简单的线性规划题型总结

简单的线性规划题型总结
简单的线性规划题型总结

简单的线性规划题型总结

一、可行域求约束条件

1、如图,表示图中阴影区域的不等式组是___________.

二、求可行域的面积

2、260302x y x y y +-≥??

+-≤??≤?

所表示的平面区域的面积为( )

A 、4

B 、1

C 、5

D 、无穷大

3:在坐标平面上,不等式组

所表示的平面区域的面积为___

4.若不等式组0

34

34

x x y x y ≥??+≥??+≤?

所表示的平面区域被直线4

3y kx =+分为面积相等的两部分,则k 的值是______

5、在平面直角坐标系中,若不等式组101010x y x ax y +-≥??

-≤??-+≥?

(α为常数)所表示的平面区域内 的

面积等于2,则a 的值为

四、求可行域中整点个数

6、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( )A 、9个 B 、10个 C 、13个 D 、14个

x+2y-4≤

0 y ≥│x │+1

五:目标函数的最优解

(1)、求线性目标函数的最优解

7、若x 、y 满足约束条件2

22x y x y ≤??

≤??+≥?

,则z=x+2y 的取值范围是 ()

A 、[2,6]

B 、[2,5]

C 、[3,6]

D 、(3,5]

(2)、求非线性目标函数的最优解 8、已知x 、y 满足以下约束条件

220240330x y x y x y +-≥??-+≥??--≤?

,则z=x 2+y 2

的最大值和最小值分别是() A 、13,1 B 、13,2 C 、13,45 D 、13,255

9:已知x 、y 满足约束条件 ,求Z=| x-4y+1|的最大值与最小值.

10.设D 是不等式组21023041

x y x y x y +≤??+≥?

?≤≤??≥?表示的平面区域,则D 中的点(,)P x y 到直线10x y +=距

离的最大值_.

x-4y+3≤0 3x+5y-25≤0

x ≥1

11、若,M N 是11106

x y x y x y ≥??≥?

?-+≥??+≤?表示的区域内的不同..

两点,则||MN 的最大值是 。 (3)斜率型目标函数:目标函数为

1

1

,

y y y x x x --型的,几何意义是可行域内的点与定点(0,0),(11,x y )连线的斜率

12.设实数x , y 满足的最大值是则x y y y x y x ,0

320420

2??

?

??≤->-+≤-- .

13、 设,x y 满足约束条件0

4312

x y x

x y ≥??≥??+≤?

,则23

1x y x +++取值范围是

六、参数的取值范围

(1)、求线性目标函数中参数的取值范围

14、已知x 、y 满足以下约束条件5

503x y x y x +≥??

-+≤??≤?

,使z=x+ay(a>0)取

得最小值的最优解有无数个,则a 的值为 ( )

15、已知变量,x y 满足约束条件14,22x y x y ≤+≤-≤-≤,若目标函数z ax y =+(其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为__________ A 、-3 B 、3 C 、-1 D 、1

(2)、求约束条件中参数的取值范围

16、已知|2x -y +m|<3表示的平面区域包含点(0,0)(-1,1),

则m 的取值范围是 ( )

A 、(-3,6)

B 、(0,6)

C 、(0,3)

D 、(-3,3)

17:已知x 、y 、z ,满足 , 且z=2x+4y 的最小值为-6,则常数k=(D )

A 、2

B 、9

C 、310

D 、0

18、使函数()34y x

f x y x x y ≤??=≥??+≤?

的目标函数(0)z ax by ab =+≠,在2,2x y ==取得最大值的

充要条件是

A ||a b ≤

B ||||a b ≤

C ||a b ≥

D ||||a b ≥

七 隐形线性规划问题

18.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为( ) A .2 B .1 C .12 D .14

19:若0,0≥≥b a ,且当??

???≤+≥≥1,0,

0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点P (a ,b )

所形成的平面区域的面积等于____________。

O 2x – y = 0

y

2x – y + 3 = 0

x-y+5≥0 x+y+k ≥

0 x ≤3

八、综合篇

1、 与函数交汇

20:已知函数f(x)=ax 2-c,满足,f(1)∈[-4,-1],f(2)∈[-1,5],求f(3)的取值范围。

21:已知函数f(x)=(3a-1)x+b-a,若当0≤x ≤1,总有f(x) ≤1,则a+b 的最大值为____________.

