夹角的方向逃逸时,我方飞机在何时何处能拦截敌机。 2. 模型假设 1.假设我方飞机以及敌机的运动为质点运动。 2.假设双方飞机为匀速率运动。 3.假设飞机的运动速度跟风速和空气阻力没有关系,但是实际飞机运动过程中阻力影响和飞行速度有关系。在运动的过程中也忽略了重力的影响。 3. 符号说明: Ve :敌机飞行速度。 Vw :我方飞机飞行速度。 O :我方飞机初始位置。 A :敌机初始位置。 B :我方飞机机追击到敌机的位置。 S :两机初始位置之间的距离。 4.问题的分析: 我方飞机在追击的过程中始终指向敌机,即我方飞机的飞行方向随着时间的改变而改变,建立起平面直角坐标系有 (图 1)

5.模型的建立 5.1. 问题1: 当t = 0时,我方飞机位于点O ,敌机位于(0,A)点。设我方飞机在t 时刻的位置为P (x,y)。飞机速度恒定,则有 x t v y S dx dy e --= 由于我方飞机飞行轨迹的切线方向必须指向敌机,即直线PM 的方向就是飞 行轨迹上点P 的切线方向,故有 τn T yd xd n n =),( 5.2.问题2: 如果敌机以135km/h 速度与我巡航飞机方向成固定夹角方向逃逸,设逃逸方向与我方飞机速度方向夹角为θ,如图2建立坐标 y (0,S O x 图2 6. 模型的求解: 6.1.问题1求解过程: 建立微分方程模型,通过降阶法化把推导出的二阶方程转为一阶方程,然后用分离变量法求解。

数学建模运输问题送货问题

数学建模论文 题目:送货问题 学院(直属系):数学与计算机学院 年级、专业: 2010级信息与计算科学 姓名:杨尚安 刘洋 谭笑 指导教师:蒲俊 完成时间:2012年 3 月 20 日 摘要 本文讨论的是货运公司的运输问题,根据各公司需求和运输路线图,建立了线性规划模型和0-1规划模型,对货运公司的出车安排进行了分析和优化,得出运费最小的调度方案。 对于问题一,由于车辆在途中不能掉头,出车成本固定,要使得总成本最小,即要使在一定的车辆数下,既满足各公司的需求,又要尽量减小出车次数。故以最小出车数为目标函数,建立线性规划模型,并通过lingo求解,得出最小出车数27次。接着考虑车的方向问题,出车分为顺时针和逆时针,建立0-1模型,并求解,得出满足问题一的调度方案(见附录表1)。 对于问题二,车辆允许掉头,加上车辆装载货物和空装时运输费不同,,要使总成本最小,故可以通过修改原目标函数,建立线性规划模型和0-1规划模型,求解,得出最佳派出车辆3辆并列出满足问题二的调度方案。 对于问题三第一小问,增加了运输车辆的类型。即装载材料的方法很多,在上述分析的基础上,通过增加约束条件,建立新的线性规划模型,并求解,得出满足问题三的调度方案。在第二小问中,由于给出部分公司有道路相通,可采用 运筹学中的最短路问题的解决方法加以解决。 关键字:线性规划模型 0-1规划模型调度

一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C 分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数?应如何调度? 3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是1.8元/吨公里,空载费用分别为0.2,0.4,0.7元/公里,其他费用一样,又如何安排车辆数和调度方案?(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。 二、符号说明 x表示为一个车装一单位A和两单位C; 1 x表示为一个车装六单位C; 2 x表示为一个车装两单位B; 3 x表示为一个车装一单位B和三单位C; 4 S表示最小运输次数; x表示为一个车装一单位A和一单位C; 5

飞机合理安排运输量问题

数学建模第二次作业 第十七小组 题目:问题四 学号班级姓名 组员1 20108086 信号2班魏丹 组员2 20108093 付春组员3 20108101 周勤

摘要 本文先对问题所涉及到的数据进行了合理筛选,然后运用恰当的数学模型将该问题从现实问题中抽象出来,最后运用最大获利模型对该问题进行了深刻描述,并且通过LINGO和MATLAB求出了满足各问要求的最佳运输分配方案。 第一问,首先我们先确定模型所需要的数据,用线性规划来确定及求解模型。然后对各个量进行条件限制,列出各个数据的关系式,并且最终用LINGO软件求解得到货物1、2、3每天的运输量,货物1为30吨,货物2为16.875吨,货物3为50吨。(见后文表5.2)。 第二问,本题要求我们计算每个约束的影子价格,我们根据第一问得出的结果来进行条件约束分析。约束条件有:货物总吨数、货物总体积、货物1吨数、货物2吨数、货物3吨数。可以看出,货物1的约束为紧约束,货物2的约束为非紧约束,货物3约束也为紧约束。与第一问同步用LINGO软件求解得到各约束的影子价格(见后文表6.1)。 对第三问,由于该公司有能力改装它的一些旧飞机来增大货运区域空间,首先我们还是得确定模型所需要的数据、用线性规划来确定及求解模型。根据各个量的限制条件,列出关系式,并使用MATLAB软件求解得到应该改造的飞机架数为1.25架,但是根据实际只能为整数,由题意可知取1最优,再用LINGO软件对原模型反求出货物运输吨数,求得货物1为30吨,货物2为19.375吨,货物3为50吨。并在最终求得最大获利数为30854687.5美元。 关键字:线性规划最佳方案

相关文档
最新文档