材料力学性能考试复习资料大全

材料力学性能考试复习资料大全
材料力学性能考试复习资料大全

1、裂纹扩展的基本形式:

(1)张开型裂纹扩展:拉应力垂直作用于裂纹扩展面,裂纹沿作用力方向张开,沿裂纹面扩展。如容器纵向裂纹在内应力的作用下扩展。

(2)滑开型裂纹扩展:切应力平行作用于裂纹面,而且与裂纹线垂直,裂纹沿裂纹面平行滑开扩展。如花键根部裂纹沿切向力的扩展。

(3)撕开型裂纹扩展:切应力平行作用于裂纹面,而且与裂纹线平行,裂纹沿裂纹面撕开扩展。如轴的纵、横裂纹在扭矩作用下的扩展。

2、应力场强度因子:表示应力场的强弱程度;断裂韧度:材料抵抗裂纹失稳扩展的能力。

3、断裂K 判据:裂纹体受力当满足K I ≥K IC 时,就会发生脆性断裂。反之,即使存在裂纹也不会断裂。

1、疲劳是金属机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。

2、疲劳断裂特点: (1)低应力循环延时断裂,即具有寿命的断裂。(2)疲劳是脆性断裂

(3) 疲劳对缺陷(缺口、裂纹及组织缺陷)很敏感(4)疲劳断口能清楚显示裂纹的萌生、扩展和断裂

3、疲劳宏观断口特征:(1)疲劳源:机件表面缺陷、内部缺陷、内裂纹。(2)疲劳区:断口比较光滑并分布有贝纹线(或海滩花样)贝纹线是疲劳区的最大特征。(3)瞬断区:断口粗糙,脆性材料为结晶状断口,韧性材料有放射状纹理,边缘为剪切唇

4、疲劳曲线:疲劳应力和疲劳寿命之间关系的曲线。即S-N 曲线。反映疲劳应力与疲劳寿命的关系

5、疲劳极限:当循环应力水平降低到某一临界值时,低应力段变为水平线段,表明试样可以经无限次应力循环也不发生疲劳断裂,将对应的应力称为疲劳极限

6、过载损伤:如果金属在高于疲劳极限的应力水平下运转一定周次后,其疲劳极限和疲劳寿命减小的现象。

7、金属材料抵抗过载损伤的能力——过载损伤界、过载损伤区,过载持久值线。

(1) 过载损伤界:不同过载应力下,损伤累积造成的裂纹尺寸达到或超过σ-1应力下的“非扩展裂纹”尺寸的循环次数。

(2) 过载持久值线:不同过载应力下过载持久值所对应循环周次的连线。

(3) 过载损伤区:过载损伤界与过载持久值线间的影线区。

6、疲劳缺口敏感度:金属材料在交变载荷作用下的缺口敏感性。

7、亚稳扩展:裂纹自形成到扩展到临界长度的过程;失稳扩展:裂纹达到临界尺寸后的扩展过程。

(1)A 区是疲劳裂纹初始扩展阶段,材料的疲劳裂纹扩展速率dN

da 很小,△K ≤△Kth 时,裂纹不扩展; △K>△Kth ,裂纹扩展,但 △K 变化范围小,所占扩展寿命不长。

(2)B 区是疲劳裂纹扩展的主要阶段,da/dN 较大,△K 范围大,扩展寿命长,是决定疲劳裂纹扩展寿命的主要阶段。

(3)C 区是疲劳裂纹扩展的最后阶段,dN

da 很大,并随ΔK 增加而很快地增大,裂纹失稳扩展

8、疲劳裂纹扩展门槛值:疲劳裂纹不扩展的应力强度因子幅△K 的临界值。

9、疲劳过程及机理:

疲劳过程包括疲劳裂纹萌生、裂纹亚稳扩展、最后失稳扩展三个阶段

(1)疲劳裂纹的萌生由不均匀的局部滑移和显微开裂引起的,主要方式有表面滑移带开裂;第二相、夹杂物或其界面开裂;晶界或亚晶界开裂。

(2)疲劳裂纹扩展分为两个阶段:第一阶段是沿着最大切应力的滑移平面,和拉应力方向成45°向前扩展,这时的裂纹在表面原有多处;但大多数显微裂纹较早地就停止扩展,呈非扩展裂纹,只有少数几个可延伸到几十个微米的长度;第二阶段:当长度再增加,裂纹便转向和拉应力方向垂直。

10、疲劳宏观和微观的区别:

疲劳条带是疲劳断口最典型的微观特征,贝文线是疲劳断口的宏观特征

(1)疲劳条带是电子显微镜观察到的疲劳断口微观特征,一次应力循环产生一条疲劳条带;贝纹线是疲劳断口宏观特征,由启动、停歇、偶然过载等大的载荷变动引起;

(2)相邻贝纹线间可能有成千上万条疲劳条带;

(3)循环应力下疲劳条带是相互平行、等间距的;贝纹线在疲劳源附近较密,偏离疲劳源时则较稀疏;判断裂纹扩展方向通常利用贝纹线。

(4) 二者可以同时出现,也可以不同时出现。

11、低周疲劳:大应力低周次下的破坏。

特点:(1)低周疲劳时,因局部区域产生宏观塑性变形,故循环应力与应变之间不再呈直线关系,形成滞后回线。

(2)低周疲劳试验时,或者控制总应变范围,或者控制塑性应变范围(3)低周疲劳破坏有几个裂纹源,其形核期较短,只占总寿命的10%;低周疲劳微观断口的疲劳条带较粗,间距也宽一些,并且常常不连续。

(4)低周疲劳寿命决定于塑性应变幅,而高周疲劳寿命则决定于应力幅或应力场强度因子范围,但两者都是循环塑性变形累积损伤的结果。

12、循环硬化:金属材料在恒定应变范围循环作用下,随着循环周次的增加,其应力不断增加,称为循环硬化;若在循环过程中,应力逐渐减小,则为循环软化。

1、应力腐蚀:金属在拉应力和腐蚀介质的共同作用下引起的低应力脆性断裂。

2、应力腐蚀产生的条件:(1)应力:拉应力(不大),工作应力+残余应力;(2)化学介质:特定的化学介质,弱腐蚀性;(3)金属材料:合金,有敏感成分。

3.应力腐蚀断裂机理:滑移-溶解理论、氢脆理论。金属表面处于钝化状态,应力作用下,滑移台阶露头且钝化膜破裂,新鲜表面成为阳极,形成电化学腐蚀,拉应力在蚀坑或原有裂纹的尖端产生应力集中,使阳极电极电位降低,加大腐蚀。若应力集中始终存在,裂纹逐步向纵深扩展。

