实验一 基于遗传算法的函数优化

实验一 基于遗传算法的函数优化
实验一 基于遗传算法的函数优化

人工智能实验报告

实验一基于遗传算法的函数优化

1、实验目的

1)掌握M a t l a b子函数的编写与调用。

2)理解基本遗传算法的原理,并利用程序实现利用遗传算法优化非线性函数的解。

2、实验内容与实验要求

1) 掌握基本遗传算法方法原理。

2) 掌握m a t l a b 子函数的编写方法及调用方法。

3) 根据基本遗传算法方法原理,编写M a t l a b 程序,优化非线性函数的解。 4) 设 f (x ) = 241x x --+ ,求 m a x f (x ), x ∈ [-2, 2],解的精度保留二位小数。 3、实验要求

1) 自己独立编写Matlab 函数。 2) 书写实验报告。

3) 分析实验结果,用图或表描述出迭代次数与适应度函数值的关系曲线。 4、实验设备 1) 计算机 2) Matlab 软件 5、实验结果及分析

(1)编码和产生初始群体

首先需要确定编码的策略,也就是说如何把 [-2, 2] 区间内的数用计算机语言表示出来。采用二进制形式来解决编码问题,即将某个变量值代表的个体表示为一个{0, 1}二进制串。串的长度取决于求解的精度,例如假设求解精度为保留两位小数,由于区间 [-2, 2] 的长度为 4,则必须将该区间分为 400 等分。因为 28<400<29,所以编码所用的二进制串至少需要9位。 编码:二进制串(b 8b 7b 6…b 1b 0)与 [-2, 2] 内实数的一一映射:

1

24

'

2x 9

-+-=x ∑=?=

8

2'x i

i i b

b 8b 7b 6…b 1b 0

二进制串 a=<101000111> 其对应的十进制数为:

327)101000111(x'2==

转化到 [-2, 2] 内的实数为:

56.01

2)

2(2'29=---?

+-=x x

产生初始群体: pop1={

<100011110>, % a1 <001000010>, % a2 <110000000>, % a3 <110000101>} % a4

转化成 [-2, 2] 之间的十进制数即为:

pop1={0.24,-1.48,1.01,1.05}

(2)定义适应函数和适应值

min min (), ()0()0,f x F f x F g x -->?=?

?若其 他

由于目标函数 f (x ) 在 [-2, 2] 内的值有正有负,所以必须通过建立适应函数与目标函数的映射

关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为

以后计算各个体的入选概率打下基础。

定义适应函数 :为了便于计算,这里的 F min 采用了一个特定的输入值,如果取 F min =-1,则 f (x )=1 对应的适应值为 g (x )=2。上述随机产生的初始群体,取 F min =-1,则它们的目标函数值和适应值分别为:

f(pop1)={ -0.02, 4.73, -4.06, -4.30} g(pop1)={ -1.02, 3.73, - 5.06,-5.30}

(3)确定选择标准

1 用适应值比例来作为入选概率。

2 设给定的规模为400的群体 pop={a 1, a 2, ..., a 400},个体 a i 的适应值为 g (a i ),则其入选

概率为

400,...,3,2,1()

()

()(P 400

1

==

∑=i a g a g a i i i i s )

上述随机产生的初始群体,它们的入选概率分别为:

p(pop1)=g(pop1)/sum(g(pop1))

={0,1,0,0}

(4)产生种群

3 将入选概率大的个体选入种群,淘汰概率小的个体,并用概率最大的个体补入种群,得到与原群体大小同样的种群。

4 在上述随机产生的初始群体中,淘汰掉 a 3,再加入 a 2,得到新的种群(选择):

newpop1={

<100011110>, % a1 <001000010>, % a2 <001000010>, % a2 <110010101>} % a4

交叉:

5 交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体

组,组成新的群体。

6 将前面得到的 newpop1 的四个个体两两配对,重复的不配对,进行交叉(可以在任一

位进行交叉):