22.设二元一次不等式组2190802140x y x y x y ?+-?

-+??+-?

,,≥≥≤所表示的平面区域为M ,使函数

(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )

A .[1

3], B .[210], C .[29],

D .[109],

2、 与几何交汇

23、设集合A={(x ,y )|x ,y ,1-x-y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是(A )

3、 与向量交汇 2

4、

的变化范围是(的动点,

,则满足条件A P OP OM OP ON ON OM 1010),1,0(,21,1≤?≤≤?≤=??

?

??=

25.已知:点P 的坐标(x ,y )满足:430,3525,10.x y x y x -+≤??

+≤??-≥?

及A (2,0),则|OP |·cos ∠AOP (O

为坐标原点)的最大值是 .

26、 ,x y 满足条件41

x y y x x +≤??≥??≥?

,那么y x

x y +的最大值等于_______,最小值等于

____________.

27. 已知A (3,3),O 为原点,点||,0

02303),(OA OP OA y y x y x y x P ????

????≥≥+-≤-则

的坐标满足的最大值是 ,此时点P 的坐标是

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

中考圆的常见题型最新

1、如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( B ) A .2 B .1 C .1.5 D .0.5 2、如图(2),在Rt ABC △中,9068C AC BC O ∠===°,,,⊙为ABC △的内切圆,点D 是斜边AB 的中点,则tan ODA ∠=( D ) A . 2 B .3 C D .2 3、如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6,3,则图中阴影部分的面积是(C ) A .π B .π C .3π D .2π 4、如图,点A B C ,,在 O 上,50A ∠=° , 则BOC ∠的度数为( ) A .130° B .50° C .65° D .100° 5、一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ) A .0.4米 B .0.5米 C .0.8米 D .1米 6、如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过 点D 作DE ⊥AC ,垂足为E . (1)求证:AB =AC ; (2)若⊙O 的半径为4,∠BAC =60o,求DE 的长. (1)证明:连接AD ∵AB 是⊙O 的直径 ∴∠ADB=90° 又∵BD=CD ∴AB=AC 。 (2)解:∵∠BAC=60°,由(1)知AB=AC ∴△ABC 是等边三角形 在Rt △BAD 中,∠BAD=30°,AB=8 ∴BD=4,即DC=4 又∵DE ⊥AC , 图(2) (第4题图) A B O C

一元二次方程题型分类总结

一元二次方程题型分类总结 一、知识结构:一元二次方程考点类型一概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式: ⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例 1、下列方程中是关于x的一元二次方程的是()A B C D 变式:当k 时,关于x的方程是一元二次方程。例 2、方程是关于x的一元二次方程,则m的值为。针对练习:★ 1、方程的一次项系数是,常数项是。★ 2、若方程是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。★★ 3、若方程是关于x的一元二次方程,则m的取值范围是。★★★ 4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是() A、m=n=2

B、m=3,n=1 C、n=2,m=1 D、m=n=1考点类型二方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;典型例题:例 1、已知的值为2,则的值为。例 2、关于x的一元二次方程的一个根为0,则a的值为。例 3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。例 4、已知是方程的两个根,是方程的两个根,则m的值为。针对练习:★ 1、已知方程的一根是2,则k为,另一根是。★ 2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。★ 3、已知m是方程的一个根,则代数式。★★ 4、已知是的根,则。★★ 5、方程的一个根为()A B1 C D ★★★ 6、若。考点类型三解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型 一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例 1、解方程:

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

圆知识梳理+题型归纳附答案_详细知识点归纳+中考真题

圆 【知识点梳理】 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; A

三、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧 AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 B D

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

高考导数压轴题型归类总结材料

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 3 2)33(- =g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 1 1222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表: 所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