3、应力腐蚀断裂断口形貌特征:亚稳扩展区可见到腐蚀产物和氧化现象,呈黑色或灰黑色,具有脆性特征;最后瞬断区快速撕裂破坏,显示出基材特性(1)沿晶断裂,也可为穿晶解理或准解理断裂(2)表面可以见到“泥状花样”及腐蚀坑

4、应力腐蚀抗力指标:(1):应力腐蚀临界应力场强度因子KISCC:(2)应力腐蚀裂纹扩展速率da/dt

5、应力腐蚀门槛值K Iscc:试样在特定化学介质中不发生应力腐蚀断裂的最大应力场强度因子KISCC。断裂判据:KI初≥KISCC

6、K Iscc:(1)KK IC时,加上初始载荷后立即断裂。尽管初始K值不同,裂纹扩展速率和断裂时间也不同,但材料的最终破坏都是在K=K IC时发生的。

7、应力腐蚀裂纹扩展速率da/dt:单位时间内裂纹的扩展量。

8、氢脆类型及特征:

(1)氢蚀:宏观断口呈氧化色,颗粒状;微观断口晶界明显加宽,沿晶断裂。特点:宏观:

氧化色,颗粒状,微观:晶界明显加宽,沿晶断裂。

(2)白点:聚集在缺陷处的H2发生急剧膨胀,内压力很大足以将金属局部撕裂,形成微裂纹,微裂纹的断面呈圆形或椭圆形,特点:颜色为银白色。

(3)氢化物致脆(IV B或V B族金属与氢极易形成氢化物,使金属脆化的现象。特点:界面是裂纹源,断口可见氢化物

(4)氢致延滞断裂(HIC)由于氢的作用而产生的延滞断裂现象。特点:与脆性断口相似沿晶断裂晶界面上有许多撕裂棱:实际断口裂纹扩展途径和KI有关:断裂类型与杂质含量有关。

1,磨损:机件表面相接触并作为相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失造成表面损伤的现象.

1、常见的磨损模型:粘着磨损、磨粒磨损、腐蚀磨损、微动磨损。

(1)粘着磨损:滑动摩擦条件下,摩擦副相对滑动速度较小时发生。由于零件表面某些接触点在高的局部压力下发生粘合,在相互滑动时,粘着点又被剪切分开,接触面上有金属磨屑被拉拽出来,这种过程反复进行很多次,便导致了表面的损伤。过程:粘着---剪断---转移---再粘着

(2)磨粒磨损:当摩擦副一方表面存在坚硬的细微突起,或在接触面之间存在着硬质粒子时磨粒与摩擦表面相互作用,对于韧性金属材料磨粒从表面上切下连续屑,对于脆性材料磨粒切下许多断屑而产生的一种磨损。

(3)腐蚀磨损:在摩擦过程中,摩擦副之间或摩擦副与环境介质发生化学或电化学反应形成腐蚀产物,腐蚀产物的形成和脱落引起腐蚀磨损。

(4)微动磨损:接触表面之间因存在小振幅相对振动或往复运动而产生磨损。第一阶段产生凸起塑性变形,形成表面裂纹和扩展,或去除表面污物形成粘着和粘着点断裂;第二阶段疲劳破坏或粘着点断裂形成磨屑,氧化;第三阶段磨粒磨损阶段;从影响第一阶段并反复循环。

3、接触疲劳是机件两接触面做滚动或滚动加滑动摩擦时,工件表面在接触压应力的长期不断反复作用下,材料表面因疲劳损伤,导致局部区域出现小片或小块状材料剥落而引起的磨损。

4、接触疲劳破坏机理:(1)麻点剥落:滚动加滑动接触过程中表面最大综合切应力超过抗剪强度,形成裂纹(2)浅层剥落:接触应力反复作用下,塑性变形反复进行,使材料局部弱化形成裂纹(3)深层剥落:裂纹形成后沿过渡区平行扩展,而后再垂直于表面扩展,最后形成较深的剥落坑。

1、,蠕变现象:金属材料在长时间的恒温、恒载荷作用下缓慢产生塑性变形现象。

2、蠕变断裂:由于蠕变而最后导致金属材料的断裂称为蠕变断裂。

3、等强温度:晶粒与晶界两者强度相等的温度。

4、约比温度:试验温度T和金属熔点Tm之比。

5、蠕变曲线:

从a点开始随时间τ增长而产生的应变属于蠕变,abcd曲线即为蠕变曲线。

(1)减速蠕变阶段(又称过渡蠕变阶段)

这一阶段开始的蠕变速率很大,随着时间延长,蠕变速率逐渐减小,到b点蠕变速率达到最小值。

(2)恒速蠕变(又称稳态蠕变阶段)。

这一阶段的特点是蠕变速率几乎保持不变。

(3)加速蠕变阶段

在此阶段随着时间的延长,蠕变速率逐渐增大,至d 点产生蠕变断裂。

6、蠕变极限:在高温长时间载荷作用下塑性变形抗力指标。两种表达方式:(1)在给定温度下,使试样在蠕变第二阶段产生规定稳态蠕变速率的最大应力

(2)在给定温度和时间的条件下,使试样产生的总伸长率不超过规定值的最大应力

7、持久强度极限:材料在一定高温下和规定的持续时间内引起断裂的最大应力值。

8、松弛稳定性---剩余应力:定义:紧固应力随时间增加不断下降的现象叫应力松弛。

9、松弛应力:初始应力与剩余应力之差为松弛应力。

10、应力松弛:粘弹性材料在总应变不变的条件下,由于试样内部的粘性应变(或粘塑性应变)分量随时间不断增长,使回弹应变分量随时间逐渐降低,从而导致变形恢复力(回弹应力)随时间逐渐降低的现象。

11、金属松弛曲线:

lg()

da

dN

强度指标:

1、比例极限σp:应力-应变成正比关系的最大应力:σp=Fp/A0

2、弹性极限σe:由弹性变形过渡到弹塑性变形的应力:σe=Fe/A0

3、屈服点(屈服强度):σs=Fs/A0 上屈服点:σsu=Fsu/A0;下屈服点:σsl=Fsl/A0

4、规定微量塑性伸长应力指标: 规定非比例伸长应力σp:规定残余伸长应力σr:规定总伸长应力σt:

5、抗拉强度:σb=Fb/A0

塑性指标:

1、断面收缩率:缩颈处横截面积的最大缩减量与原始横截面积的百分比。

2、断后伸长率试样拉断后,标距的伸长与原始标矩的百分比

3、最大力下的总伸长率δgt:

4、屈服点伸长率δs:

5、最大力下的非比例伸长率δg

12、弹性变形及其特点:1、定义:当外力去除后,能恢复到原来形状或尺寸的变形叫弹性变形。2、特点:1)可逆性;2)单调性;3)变形量很小,一般不超过0.5%~1%。

13、弹性模量的理论定义:金属材料在弹性变形阶段,其应力与应变成正比关系,符合虎克定律,其比例系数称为弹性模量:拉伸时:σ=E·εE-弹性模量.