变异:变异就是通过一个小概率改变染色体位串上的某个基因。

7 现把 jchpop1 中第 3 个个体中的第 5 位改变,就产生了变异,得到了新的群体

pop2 :

pop2={

<001000010>, <100011110>, <010000101>, <101000010>}

然后对新的种群重复上述的选择、交叉、变异,直到满足终止条件为止。 (5)实验结果:

6、附录(Matlab函数)

%遗传算法主函数

%q: 输出最佳个体自变量值

%迭代次数为400

function [q]=GA()

global best_in;

global g_value;

%初始化

initilize();

%初始化最佳个体的适应函数值

for i=1:400

g_value = 0.;

end

%迭代开始

for k=1:1:100

fitness(); %适应函数操作

calculate();%对出现概率小的个体进行淘汰,并保留最佳个体best_in的信息

%计算每一次迭代中最佳个体的适应函数值aa,并赋给g_value(i) aa=0.;

for j=1:9

aa = aa+best_in(j).*2^(j-1);

end

g_value(k)=aa;

selection();%选择操作

crossover();%交叉操作

mutation();%变异操作

end

plotGA();%打印算法迭代过程

%获得最佳个体变量值

q = 0.;

for j=1:9

q = q+best_in(j).*2^(j-1);

end

q = -2+q*4./(2^9-1);

q=-q^2-4*q+1;

%结果展示

fprintf('最大值为:%3.2f\n',q);

clear i;

clear j;

clear q;

%调用函数 1

%初始化种群 pop

% 种群大小 400

% 染色体长度 9

%rand求随机数

%round取整

function initilize()

global pop;

for i=1:400

for j=1:9

pop(i,j)=round(rand);

end

end

clear i;

clear j;

%函数调用 2

%计算出适应函数值g(x)

%原函数f(x)=-x^2-4x+1

%取Fmin=-1

%g(x)=-x^2-4x

%value是pop种群中每个个体的适应值

%并将value中小于零的数都赋值为零

function fitness()

global pop;

global value;

for i=1:400

value(i) = 0.;

for j=1:9

if pop(i,j)==1

value(i)= value(i)+pop(i,j)*2^(j-1); end

end

value(i)=-2.+ value(i)*4./(2^9-1);

value(i)=-value(i)*value(i)-4.*value(i); if value(i)<=0

value(i)=0;

end

end

clear i;

clear j;

%函数调用 3

%求value的平均值

%popl是各数的出现的概率

%table中的最后一个值是所有的value值之和

%保存最优的个体

function calculate()

global pop;

global table;

global popl;

global value;

global avg;

global best_in;

%table的初始化

for i=1:400

table(i)=0.;

end

%求最大的value值的个体的序列号max,并把最优个体放在best_in中

max=1;

for i=1:399

if value(i+1)>value(i)

max=i+1;

end

end

for j=1:9

best_in(j)=pop(max,j);

end

% 求所有value值的总和加到table中求出平均值avg1,再求出均值个体的出现概率avg

for i=1:400

if i==1

table(i)=table(i)+value(i);

else

table(i)=table(i-1)+value(i);

end

end

avg1=table(400)./400;

avg=avg1./table(400);

%求value中每个个体出现的概率并且保留在popl中

for i=1:400

popl(i)=value(i)./table(400);

end

for i=1:400

if popl(i)

for j=1:9

pop(i,j)=best_in(j);

end

end

end

clear i;

clear q;

clear j;

clear k;

clear temp;

clear max;

clear avg1;

%函数调用 4

%将popl(i)=0的个体除去,并补上其相邻的不为0的pop %将新产生的群pop_new最终复制到pop

function selection()

global pop;

global popl;

global best_in;

pop_new(400,9)=0.;

for i=1:400

if popl(i)==0

for j=1:9

pop_new(i,j)=best_in(j);

end

else

for j=1:9

pop_new(i,j)=pop(i,j);

end

end

end

for i=1:400

for j=1:9

pop(i,j)=pop_new(i,j);

end

end

clear i;

clear j;

clear m;

clear n;