中考复习圆专题所有知识点和题型汇总全

《圆》题型分类资料 一.圆的有关概念: 1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有() A. 1个 B.2个 C.3个 D.4个 2.下列命题是假命题的是() A.直径是圆最长的弦B.长度相等的弧是等弧 C.在同圆或等圆中,相等的圆心角所对的弧也相等 D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。 3.下列命题正确的是() A.三点确定一个圆B.长度相等的两条弧是等弧 C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形 4.下列说法正确的是( ) A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半 C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90° 5.下面四个图中的角,为圆心角的是( ) A.B.C.D. 二.和圆有关的角: 1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________ 图1 图2 2.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( ) A.116° B.64° C. 58° D.32° 3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为

A 图3 图4 4. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°, 那么∠BDC=_________度. 5. 如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=. A 图5 图6 6. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°. 7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。 8. 若⊙O的弦AB所对的劣弧是优弧的 1 3 ,则∠AOB= . 9.如图7,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________ A 图7 图8 10.如图8,△ABC是O的内接三角形,点C是优弧AB上一点(点C不与A,B重合),设OABα ∠=,Cβ ∠=(1)当35 α=时,求β的度数; (2)猜想α与β之间的关系为 11.已知:如图1,四边形ABCD内接于⊙O,延长BC至E,求证:∠A+∠B C D=180°,∠DCE=∠A; 如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系;

动量守恒题型分类总结

动量守恒定律 第一部分: 一、动量守恒条件类题目 动量守恒条件:1、系统不受外力或所受外力的合力为零 2、某个方向合外力为零,这个方向动量守恒 3爆炸、碰撞、反冲,力远大于外力或者相互作用时间极短,动量守恒 1、关于动量守恒的条件,其中错误的是() A.系统所受外力为零则动量守恒 B.采用直角坐标系,若某轴方向上系统不受外力,则该方向分动量守恒 C.当系统所受外力远小于力时系统动量可视为守恒-- D.当系统所受外力作用时间很短时可认为系统动量守恒 2、A、B两个小车,中间夹着一个被压缩的弹簧,用两手分别拿着两个小车放在光滑水平面上,然后由静止开始松手,则( ) A.若两手同时放开,A、B两车的总动量守恒 B.若先放开A车,稍后再放开B车,两车的总动量指向B车的运动方向 C.若先放开A车,稍后再放开B车,两车的总动量指向A车一边 D.无论同时放开两车,还是先后放开两车,两手都放开后两车的总动量都守恒 3、斜面体的质量为M,斜面的倾角为α,放在光滑的水平面上处于静止。一个小物块质量为m,沿斜面方向以速度v冲上斜面体,若斜面足够长,物体与斜面的动摩擦因数为μ,μ>tgα,则小物块冲上斜面的过程中( ) A.斜面体与物块的总动量守恒B.斜面体与物块的水平方向总动量守恒 C.斜面体与物块的最终速度为mv/(M+m) D.斜面体与物块的最终速度小于mv/(M+m) 4.(04理综21)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则() A.左方是A球,碰撞后A、B两球速度大小之比为2∶5 B.左方是A球,碰撞后A、B两球速度大小之比为1∶10 C.右方是A球,碰撞后A、B两球速度大小之比为2∶5 D.右方是A球,碰撞后A、B两球速度大小之比为1∶10 二、给出碰前的动量,判断碰后的可能情况 解题原则:1、碰前后动量守恒,即碰后大小方向与碰前相同 2、一般只能碰一次 3、碰撞动能不增加原理

高考数学导数与三角函数压轴题综合归纳总结教师版0001

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题, 内容主要包 括函数零点个数的确定、 根据函数零点个数求参数范围、 隐零点问题及零点存在 性赋值理论 .其形式逐渐多样化、综合化 . 、零点存在定理 例1【. 2019全国Ⅰ理 20】函数 f(x) sinx ln(1 x),f (x)为f (x)的导数.证明: 1) f (x)在区间 ( 1, 2 )存在唯一极大值点; 2) f (x) 有且仅有 2 个零点. 可得 g'(x)在 1, 有唯一零点 ,设为 2 则当x 1, 时,g x 0;当 x ,2 时,g'(x) 0. 所以 g(x) 在 1, 单调递增,在 , 单调递减 ,故g(x) 在 2 值点 ,即 f x 在 1, 存在唯一极大值点 . 2 (2) f x 的定义域为 ( 1, ). (i )由( 1)知, f x 在 1,0 单调递增 ,而 f 0 0,所以当 x ( 1,0)时, f'(x) 0,故 f x 在 ( 1,0)单调递减 ,又 f (0)=0 ,从而 x 0是 f x 在( 1,0] 的唯 一零点 . 【解析】( 1)设 g x f x ,则 g x 当x 1, 时, g'(x)单调递减,而 g 2 1 1 sinx 2 1 x 2 cosx ,g x 1x 0 0,g 0, 2 1, 存在唯一极大 2