14、弹性比功:弹性比功表示金属材料吸收弹性变形功的能力。机器零件体积越大,可吸收的弹性变形功越多,可储备的弹性能越多;一般可用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。

15、塑性变形的方式:滑移,孪生

16、塑性变形的特点:1不可逆变形;变形量大,远大于弹性变形。2金属塑性变形主要由切应力引起(只有切应力才能使晶体产生滑移或孪生变形)。3金属塑性变形阶段除塑性变形,还伴随弹性变形和应变硬化(形变强化),应力-应变不再是简单直线关系。

17、多晶体金属塑性变形的特点:1不同时性:各晶粒取向不同,取向有利的晶粒先变形

组织愈不均匀,不同时性愈明显:2不均匀性:不均匀性存在于各晶粒之间、基体金属晶粒与第二相晶粒之间、同一晶粒内部宏观变形尚不大时,微观局部变形可能很大,在内应力作用下形成微裂纹: 3相互协调性:多晶体作为一个整体,需要各晶粒的塑性变形能相互协调,否则将造成晶界开裂

18、影响屈服强度的因素:(一)影响屈服强度的内在因素:1、金属本性及晶格类型2、晶粒大小和亚结构;3、溶质元素;4、第二相;(二)影响屈服强度的外在因素:1、温度;2、应变速率;3、应力状态

19、韧性断裂与脆性断裂:韧性断裂:一般规定光滑拉伸试样的断面收缩率大于5%者为韧性断裂(明显宏观塑性变形);脆性断裂:光滑拉伸试样的断面收缩率小于5%者为脆性断裂(微量均匀塑性变形,无缩颈形成)

20、穿晶断裂与沿晶断裂:穿晶断裂:裂纹穿过晶内;可为韧性断裂(韧脆转变温度以上的穿晶断裂),亦可为脆性断裂(低温下的穿晶解理断裂);沿晶断裂:裂纹沿晶界扩展;晶界上连续或不连续脆性第二相、夹杂物,破坏了晶界连续性所致,或杂质元素向晶界偏聚所致;应力腐蚀、氢脆都是沿晶断裂;沿晶断裂多数是脆性断裂,断口形貌呈冰糖状;穿晶断裂和沿晶断裂有时可以混合发生。

1,应力状态软性系数:由材料力学可知,任何复杂应力状态均可用三个主应力表示。根据这三个主应力:由“最大切应力理论”可得最大切应,由“相当最大正应力理论”可得最大正应力,两者比值即为它们的相对大小,记为应力状态软性系数α

对某种试验方法,α↑→试样中最大切应力分量τmax↑→应力状态越“软”,越易产生塑性变形和韧性断裂;反之,应力状态越“硬”,越不易产生塑性变形,而易于产生脆性断裂。

2,缺口效应:(1)引起应力集中:缺口效应:引起应力集中,并改变了缺口前方的应力状态,使缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或三向应力状态,即出现了σx(平面应力状态)或σx与σz(平面应变状态)。(2):使塑性材料强度增高,塑性降低:存在缺口的条件下,由于出现了三向应力状态,并产生应力集中,试样的屈服应力比单向拉伸时高,产生了“缺口强化”现象,是由于三向拉伸应力约束了塑性变形所致。1,相对形变速率(应变速率):单位时间内应变的变化量

3,冲击吸收功:试样变形和断裂所消耗的功:Ak=mgH1-mgH2

4,冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,即抵抗破坏的能力。冲击韧性常用标准试样的冲击吸收功Ak表示。

5,低温脆性现象:当试验温度低于某一温度tk时,材料由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型,断口特征由纤维状变为结晶状,即低温脆性,转变温度tk称为韧脆转变温度。

6,韧脆转变的物理本质:

断裂强度σc随温度的变化较小;而屈服强度σs对温度十分敏感,随温度降低,屈服强度升高;两者的交点tk即为韧脆转变温度。

t>tk时,σc>σs,材料受载后先屈服再断裂,为韧性断裂

t<tk时,σc<σs,外加应力先达到σc,为脆性断裂

低温脆性是材料屈服强度随温度降低急剧增加的结果。

7弹性变形的物理实质:弹性变形是金属晶格中原子自平衡位置产生可逆位移的反映;金属的弹性性质是金属原子间结合力抵抗外力的宏观表现;外力与原子间引力、斥力的平衡过程。8冲击载荷下金属变形和断裂的特点:冲击载荷下,机件失效同样表现为过量弹性变形、过量塑性变形和断裂。

弹性变形在介质中传播速度为声速;冲击试验绝对变形速率为5-5.5m/s;弹性变形总能紧跟上冲击外力的变化。因此,冲击载荷下,应变速率对金属材料的弹性行为及弹性模量没有影响。

塑性变形需要时间,当加载速度很快时,塑性变形有可能来不及发展而直接产生断裂。最终导致塑性变形量减少,倾向于脆性破坏。

9应变硬化现象:流变应力随应变的增加而增加的现象

10纯剪切断裂、微孔聚集型断裂、解理断裂:纯剪切断裂:纯粹由滑移所造成的断裂;纯金属尤其是单晶金属常产生这类断裂。断口呈锋利的楔形(单晶体)或刀尖形(多晶体);微孔聚集型断裂:通过微孔形核、长大聚合而导致;常用金属材料一般均产生该类断裂(低碳钢室温拉伸断裂)。

解理断裂:金属材料在正应力作用下,沿一定的严格的晶体学平面(解理面)产生的穿晶断裂;典型脆性断裂。

11正断型断裂与切断型断裂:正断:断裂面取向垂直于最大正应力;切断:断裂面取向与最大切应力方向相一致,而与最大正应力方向约成45°角(拉伸时断口上的剪切唇)

12材料的刚度(E):1工程上弹性模量被称为材料的刚度;表征金属材料对弹性变形的抗力,其值大小反映金属弹性变形的难易程度;刚度越大变形越困难。2在工程技术中,机器零件或工程构件在服役过程中都处于弹性变形状态,过量的弹性变形则使零件或构件丧失稳定性,即弹性失稳。3表征零构件弹性稳定性的参量是刚度;指机器零件或结构件在载荷作用下抵抗弹性变形的能力,是金属零构件重要的性能指标。