%函数调用 5

%单点交叉操作

%pop_size: 种群大小

%chromo_size: 染色体长度

%cross_rate: 交叉概率

function crossover()

global pop

%设置交叉概率为0.6

cross_rate=0.6;

for i=1:2:399

if(rand < cross_rate)

cross_pos = round(rand * 9);

if or (cross_pos == 0, cross_pos == 1) continue;

end

for j=cross_pos:9

temp = pop(i,j);

pop(i,j) = pop(i+1,j);

pop(i+1,j) = temp;

end

end

end

clear i;

clear j;

clear cross_pos;

clear temp;

%函数调用 6

%单点变异操作

%pop_size: 种群大小

%chromo_size: 染色体长度

%cross_rate: 变异概率

function mutation()

global pop;

%设置变异概率为0.01

mutate_rate=0.01;

for i=1:400

if rand < mutate_rate

mutate_pos = round(rand*9);

if mutate_pos == 0

continue;

end

pop(i,mutate_pos) = 1 - pop(i, mutate_pos); end

end

for i=1:400

for j=1:9

pop(i,j)=pop(i,j);

end

end

clear i;

clear j;

clear mutate_rate;

%打印算法迭代过程

%迭代次数400

function plotGA()

global g_value;

x=1:100;

plot(x,g_value);

ylabel('g(x)');

xlabel('x');

title('最佳个体迭代情况');

clear x

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

MATLAB实验报告-遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB教程》试题: A、利用MATLAB设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a c d e f h i k 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 B、设计遗传算法求解f(x)极小值,具体表达式如下: 要求必须使用m函数方式设计程序。 C、利用MATLAB编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D、结合自己的研究方向选择合适的问题,利用MATLAB进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 2 3 4 5 6 8 9 10 11 1 2 1 6 8 3 1 7 9 4 6 7 2 9 4 2 1 1 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i到j的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图由非空点集合和边集合组成,其中 又设的值为,故可表示为一个三元组 则求最短路径的数学模型可以描述为:

使用遗传算法求解函数最大值

使用遗传算法求解函数最大值 题目 使用遗传算法求解函数 在及y的最大值。 解答 算法 使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。 定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。 设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。 然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。 一选择操作 首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。 二交叉操作 首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。 三变异操作 首先是根据变异概率probMutation选择要变异的个体。 变异时先随机生成变异的位置,然后把改位的01值翻转。

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

遗传算法优化相关MATLAB算法实现

遗传算法 1、案例背景 遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。 在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。基因组成的串就是染色体,或者叫基因型个体( Individuals) 。一定数量的个体组成了群体(Population)。群体中个体的数目称为群体大小(Population Size),也叫群体规模。而各个个体对环境的适应程度叫做适应度( Fitness) 。 2、遗传算法中常用函数 1)创建种群函数—crtbp 2)适应度计算函数—ranking 3)选择函数—select 4)交叉算子函数—recombin 5)变异算子函数—mut 6)选择函数—reins 7)实用函数—bs2rv 8)实用函数—rep 3、主程序: 1. 简单一元函数优化: clc clear all close all %% 画出函数图 figure(1); hold on; lb=1;ub=2; %函数自变量范围【1,2】 ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线 xlabel('自变量/X') ylabel('函数值/Y') %% 定义遗传算法参数 NIND=40; %个体数目 MAXGEN=20; %最大遗传代数 PRECI=20; %变量的二进制位数 GGAP=0.95; %代沟 px=0.7; %交叉概率 pm=0.01; %变异概率