, 时, f '(x) 0.故 f (x) 在(0, )单调递增,在 , 单调递 22 3 变式训练 1】【2020·天津南开中学月考】已知函数 f (x) axsin x 2(a R), 且 在, 0, 2 上的最大值为 (1)求函数 f(x)的解析式; (2)判断函数 f(x)在( 0,π)内的零点个数,并加以证明 【解析】 (1)由已知得 f(x) a(sin x xcosx) 对于任意的 x ∈(0, ), 3 有 sinx xcosx 0,当 a=0 时,f(x)=- ,不合题意; 2 当 a<0时,x ∈(0,2 ),f ′(x)从<0而, f(x)在(0, 2 )单调递减, 3 又函数 f(x) ax sin x 2 (a ∈ R 在) [0, 2 ]上图象是连续不断的, 故函数在 [0, 2] 上的最大值为 f(0) ,不合题意; 当 a>0时,x ∈(0, 2),f ′(x)从>0而, f(x)在(0, 2 )单调递增, 3 又函数 f(x) ax sin x (a ∈R 在) [0, ]上图象是连续不断的, 33 故函数在[0, 2 ]上上的最大值为 f( 2)=2a- 23= 23,解得 a=1, 3 综上所述 ,得 f(x) xsinx 3(a R),; (2)函数 f(x) 在(0, π内)有且仅有两个零点。证明如下: 从而 f x 在 0, 没有零点 . 2 ( iii ) 当 x , 时 , f x 0 , 所 以 f x 在 单调递减.而 2 2 f 0, f 0 ,所以 f x 在, 有唯一零点 . 2 2 ( iv )当 x ( , ) 时,ln x 1 1,所以 f (x) <0,从而 f x 在( , ) 没有零点 . 减.又 f (0)=0 , f 1 ln 1 22 0 ,所以当x 0,2 时,f(x) 0. 综上, f x 有且仅有 2个零点. ii )当 x 0,2 时,由(1)知,f'(x)在(0, )单调递增 ,在 单调递减 ,而 f ' (0)=0 2 0 ,所以存在 ,2 ,使得 f'( ) 0,且当x (0, ) 时, f'(x) 0 ;当 x

圆专题总结题型

圆 ●中考点击 考点分析:(要求Ⅰ:理解掌握;要求Ⅱ:灵活运用) 内容 要求 1、圆、等圆、等弧等概念及圆的对称性,点和圆的位置关系以及其有关概念 Ⅰ 2、弧、弦、圆心角、弦心距四者之间的关系,能根据具体条件确定这四者之间的关系 Ⅱ 3、圆的性质及圆周角与圆心角的关系、直径所对圆周角的特征,灵活运用圆周角的知识 进行有关的推理论证及计算 Ⅱ 4、垂径定理的应用及逆定理的应用,会添加与之相关的辅助线 Ⅱ 5、圆与三角形和圆内接四边形的知识及综合运用 Ⅱ 命题预测:本专题主要考查圆的重要性质以及和圆有关的角、线段、环长和面积的计算,另外也会考查圆与勾股定理、相似三角形知识的综合应用.其中,点和圆、直线和圆的位置关系的判断以及和圆有关的简单计算一般以选择填空题形式考查;有关圆与图形的相似、三角函数、函数等知识的综合应用一般是以证明、阅读理解、探索存在等解答题的形式考查. ●难题透视 例1如图7-1,在⊙O 中,弦AD 平行于弦BC ,若80AOC ∠=o ,则 DAB ∠=____度. 例2如图7-2,AB 是的⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD=( ) A .1000 B .1100 C .1200 D .1350 例3已知:AB 和CD 为⊙O 的两条平行弦,⊙O 的半径为5cm ,AB=8cm ,CD=6cm ,求AB 、CD 间的距离是 . A D C B O 图7-1 图7-2