材料力学期末考试复习题及答案

二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。 3.传动轴如图所示。已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。试求:①力偶M的大小;②作AB轴各基本变形的力图。③用第三强度理论设计轴AB 的直径d。 4.图示外伸梁由铸铁制成,截面形状如图示。已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。试求:①画梁的剪力图、弯矩图。②按正应力强度条件确定梁截荷P。 5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。试求:①作AB轴各基本变形的力图。②计算AB轴危险点的第三强度理论相当应力。

6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。试校核AB杆是否安全。 7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。②按正应力强度条件确定梁截荷P。 8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。已知M=200GPa,μ=0.3,[σ]=140MPa。试求:①作图示圆轴表面点的应力状态图。②求圆轴表面点图示方向的正应变。③按第四强度理论校核圆轴强度。 9.图所示结构中,q=20kN/m,柱的截面为圆形d=80mm,材料为Q235钢。已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=3.0,[σ]=140MPa。试校核柱BC是否安全。

材料力学期末考试复习题及答案 2

材料力学期末考试复习题及答案 配高等教育出版社第五版 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为。 2.构件抵抗的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。 4.梁上作用着均布载荷,该段梁上的弯矩图为。 5.偏心压缩为的组合变形。 6.柔索的约束反力沿离开物体。 7.构件保持的能力称为稳定性。 8.力对轴之矩在情况下为零。 9.梁的中性层与横截面的交线称为。 10.图所示点的应力状态,其最大切应力是。 11.物体在外力作用下产生两种效应分别是。 12.外力解除后可消失的变形,称为。 13.力偶对任意点之矩都。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力 为。 15.梁上作用集中力处,其剪力图在该位置有。 16.光滑接触面约束的约束力沿指向物体。 17.外力解除后不能消失的变形,称为。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的 充要条件。 19.图所示,梁最大拉应力的位置在点处。

20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 21.物体相对于地球处于静止或匀速直线运动状态,称为。 22.在截面突变的位置存在集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于杆。 26.只受两个力作用而处于平衡状态的构件,称为。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。

材料力学性能考试题及答案

07 秋材料力学性能 一、填空:(每空1分,总分25分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下,在圆杆横截面上无正应力而只有,中心处切 应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则;塑性材料切口根 部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加拉 应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9.磨损目前比较常用的分类方法是按磨损的失效机制分为、和腐蚀磨损等。 10.深层剥落一般发生在表面强化材料的区域。

11.诱发材料脆断的三大因素分别是、和 。 二、选择:(每题1分,总分15分) ()1. 下列哪项不是陶瓷材料的优点 a)耐高温 b) 耐腐蚀 c) 耐磨损 d)塑性好 ()2. 对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c) 相等d) 不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150的正确表示应为 a) 150HBW10/3000/30 b) 150HRA3000/l0/ 30 c) 150HRC30/3000/10 d) 150HBSl0/3000/30 ()4.对同一种材料,δ5比δ10 a) 大 b) 小 c) 相同 d) 不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件 b) 灰铸铁铸件 c) 退货态下的软钢 d) 陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45钢 b) 40Cr钢 c) 35CrMo钢 d) 灰铸铁()7.下列哪种断裂模式的外加应力与裂纹面垂直,因而 它是最危险的一种断裂方式。

材料力学期末考试习题集

材料力学期末复习题 判断题 1、强度是构件抵抗破坏的能力。(√ ) 2、刚度是构件抵抗变形的能力。(√ ) 3、均匀性假设认为,材料内部各点的应变相同。(×) 4、稳定性是构件抵抗变形的能力。(×) 5、对于拉伸曲线上没有屈服平台的合金塑性材料,工程上规定2.0σ作为名义屈服极限,此时相对应的应变为2.0%=ε。(×) 6、工程上将延伸率δ≥10%的材料称为塑性材料。(×) 7、任何温度改变都会在结构中引起应变与应力。(×) 8、理论应力集中因数只与构件外形有关。(√ ) 9、任何情况下材料的弹性模量E都等于应力和应变的比值。(×) 10、求解超静定问题,需要综合考察结构的平衡、变形协调和物理三个方面。(√ ) 11、未知力个数多于独立的平衡方程数目,则仅由平衡方程无法确定全部未知力,这类问题称为超静定问题。(√ ) 12、矩形截面杆扭转变形时横截面上凸角处切应力为零。(√ ) 13、由切应力互等定理可知:相互垂直平面上的切应力总是大小相等。(×) 14、矩形截面梁横截面上最大切应力maxτ出现在中性轴各点。(√ ) 15、两梁的材料、长度、截面形状和尺寸完全相同,若它们的挠曲线相同,则受力相同。(√ ) 16、材料、长度、截面形状和尺寸完全相同的两根梁,当载荷相同,其变形和位移也相同。(×) 17、主应力是过一点处不同方向截面上正应力的极值。(√ ) 18、第四强度理论用于塑性材料的强度计算。(×) 19、第一强度理论只用于脆性材料的强度计算。(×) 20、有效应力集中因数只与构件外形有关。(×) 绪论 1.各向同性假设认为,材料内部各点的()是相同的。 (A)力学性质;(B)外力;(C)变形;(D)位移。 2.根据小变形条件,可以认为( )。 (A)构件不变形;(B)构件不变形; (C)构件仅发生弹性变形;(D)构件的变形远小于其原始尺寸。 3.在一截面的任意点处,正应力σ与切应力τ的夹角( )。 (A)α=900;(B)α=450;(C)α=00;(D)α为任意角。 4.根据材料的主要性能作如下三个基本假设___________、___________、___________。 5.材料在使用过程中提出三个方面的性能要求,即___________、___________、___________。 6.构件的强度、刚度和稳定性()。 (A)只与材料的力学性质有关;(B)只与构件的形状尺寸关 (C)与二者都有关;(D)与二者都无关。 7.用截面法求一水平杆某截面的内力时,是对( )建立平衡方程求解的。 (A) 该截面左段; (B) 该截面右段; (C) 该截面左段或右段; (D) 整个杆。 8.如图所示,设虚线表示单元体变形后的形状,则该单元体