各种优化算法求解函数优化问题

各种优化算法求解函数优化问题 1.遗传算法的简单介绍及流程 1.1遗传算法的基本原理 遗传算法 ( Genetic Algorithm ,简称 GA) 是近年来迅速发展起来的一种全新的随机搜索优化算法。与传统搜索算法不同 ,遗传算法从一组随机产生的初始解 (称为群体 )开始搜索。群体中的每个个体是问题的一个解 ,称为染色体。这些染色体在后续迭代中不断进化 , 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体,称为后 代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择一定数量的个 体 ,作为下一代群体 ,再继续进化 ,这样经过若干代之后 ,算法收敛于最好的染色体 ,它很可能就是问题的最优解或次优解。遗传算法中使用适应度这个概念来度量群体中的各个个体在优化计算中有可能达到最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关。 1.2遗传算法的流程 第一步:确定决策变量及各种约束条件,即确定出个体的表现型X和问题的解空间; 第二步:确定出目标函数的类型,即求目标函数的最大值还是最小值,以及其数学描述形式或量化方法,建立其优化模型; 第三步:确定表示可行解的染色体编码方法,即确定出个体的基因型X和遗传算法的搜 索空间。 第四步:确定解码方法,即确定出个体的基因型 X和个体的表现型 X的对应关系或转换方法; 第五步:确定个体时候适应度的量化评价方法,即确定出由目标函数 f(X) 值到个体适应度F(X) 的转换规则; 第六步:设计遗传算子,即确定出选择运算、交叉运算、变异运算等遗传算子的具体操作方法; 第七步:确定出遗传算法的运行参数,即确定出遗传算法的M、 T、 Pc、 Pm等参数。1.3 遗传算法求解函数优化问题中的参数分析 目前,函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用范 例。对于函数优化中求解实数型变量的问题,一般采用动态编码和实数编码的方法来提高其搜

遗传算法实验报告(仅供参照)

人工智能实验报告

遗传算法实验报告 一、问题描述 对遗传算法的选择操作,设种群规模为4,个体用二进制编码,适应度函数,x的取值区间为[0,30]。 若遗传操作规定如下: (1)选择概率为100%,选择算法为轮盘赌算法; (2)交叉概率为1,交叉算法为单点交叉,交叉顺序按个体在种群中的顺序; (3)变异几率为0 请编写程序,求取函数在区间[0,30]的最大值。 二、方法原理 遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索。 三、实现过程 (1)编码:使用二进制编码,随机产生一个初始种群。L 表示编码长度,通常由对问题的求解精度决定,编码长度L 越长,可期望的最优解的精度也就越高,过大的L 会增大运算量。 (2)生成初始群体:种群规模表示每一代种群中所含个体数目。随机产生N个初始串结构数据,每个串结构数据成为一个个体,N个个体组成一个初始群体,N表示种群规模的大小。当N取值较小时,可提高遗传算法的运算速度,但却降低种群的多样性,容易引起遗传算法早熟,出现假收敛;而N当取值较大时,又会使得遗传算法效率降低。一般建议的取值范围是20—100。遗传算法以该群体作为初始迭代点; (3)适应度检测:根据实际标准计算个体的适应度,评判个体的优劣,即该个体所代表的可行解的优劣。本例中适应度即为所求的目标函数; (4)选择:从当前群体中选择优良(适应度高的)个体,使它们有机会被选中进入下一次迭代过程,舍弃适应度低的个体。本例中采用轮盘赌的选择方法,即个体被选择的几率与其适应度值大小成正比; (5)交叉:遗传操作,根据设置的交叉概率对交配池中个体进行基因交叉操作,形成新一代的种群,新一代中间个体的信息来自父辈个体,体现了信息交换的原则。交叉概率控制

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

遗传算法多目标函数优化

多目标遗传算法优化 铣削正交试验结果 说明: 1.建立切削力和表面粗糙度模型 如: 3.190.08360.8250.5640.45410c e p z F v f a a -=(1) a R =此模型你们来拟合(上面有实验数据,剩下的两个方程已经是我帮你们拟合好的了)(2) R a =10?0.92146v c 0.14365f z 0.16065a e 0.047691a p 0.38457 10002/c z p e Q v f a a D π=-????(3) 变量约束范围:401000.020.080.25 1.0210c z e p v f a a ≤≤??≤≤??≤≤? ?≤≤? 公式(1)和(2)值越小越好,公式(3)值越大越好。π=3.14 D=8 2.请将多目标优化操作过程录像(同时考虑三个方程,优化出最优的自变量数值),方便我后续进行修改;将能保存的所有图片及源文件发给我;将最优解多组发给我,类似于下图(黄色部分为达到的要求)

遗传算法的结果:

程序如下: clear; clc; % 遗传算法直接求解多目标优化 D=8; % Function handle to the fitness function F=@(X)[10^(3.19)*(X(1).^(-0.0836)).*(X(2).^0.825).*(X(3).^0.564).*(X(4).^0. 454)]; Ra=@(X)[10^(-0.92146)*(X(1).^0.14365).*(X(2).^0.16065).*(X(3).^0.047691).*( X(4).^0.38457)]; Q=@(X)[-1000*2*X(1).*X(2).*X(3).*X(4)/(pi*D)];

遗传算法实验报告17643

信息与管理科学学院计算机科学系 实验报告 课程名称:人工智能 实验名称:遗传算法问题 姓名:苏鹏海贾美丽赵妍张汉昭 学号:1510003063 1510003024 班级:计科实验室:软件技术实验室指导教师:张慧日期: 2016.11.09

&&遗传算法问题 一、实验目的 1.熟悉和掌握遗传算法的原理、实质; 2.学会使用遗传算法解决问题; 3.学会编写遗传算法程序寻找函数最值; 二、实验原理 遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化构成进行的数学方式仿真。在遗传算法中染色体对应的是一系列符号序列,在标准的遗传算法(即基本遗传算法)中,通常用0, 1组成的位串表示,串上各个位置对应基因座,各位置上的取值对应等位基因。遗传算法对染色体进行处理,染色体称为基因个体。一定数量的基因个体组成基因种群。种群中个体的数目为种群的规模,各个体对环境的适应程度称为适应度。 三、实验内容 用遗传算法求根号2,也就是求方程f(x)=x*x-2=0的正整数解,x=1时f(1)<0,x=2时f(2)>0,由介值定理,则1到2中间存在一个根,根据代数基本定理和根的对称性知这就是我们要找的根,由目标函数得到适应度函数,我们选择个体都在[1,2]之间,那适应度函数我可以取 j(x)=40/(2+|x*x-2|)-10,由x的取值范围知j的范围是(0,10) x和y交叉就用取平均(x+y)/2,交叉概率取0.9,变异概率为0, 四、步骤分析 1.选择目标函数,确定变量定义域及编码精度,形成编码方案 2.随机产生一个规模为(即该种群中含有个体)的种群 2 3.个体评价:计算群体P(t)中各个个体适应度 4.选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传 到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建 立在群体中个体的适应度评估基础上的。(选择运算用轮盘赌算法) 5.对被选择进入匹配池中的个体进行交叉操作,形成新种群 6.以小概率在种群中选择个体进行变异操作形成新种群 7.计算每个个体的适值 8.根据适值概率选择新个体形成新种群 9.检查结束条件,若满足则算法结束,当前种群中适值最高的个体即所求 解;否则转3

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

用遗传算法求解Rosenbrock函数最优解实验报告

姓名学号 实验 成绩 华中师范大学计算机科学系 实验报告书 实验题目:用遗传算法求解Rosenbrock函数的最大值问题课程名称:智能计算 主讲教师:沈显君 辅导教师: 课程编号: 班级:2011级 实验时间:2011.11

用遗传算法求解Rosenbrock函数最大值问题 摘要: 本文利用遗传算法研究了求解Rosenbrock函数的最大值问题.在较多的计算机模拟实验结果中表明,用遗传算法可以有效地解决这一问题.文中分析了一种基于遗传算法对Rosenbrock函数最大值问题的求解,得到了适于解决此问题的合理的遗传操作,从而为有效地解决最速下降法所不能实现的某一类函数代化问题提供了一种新的途径.通过对基于遗传算法对Rosenbrock函数最大值问题的求解,进一步理解遗传算法对解决此类问题的思想。 关键词:遗传算法,Rosenbrock函数,函数优化,最速下降法。 Abstract: This paper deals with the maximum of Rosenbrock s function based ongenetic algorithms. The simulated results show that the problem can be solved effectivelyusing genetic algorithms. The influence of some rnodified genetic algorithms on searchspeed is also examined. Some genetic operations suitable to the optimization technique areobtained, therefore, a novel way of solving a class of optimizations of functions that cannot be realized using the method of steepest descent is proposed.Through dealing with the maximum of Rosenbrock s function based ongenetic algorithms,a better understanding of the genetic algorithm to solve such problems thinking. Keyword:ongenetic algorithms,Rosenbrock function,function optimization,Steepest descent method