例4用圆规、直尺作图,不写作法,但要保留作图痕迹. 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图7-5图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径. 例5如图7-7,有一木制圆形脸谱工艺品,H、T两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点D的位置(画出图形表示),并且分别说明理由. 图7-5 图7-7

直线方程题型分类总结

直线方程常见题型分类总结 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。 题型一:两直线的位置关系 判断直线平行:已知直线12l l ,的方程为1111:0l A x B y C ++=,2222:0l A x B y C ++=,若12//l l ,则有12210A B A B -=,且1221B C B C ≠或1221A C B C ≠ 判断直线相交:1111:0l A x B y C ++=,2222:0l A x B y C ++=,若两直线相交,则有 12210AB A B -≠ 判断直线垂直:已知直线12l l ,的方程为1111:0l A x B y C ++=,2222:0l A x B y C ++=,若 12l l ⊥,则有12120A A B B +=,反之亦然。 两点间的距离,点到直线的距离,两条平行线间的距离 1.两点间距离公式: 设平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,

1212||||PP y y =-; 2.点到直线距离公式:点()00,y x P 到直线0:1=++C By Ax l 的距离2 200B A C By Ax d +++= 3.两平行直线距离公式: 两条平行直线 11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d = , 1.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于 A .1 B .13- C .2 3 - D .2- 2.若直线1:(3)4350l m x y m +++-=与2:2(5)80l x m y ++-=平行,则m 的值为 A .7- B .1-或7- C .6- D .13 3 - 题型二:定点问题 1. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点. A .(0,0) B .(3,1)C .(1,3) D .(1,3)-- 2.若不论m 取何实数,直线:120l mx y m +-+=恒过一定点,则该定点的坐标为 A .(2,1)- B . (2,1)- C .(2,1)-- D .(2,1) 3.不论m 为何实数,直线(m -1)x -y +2m +1=0 恒过定点 A.(1, - 2 1 ) B.(-2, 0) C.(2, 3) D.(-2, 3) 题型三:对称问题 1.已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标 . 2.求点(1,2)关于直线20x y --=的对称点。 3.与直线2360x y +-=关于点(1,1)-对称的直线方程是 A .3220x y -+= B .2370x y ++= C .32120x y --= D .2380x y ++= 4.光线由点P (2,3)射到x 轴后,经过反射过点Q (1,1),则反射光线方程是 A .450x y +-= B .430x y --= C .3210x y --= D .2310x y -+= 题型四:截距相等问题 1.若直线过)1,2(P 点且在两坐标轴上的截距相等,则这样的直线有几条 A. 1条 条 条 D.以上都有可能

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==, 3ACB ACD π ∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故BD ⊥平面PAC 。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??= ?π BCD CD BC S BCD . 由⊥PA 底面ABCD 知232331 31=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1 ,

故:41 32813318131=???=??=?-PA S V BCD BDC F 4 7 412=- =-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ; (Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P

(完整版)导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题 极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者 ()()()x x f x x f x F --+=00。其中0x 为函数()x f y =的极值点。⑵利用对数平均不等式。 2 ln ln ab b a b a b a +< --< 。⑶变换主元等方法。 任务一、完成下面问题,总结极值点偏移问题的解决方法。 1.设函数2 2 ()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性; (2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由2 2 ()ln f x a x x ax =-+-可知 2222(2)()()2a x ax a x a x a f x x a x x x --+-'=-+-== 因为函数()f x 的定义域为(0,)+∞,所以 ① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减, 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增; ② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2 a x ∈-时,()0f x '<,函数()f x 单调递减, 当(,)2 a x ∈- +∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证12 2 x x a +>, (x)g =22 2(x)2,g (x)20(x)(x)a a f x a g f x x '''=-+-=+>∴=则为增函数。 只需证:12 x x ( )()02 f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a -+->?-+->++(*) 又2222 111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:

相关文档
最新文档