材料力学期末考试复习题及答案53154

材料力学 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为。 2.构件抵抗的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。 4.梁上作用着均布载荷,该段梁上的弯矩图为。 5.偏心压缩为的组合变形。 6.柔索的约束反力沿离开物体。 7.构件保持的能力称为稳定性。 8.力对轴之矩在情况下为零。 9.梁的中性层与横截面的交线称为。 10.图所示点的应力状态,其最大切应力是。 11.物体在外力作用下产生两种效应分别是。 12.外力解除后可消失的变形,称为。 13.力偶对任意点之矩都。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力为。 15.梁上作用集中力处,其剪力图在该位置有。 16.光滑接触面约束的约束力沿指向物体。 17.外力解除后不能消失的变形,称为。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的充要条件。 19.图所示,梁最大拉应力的位置在点处。 20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。

21.物体相对于地球处于静止或匀速直线运动状态,称为。 22.在截面突变的位置存在集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于杆。 26.只受两个力作用而处于平衡状态的构件,称为。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。 3.传动轴如图所示。已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。试求:①力偶M的大小;②作AB轴各基本变形的内力图。③用第三强度理论设计轴AB

材料力学复习考试题

材料力学复习题 第2章 1. 如图所示桁架结构,各杆的抗拉刚度均为EA ,则结点C 的竖向位移为:(C ) (A ) αcos 2EA Fh (B )α2cos 2EA Fh (C )α 3 cos 2EA Fh (D )α3cos EA Fh 2. 如图所示正方形截面柱体不计自重,在压力F 作用下强度不足,差%20,为消除这一过载现象,则柱体的边长应增加约:(B ) (A ) %5 (B )%10 (C )%15 (D )%20 3. 如图所示杆件的抗拉刚度kN 1083?=EA ,杆件总拉力kN 50=F ,若杆件总伸长为杆件长度的千分之五,则载荷1F 和2F 之比为:(C ) (A ) 5.0 (B )1 (C )5.1 (D )2 4. 如图所示结构,AB 是刚性梁,当两杆只产生简单压缩时,载荷作用点的位置距左边杆件的距离x 为:(B ) (A ) 4a (B )3a (C )2a (D )3 2a 5. 图示杆件的抗拉刚度为EA ,其自由端的水平位移为 3Fa/EA ,杆件中 习题1 图 习题5图 F 2 习题4图 习题3图 1 F 习题2 图

间截面的水平位移为 Fa/EA 。 6.图示桁架结构各杆的抗拉刚度均为EA ,则节点C 的水平位移为 ,竖向位移为 。 7. 图示结构AB 为刚性梁,重物重量kN 20=W ,可自由地在AB 间移动,两杆均为实心圆形截面杆,1号杆的许用应力为MPa 80,2号杆的许用应力为MPa 100,不计刚性梁AB 的重量。试确定两杆的直径。 8. 某铣床工作台进油缸如图所示,油缸内压为MPa 2=p ,油缸内径mm 75=D ,活塞杆直径mm 18=d ,活塞杆材料的许用应力MPa 50][=σ,试校核活塞杆的强度。 9.如图所示结构,球体重量为F ,可在刚性梁AB 上自由移动,1号杆和2号杆的抗拉刚度分别为EA 和EA 2,长度均为l ,两杆距离为a 。不计刚性梁AB 的重量。(1)横梁中点C 的最大和最小竖向位移是多少?(2)球体放在何处,才不会使其沿AB 梁滚动? 10. 如图所示结构,AB 是刚性横梁,不计其重量。1,2号杆的直径均为mm 20=d ,两杆材料相同,许用应力为MPa 160][=σ,尺寸m 1=a 。求结构的许可载荷][F 。 11. 如图所示结构中的横梁为刚性梁,两圆形竖杆的长度和材料均相同,直径 mm 20=d ,材料的许用拉应力MPa 50][=t σ,不计刚性梁的重量,求结构能承受的最大 F 习题 11图 习题9图 A W B 习题10图 B 习题 7 A W B 习题8图 F 习题6图

材料力学性能期末考试[1]

第一章 1,静载荷下材料的力学性能包括材料的拉伸、压缩、扭转、弯曲及硬度等性能。2,在弹性变形阶段,大多数金属的应力与应变之间符合胡克定律的正比例关系,其比例系数称为弹性模量。 3,弹性比功为应力-应变曲线下弹性范围内所吸收的变形功。 4,金属材料经过预先加载产生少量塑性变形(残余应变小余1%~4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包辛格效应。 包辛格效应消除方法:(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶 温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。 5,屈服标准: (1),比利极限:应力-应变曲线上符合线性关系的最高应力。 (2),弹性极限:试样加载后再卸载,以不出现残留的永久变形为准则,材料能够完全弹性恢复的最高应力。 (3),屈服强度:以规定发生一定的残余变形为标准。 6,影响材料强度的内在因素有:结合键、组织、结构、原子本性。 影响材料强度的外在因素有:温度、应变速度、应力状态。 7,影响金属材料的屈服强度的四种强化机制: ①固溶强化;②形变强化;③沉淀强化和弥散强化;④晶界和亚晶强化。8,加工硬化的作用: (1) 加工硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全。 (2) 加工硬化和塑性变形适当配合可使金属均匀塑性变形,保证冷变形工艺顺利实施。(如果没有加工硬化能力,任何冷加工成型的工艺都是无法进行。)(3) 可降低塑性,改善低碳钢的切削加工性能。 9,应力状态软性系数α: α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。 10,冲击弯曲试验的作用:主要测定脆性或低塑性材料的抗弯强度。 第二章 1,由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将会发生变化,产生所谓的“缺口效应”。 2,冲击韧性的定义是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。 3,细化晶粒提高韧性的原因: (1) 晶界是裂纹扩展的阻力; (2) 晶界前塞积的位错数减少,有利于降低应力集中; (3) 晶界总面积增加,使晶界上杂质浓度减小,避免了产生沿晶脆性断裂。 4,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。 5,韧脆转变温度:

《材料力学》考试复习题纲和复习题及答案

1.常见的金属晶格类型。 答:体心立方晶格,面心立方晶格,密 排立方晶格; 2.面心立方金属的滑移面为哪个面?共有 多少个滑移系? 面心立方金属的滑移面为{111},4个,滑移方向<110>,3个;滑移系数目 4X3=12个。 3.体心立方晶格金属与面心立方晶格金属 在塑性上的差别,主要是由于两者的什 么不同? 答:每个滑移面上的滑移方向数不同 4.组元 答:组成合金最基本的独立物质称为组 元,通常组元就是组成合金的元素。例 如,碳钢是铁与碳所组成的合金,铁和 碳即为组元。 5.固溶体 答:在固体合金中,在一种元素的晶格 结构中包含有其它元素的合金相称为固 溶体。(固溶体是指溶质原子溶入溶剂的 晶格中或取代了溶剂原子的位置,而仍