实验三、基本遗传算法设计实验

实验三、基本遗传算法设计实验 一、实验目的 1、了解基本遗传算法全局优化一般思路 2、掌握选择、交叉、变异算子如何实现 3、轮盘赌方法(roulette wheel model) 如何用程序方法实现 4、适应度函数设计方法 二、实验内容 1、初始化处理。 2、神经网络的MA TLAB实现 三、实验步骤 1、熟悉MATLAB开发环境 2、输入参考程序 3、设置断点,运行程序,观察运行结果 四、参考程序 1、初始化 function result=Initial(length) for i=1:length r=rand(); result(i)=round(r); end 2、Matlab 实现----十进制与二进制转换 ?function y=Dec(a,b,x,L) ?base=2.^((L-1):-1:0); ?y=dot(base,x); ?y=a+y*(b-a)/(2^L-1); 3、Matlab 实现---适应度函数计算 ?function F=fitness(x) ?F=20+x+10*sin(4*x)+8*cos(3*x);

4、Matlab 实现----GA() function [xv, fv]=GA(fitness,a,b,NP,NG,pc,pm) L=24; %L=ceil(log((b-a)/eps+1))L=24 x=zeros(NP,L); for i=1:NP; x(i,:)=Initial(L); fx(i)=fitness(Dec(a,b,x(i,:),L)); end for k=1:NG sumfx=sum(fx); px=fx/sumfx; ppx=0; ppx(1)=px(1); for i=2:NP ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; break; end end SelMother=floor(rand()*(NP-1))+1; posCut=floor(rand()*(L-2))+1; r1=rand(); if r1<=pc nx(i,1:posCut)=x(SelFather,1:posCut); nx(i,(posCut+1):L)=x(SelMother,(posCut+1):L); r2=rand(); if r2<=pm posMut=round(rand()*(L-1)+1); nx(i,posMut)=~nx(i,posMut); end else nx(i,:)=x(SelFather,:); end

遗传算法实验报告

遗传算法实验报告 专业:自动化姓名:张俊峰学号:13351067 摘要:遗传算法,是基于达尔文进化理论发展起来的一种应用广泛、高效的随机搜索与优化方法。本实验利用遗传算法来实现求函数最大值的优化问题,其中的步骤包括初始化群体、个体评价、选择运算、交叉运算、变异运算、终止条件判断。该算法具有覆盖面大、减少进入局部最优解的风险、自主性等特点。此外,遗传算法不是采用确定性原则而是采用概率的变迁规则来指导搜索方向,具有动态自适应的优点。 关键词:串集最优化评估迭代变异 一:实验目的 熟悉和掌握遗传算法的运行机制和求解的基本方法。 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下: (1)随机产生一个确定长度的特征字符串组成的初始种群。。 (2)对该字符春种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止: a计算种群中每个个体字符串的适应值; b应用复制、交叉和变异等遗传算子产生下一代种群。 (3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一 个解。 二:实验要求 已知函数y=f(x 1,x 2 ,x 3 ,x 4 )=1/(x 1 2+x 2 2+x 3 2+x 4 2+1),其中-5≤x 1 ,x 2 ,x 3 ,x 4 ≤5, 用遗传算法求y的最大值。三:实验环境