保持溶剂晶格类型的一种成分和性能均匀的固态合金,常用a,B,R表示,如铁素体(a),奥氏体(R等)。晶格与固溶体相同的组元为固溶体的溶剂,其他组元为溶质。) 6.相 答:金属或合金中凡成分相同,结构相同,并且与其它部分有界面分开的均匀组成部分。 7.固溶体的晶体结构 答:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。 8.什么叫固溶强化?固溶强化的原因是什 么? 答:溶质原子的加入,将引起溶剂的晶格发生不同程度的畸变,这固溶体的强度、硬度提高(仍保持良好的塑性和较高的韧度)的现象称为固溶强化。原因:溶质原子的溶入,使固溶体的晶格发生畸变,晶格畸变增大位错运动的阻力,

使金属滑移变形变得更加困难,变形抗 力增大,从而提高合金的强度和硬度。 9.过冷度 答:理论结晶温度To与实际结晶温度 Tn之间的温度差称为过冷度,计为△ T=To-Tn,其大小除与金属的性质和纯 度有关外,主要取决于冷却速度,一般 冷却速度越大,实际结晶温度越低,过 冷度越大。 10.二元合金表达了合金的什么之间的关 系? 答:表达了合金在不同成分下组成物的 组分及结构的关系 11.常温下,金属单晶体的塑性变形方式为 哪两种? 答:金属的塑性变形主要以滑移和孪生 的方式进行。 12.在金属学中,冷加工和热加工的界限是 以什么温度来划分的? 答:再结晶温度 13.冷变形金属在完成结晶后,继续加热时, 晶粒会发生如何变化?

材料力学期末考试试题库

材料力学复习题(答案在最后面) 绪论 1.各向同性假设认为,材料内部各点的()是相同的。 (A)力学性质;(B)外力;(C)变形;(D)位移。 2.根据小变形条件,可以认为()。 (A)构件不变形;(B)构件不变形; (C)构件仅发生弹性变形;(D)构件的变形远小于其原始尺寸。 3.在一截面的任意点处,正应力σ与切应力τ的夹角()。 (A)α=900;(B)α=450;(C)α=00;(D)α为任意角。 4.根据材料的主要性能作如下三个基本假设___________、___________、___________。 5.材料在使用过程中提出三个方面的性能要求,即___________、___________、___________。 6.构件的强度、刚度和稳定性()。 (A)只与材料的力学性质有关;(B)只与构件的形状尺寸关 (C)与二者都有关;(D)与二者都无关。 7.用截面法求一水平杆某截面的内力时,是对()建立平衡方程求解的。 (A)该截面左段;(B)该截面右段; (C)该截面左段或右段;(D)整个杆。 8.如图所示,设虚线表示单元体变形后的形状,则该单元体 的剪应变为()。 α (A)α;(B)π/2-α;(C)2α;(D)π/2-2α。 答案 1(A)2(D)3(A)4均匀性假设,连续性假设及各向同性假设。5强度、刚度和稳定性。6(A)7(C)8(C) 拉压 1.轴向拉伸杆,正应力最大的截面和切应力最大的截面()。 (A)分别是横截面、45°斜截面;(B)都是横截面, (C)分别是45°斜截面、横截面;(D)都是45°斜截面。 2.轴向拉压杆,在与其轴线平行的纵向截面上()。 (A)正应力为零,切应力不为零; (B)正应力不为零,切应力为零; (C)正应力和切应力均不为零; (D)正应力和切应力均为零。 3.应力-应变曲线的纵、横坐标分别为σ=F /A,△ε=L/L,其中()。 N (A)A和L均为初始值;(B)A和L均为瞬时值; (C)A为初始值,L为瞬时值;(D)A为瞬时值,L均为初始值。 4.进入屈服阶段以后,材料发生()变形。 (A)弹性;(B)线弹性;(C)塑性;(D)弹塑性。 5.钢材经过冷作硬化处理后,其()基本不变。 (A)弹性模量;(B)比例极限;(C)延伸率;(D)截面收缩率。 6.设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上()。

材料力学性能习题及解答库

第一章习题答案 一、解释下列名词 1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。 2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。 4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现ζ e 升高或降低的现 象。 5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。 6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力 7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶; 8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。 9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。 10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。 11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。 二、说明下列力学指标的意义 1、E(G): E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。 2、Z r 、Z 0.2、Z s: Z r :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的 残余伸长达到规定的原始标距百分比时的应力。ζ 0.2:表示规定残余伸长率为0.2%时的应力。 Z S:表征材料的屈服点。 3、Z b韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。 4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬 化行为的性能指标。 5、3、δ gt、ψ : δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。 Δgt 是最大试验力的总伸长率,指试样拉伸至最大试验力时标距的总伸长与原始标距的百

(完整版)材料力学期末复习试题库(你值得看看)

第一章 一、选择题 1、均匀性假设认为.材料内部各点的是相同的。 A:应力 B:应变 C:位移 D:力学性质 2、各向同性认为.材料沿各个方向具有相同的。 A:力学性质 B:外力 C:变形 D:位移 3、在下列四种材料中. 不可以应用各向同性假设。 A:铸钢 B:玻璃 C:松木 D:铸铁 4、根据小变形条件.可以认为: A:构件不变形 B:构件不破坏 C:构件仅发生弹性变形 D:构件的变形远小于原始尺寸 5、外力包括: A:集中力和均布力 B:静载荷和动载荷 C:所有作用在物体外部的力 D:载荷与支反力 6、在下列说法中.正确的是。 A:内力随外力的增大而增大; B:内力与外力无关; C:内力的单位是N或KN; D:内力沿杆轴是不变的; 7、静定杆件的内力与其所在的截面的有关。 A:形状;B:大小;C:材料;D:位置 8、在任意截面的任意点处.正应力σ与切应力τ的夹角α=。 A:α=90O; B:α=45O; C:α=0O;D:α为任意角。 9、图示中的杆件在力偶M的作用下.BC段上。 A:有变形、无位移; B:有位移、无变形; C:既有位移、又有变形;D:既无变形、也无位移; 10、用截面法求内力时.是对建立平衡方程而求解的。 A:截面左段 B:截面右段 C:左段或右段 D:整个杆件 11、构件的强度是指.刚度是指.稳定性是指。 A:在外力作用下抵抗变形的能力; B:在外力作用下保持其原有平衡态的能力; C:在外力的作用下构件抵抗破坏的能力; 答案:1、D 2、A 3、C 4、D 5、D 6、A 7、D 8、A 9、B 10、C 11、C、B、A 二、填空 1、在材料力学中.对变形固体作了 . . 三个基本假设.并且是在 . 范围内研究的。 答案:均匀、连续、各向同性;线弹性、小变形 2、材料力学课程主要研究内容是:。 答案:构件的强度、刚度、稳定性;

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什 么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能》复习资料

《材料力学性能》复习资料 第一章 1塑性--材料在外力作用下发生不可逆的永久变形的能力 2穿晶断裂和沿晶断裂---穿晶断裂,裂纹穿过晶界。沿晶断裂,裂纹沿晶扩展。 3包申格效应——金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 4E---应变为一个单位时,E即等于弹性应力,即E是产生100%弹性变形所需的应力 5ζs----屈服强度,一般将ζ0.2定为屈服强度 6n—应变硬化指数 Hollomon关系式: S=ken (真应力S与真应变e之间的关系) n—应变硬化指数;k—硬化系数 应变硬化指数n反映了金属材料抵抗继续塑性变形的能力。分析:n=1,理想弹性体;n=0材料无硬化能力。大多数金属材料的n值在0.1~0.5之间。 7δ10---长比例试样断后延伸率 L0=5d0 或 L0=10d0 L0标注长度 d0名义截面直径) 8静力韧度:静拉伸时,单位体积材料断裂所吸收的功(是强度和塑性的综合指标)。J/m3 9脆性断裂(1)断裂特点断裂前基本不发生塑性变形,无明显前兆;断口与正应力垂直。(2)断口特征平齐光亮,常呈放射状或结晶状;人字纹花样的放射方向与裂纹扩展方向平行。通常,脆断前也产生微量的塑性变形,一般规定Ψ<5%为脆性断裂;大于5%时为韧性断裂。 11屈服在金属塑性变形的开始阶段,外力不增加、甚至下降的情况下,变形继续进行的现象,称为屈服。 12低碳钢在室温条件下单向拉伸应力—应变曲线的特点p1-2 13解理断裂以极快速率沿一定晶体学平面产生的穿晶断裂。 解理面一般是指低指数晶面或表面能量低的晶面。 14韧性是金属材料塑性变形和断裂全过程吸收能量的能力,它是强度和塑性的综合表现,因而在特定条件下,能量、强度和塑性都可用来表示韧性。 15弹性比功αe(弹性比能、应变比能) 物理意义:吸收弹性变形功的能力。 几何意义:应力-应变曲线上弹性阶段下的面积。αe = (1/2) ζe*ε e

材料力学性能考试题与答案.docx

07秋材料力学性能 得分一、填空:(每空 1 分, 总分 25 分) 1.材料硬度的测定方法有、和。 2.在材料力学行为的研究中,经常采用三种典型的试样进行研究,即、和。 3.平均应力越高,疲劳寿命。 4.材料在扭转作用下 , 在圆杆横截面上无正应力而只有, 中心处切应力为,表面处。 5.脆性断裂的两种方式为和。 6.脆性材料切口根部裂纹形成准则遵循断裂准则; 塑性材料切口根部裂纹形成准则遵循断裂准则; 7.外力与裂纹面的取向关系不同,断裂模式不同,张开型中外加 拉应力与断裂面,而在滑开型中两者的取向关系则为。 8.蠕变断裂全过程大致由、和 三个阶段组成。 9 .磨损目前比较常用的分类方法是按磨损的失效机制分 为、和腐蚀磨损等。

10.深层剥落一般发生在表面强化材料的区域。 11.诱发材料脆断的三大因素分别是、和 。 得分 二、选择:(每题 1 分,总分 15 分) ()1.下列哪项不是陶瓷材料的优点 a)耐高温b)耐腐蚀c)耐磨损d) 塑性好 ()2.对于脆性材料,其抗压强度一般比抗拉强度 a)高b)低c)相等d)不确定 ()3.用10mm直径淬火钢球,加压3000kg,保持30s,测得的布氏硬度值为150 的正确表示应为 a) 150HBW10/ 3000 / 30b)150HRA3000/ l0 / 30 c)150HRC30/3000/10 d) 150HBSl0 /3000/ 30 ()4. 对同一种材料,δ5比δ10 a)大b)小c)相同d)不确定 ()5.下列哪种材料用显微硬度方法测定其硬度。 a) 淬火钢件b)灰铸铁铸件 c) 退货态下的软钢d)陶瓷 ()6.下列哪种材料适合作为机床床身材料 a) 45 钢 b) 40Cr钢c) 35CrMo钢d)灰铸铁

大学期末考试材料力学试题及答案复习过程

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( ) 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。( ) 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式 A F N = σ的条件是( )。 A 、应力小于比例极限; B 、外力的合力沿杆轴线; C 、应力小于弹性极限; D 、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 ) (m ax )(m ax b a σσ 为( )。 A 、1/4; B 、1/16; C 、1/64; D 、16。 h 4h (a) h 4h (b)

3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是。 A、有应力一定有应变,有应变不一定有应力; B、有应力不一定有应变,有应变不一定有应力; C、有应力不一定有应变,有应变一定有应力; D、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。 A:脉动循环应力:B:非对称的循环应力; C:不变的弯曲应力;D:对称循环应力 5、如图所示的铸铁制悬臂梁受集中力F作用,其合理的截面形状应为图(b ) 6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不变,改用屈服极限提高了30%的钢材,则圆轴的( c ) 强度、刚度均足够;B、强度不够,刚度足够; 强度足够,刚度不够;D、强度、刚度均不够。 7、图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将 d 。 A:平动;B:转动 C:不动;D:平动加转动 8、按照第三强度理论,比较图中两个应力状态的相当应力正确的是( a )。(图中应力单位为MPa) 两者相同;B、(a)大; C、(b)大; D、无法判断

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

材料力学期末复习题及答案(汇编)