操作系统:Microsoft Windows 7 软件:Microsoft Visual studio 2010 四:实验原理与步骤 1、遗传算法的思想 生物的进化是以集团为主体的。与此相对应,遗传算法的运算对象是由M个个体所组成的集合,称为群体。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代过程,第t代群体极为P(t),进过一代遗传和进化后,得到第t+1代群体,他们也是由多个个体组成的集合,记做P(t+1)。这个群体不断地经过遗传和进化操作,并且每次都按照有优胜劣汰的规则将适应度较高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X,它所对应的表现性X将达到或接近于问题的最优解。 2、算法实现步骤 ①、产生初始种群:产生初始种群的方法通常有两种:一种是完全随机的方法产生的,适合于对问题的解无任何先验知识的情况;另一种是将某些先验知识转变为必须满足的一组要求,然后在满足这些要求的解中再随机地选择样本,t=0,随机产生n个个体形成一个初始群体P(t),该群体代表优化问题的一些可能解的集合; ②适应度评价函数:按编码规则,将群体P(t)中的每一个个体的基因码所对应的自变量取值代入目标函数,算出其函数值f,i=1,2,…,n,f越大,表示该个体有较高的适应度,更适合于f所定义的生存环境,适应度f为群体进化提供了依据; ③选择:按一定概率从群体P(t)中选出m个个体,作为双亲用于繁殖后代,产生新的个体加入下一个群体P(t+1)中。此处选用轮盘算法,也就是比例选择算法,个体被选择的概率与其适应度成正比。 ④交叉(重组):对于选中的用于繁殖的每一个个体,选择一种交叉方法,产生新的个体;此处采取生成随机数决定交叉的个体与交叉的位置。 ⑤变异:以一定的概率Pm从群体P(t+1)中随机选择若干个个体,对于选中的个体随机选择某个位置,进行变异; ⑥对产生新一代的群体返回步骤③再进行评价,交叉、变异如此循环往复,使群体中个体的适应度和平均适应度不断提高,直至最优个体的适应度达到某一限值或最优个体的适应度和群体的平均适应度不再提高,则迭代过程收敛,算法结束。 五:实验结果 实验结果的显示取决于判断算法终止的条件,这里可以有两种选择:1、在程序中设定迭代的次数;2在程序中设定适应值。本实验是在程序中实验者输入需要迭代的次数来判断程序终结的。

人工智能遗传算法实验报告

人工智能实验报告 学号: 姓名: 实验名称:遗传算法 实验日期:2016.1.5

【实验名称】遗传算法 【实验目的】 掌握遗传算法的基本原理,熟悉遗传算法的运行机制,学会用遗传算法来求解问题。 【实验原理】 遗传算法( Genetic Algorithm )是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。 遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化, 如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来 越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学 的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 遗传算法程度流程图为:

【实验名称】遗传算法 【实验目的】 掌握遗传算法的基本原理,熟悉遗传算法的运行机制,学会用遗传算法来求解问题。 【实验原理】 遗传算法( Genetic Algorithm )是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。 遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化, 如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来 越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学 的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 遗传算法程度流程图为:

基本遗传算法及其在函数优化中的作用

《人工智能及其应用大作业(一)》 题目:基本遗传算法及其在函数优化中的作用 学号: 姓名:

基本遗传算法及其在函数优化中的应用 摘要: 从遗传算法的编码、遗传算子等方面剖析了遗传算法求解无约束函数优化问题的一般步骤,并以一个实例说明遗传算法能有效地解决函数优化问题。本文利用基本遗传算法求解函数优化问题,选用f(x)=xsin(10πx)+2.0,取值范围在]2,1 [ 中,利用基本遗传算法求解两个函数的最优值,遗传算法每次100代,一共执行10次,根据运算结果分析得到最优解。 关键字:遗传算法选择交叉变异函数优化 1.前言 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。遗传算法是一种群体型操作,该操作以群体中的所有个体为对象。选择(Selection)、交叉(Crossover)和变异(Mutation)是遗传算法的3个主要操作算子,它们构成了所谓的遗传操作(genetic operation),使遗传算法具有了其它传统方法所没有的特性。 1.2 遗传算法的特点 其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。 1.3遗传算法的应用 函数优化,组合优化,机器人智能控制,及组合图像处理和模式识别等。 2.基本遗传算法 2.1简单遗传算法的求解步骤 Step1:参数设置及种群初始化; Step2:适应度评价; Step3:选择操作; Step4:交叉操作; Step5:变异操作; Step6:终止条件判断,若未达到终止条件,则转到Step3; Step7:输出结果。 2.2停机准则

相关文档
最新文档