材料力学期末复习题 一、填空题(共15分) 1、 (5分)一般钢材的弹性模量E = 210 GPa ;铝材的弹性模量E = 70 GPa 2、 (10分)图示实心圆锥杆受扭转外力偶作用,材料的剪切弹性模量为G ,该杆的 man τ=3116D m π,最大单位长度扭转角m ax ?=4132GD m π。 二、选择题(每小题5分,共10分) 1、(5分))]1(2[υ+=E G 适用于: (A )各向同性材料;(B )各向异性材料; (C )各向同性材料和各向异性材料。(D )正交各向异性。 正确答案是 A 。 2、(5分)边长为d 的正方形截面杆(1)和(2),杆(1)是等截 面,杆(2)为变截面,如图。两杆受同样的冲击载荷作用。 对于这两种情况的动荷系数d k 和杆内最大动荷应力m ax d σ, 有下列结论: (A );)()(,)()(2max 1max 21d d d d k k σσ<< (B );)()(,)()(2max 1max 21d d d d k k σσ>< (C );)()(,)()(2max 1max 21d d d d k k σσ<> (D )2max 1max 21)()(,)()(d d d d k k σσ>>。 正确答案是 A 。 三、计算题(共75分) 1、(25分)图示转动轴,已知两段轴的最大剪应力相等, 求:(1)直径比21/d d ; (2)扭转角比BC AB φφ/。 解:AC 轴的内力图: )(105);(10355Nm M Nm M BC AB ?=?= 由最大剪应力相等: 8434 .05/3/;16 /1050016/103003213 23313max ==?=?==d d d d W M n n ππτ 由 ; 5.0)(213232;4122124 2 4 1 1=??=?=?∴?=d d M M M d G d G a M GI l M n n n n BC AB P n ππφφφ (1) (2) D 1 D 2=1.2D 1 500 300Nm M n KNm d 1 d 2

《工程材料力学性能》考试复习题

名词解释 1,循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力 应力状态软性系数材料最大切应力与最大正应力的比值,记为α。: 2,缺口效应:缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。 3,缺口敏感度:金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。 4,冲击吸收功:冲击弯曲试验中试样变形和断裂所消耗的功 5,过载损伤界:抗疲劳过载损伤的能力用过载损伤界表示。 6,应力腐蚀:材料或零件在应力和腐蚀环境的共同作用下引起的破坏 7,氢蚀:由于氢与金属中的第二相作用生成高压气体,使基体金属晶界结合力减弱而导 8,金属脆化。氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。微观断口上晶界明显加宽,呈沿晶断裂。 9,磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。 10,耐磨性:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。 论述 1,影响屈服强度的因素: ①内因:a金属本性及晶格类型b晶粒大小和亚结构c溶质元素d第二相 ②外因:a温度b应变速率c应力状态 2,影响韧脆转变的因素: ①冶金因素:a晶体结构,体心立方金属及其合金存在低温脆性。 b化学成分,1)间隙溶质元素↑→韧脆转变温度↑ 2置换型溶质元素一般也能提高韧脆转变温度,但Ni和一定量Mn例外。 3杂质元素S、P、As、Sn、Sb等使钢的韧性下降 c晶粒大小,细化晶粒提高韧性的原因有:晶界是裂纹扩展的阻力;晶界前塞积的位错数减少,有利于降低应力集中;晶界总面积增加,使晶界上杂质浓度减少,避免产生沿晶脆性断裂。 d纤维组织1)对低强度钢:按tk由高到低的顺序:珠光体→上贝氏体→铁素体→下贝氏体→回火马氏体 2)对中碳合金钢且强度相同,tk:下贝氏体<回火马氏体;贝氏体马氏体混合组织>回火马氏体 3)低碳合金钢的韧性:贝氏体马氏体混合组织>单一马氏体或单一贝氏体 4)马氏体钢的韧性:奥氏体的存在将显著改善韧性钢中夹杂物、碳化物等第二相质点对钢的韧性有重要影响,影响的程度与第二相质点的大小、形状、分布、第二相的性质及其与基体的结合力等性质有关。 3,影响韧度断裂的因素: ①内因:a化学成分: 细化晶粒的元素→强度↑、塑性↑→KIC↑; 强烈固溶强化的元素→塑性↓→KIC↓; 形成金属间化合物并呈第二相析出的元素→塑性↓→KIC↓; b基体相结构和晶粒大小的影响: 基体相结构易于产生塑性变形→KIC↑,如对钢铁材料:面心立方的KIC高于体心立方的KIC。 晶粒大小对KIC的影响与对常规力学性能的影响不同,一般,晶粒细化→KIC↑,但某些情况下,粗晶粒的KIC反而较高。 c夹杂和第二相的影响 非金属夹杂物→KIC↓; 脆性第二相的体积分数↑→KIC↓; 韧性第二相形态和数量适当时→KIC↑; 钢中微量杂质元素(Sb、Sn、As等) →KIC↓ d显微组织的影响 板条马氏体>针状马氏体。 回火索氏体>回火托氏体>回火马氏体

材料力学期末考试试题(B卷)

材料力学期末考试试题(B 卷) 题 号 一 二 三 四 五 六 七 八 九 附 加分 总分 得 分 一、单选或多选题(每小题3分,共8小题24分) 1. 某点为平面应力状态(如图所示),该点的主应力分别为 班级 姓名 A 501=σMPa 、02=σ、03=σ; B 501=σMPa 、502=σMPa 、03=σ; C 01=σ、502=σMPa 、03=σ; D 01=σ、02=σ、503=σMPa 。 正确答案是 2. 关于弹性体受力后某一方向的应力与应变关系有如下论述: 正确的是 。 A 有应力一定有应变,有应变不一定有应力; B 有应力不一定有应变,有应变不一定有应力; C 有应力不一定有应变,有应变一定有应力; D 有应力一定有应变,有应变一定有应力。 3.下面有关体积应变的几个论述,正确的是 。 A 与平均应力成正比; B 与平均应力成反比; C 与三个相垂直面上的正应力之和有关; D 与平均应力无关。 4.下面有关应变能的几个论述,正确的是 。 A 与载荷的加载次序有关,与载荷的最终值无关; B 与载荷的加载次序无关,与载荷的最终值无关; C 与载荷的加载次序有关,与载荷的最终值有关; D 与载荷的加载次序无关,与载荷的最终值有关。 5.关于斜弯曲变形的下述说法,正确的是 。 A 中性层与挠曲线所在的面正交;

B 中性轴过横截面的形心; C 挠曲线在载荷作用面内; D 挠曲线不在载荷作用面内。 6.应用莫尔积分 dx EI x M x M l ? =?) ()(解题时,正确的是 。 A 单位力(广义)只能加在载荷作用点处; B 单位力(广义)只能加在欲求位移的点处; C 只能加单位集中力; D 只能加单位集中力偶。 7.压杆的稳定性,正确的是 。 A 与压杆所承受的轴向压力大小有关; B 与压杆的临界力大小有关; C 与压杆所承受的轴向压力大小无关; D 与压杆的临界力大小无关。 8. 自由落体冲击时的动荷系数,正确的是 。 A 与被冲击物的刚度有关; B 与自由落体下落的高度有关; C 与被冲击物的刚度无关; D 与冲击刚发生时,自由落体下落的速度有关。 二、(14分)一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。试确定 未知的应力分量 y y x xy '''σττ、、的大小与方向。

相关文档
最新文档