热水供暖系统中循环水泵的选择和使用

热水供暖系统中循环水泵的选择和使用
热水供暖系统中循环水泵的选择和使用

热水供暖系统中循环水泵

摘要:本文就循环水泵的选择原则、参数确定和选择中的几个问题进行分析,指出泵的特性与热网特性不相匹配的原因和解决的方法。对并联泵的效果和管路联接方式进行了分析计算后,提出一些建设性意见和建议。

关键词:循环水泵并联管路联接

1前言

由热源设备、热网和室内采暖系统组成的热水供暖系统是一个系统工程、一个整体,忽略任何一部分都会严重影响系统的供暖效果。循环水泵是联接热源、热网和室内采暖系统的枢纽设备,通过它把温暖送给千家万户,所以,循环水泵的性能和参数的合理性,就显得格外重要。因此合理选择和正确安装使用循环水泵,是取得较为满意的供暖效果的关键。作者在近几年的实践中,遇到因循环水泵选择和使用不当而影响供暖效果的现象有以下几种:1循环水泵出口端的阀门不能百分之百打开,只能按电动机的允许额定电流控制阀门的开度,否则会引起电动机的实际运行电流超过其允许的额定电流而烧坏电动机。2循环水泵的使用往往不是一台,而是二台、三台、多台并联使用,更有七台泵同时并联使用的先例,而且多台并联使用,有的是同型号、同性能,也有型号不同、性能也不相同。1管道系统与泵的联接方式各异,不在同一位置、不在同一平面,造成系统不顺、阻力增加。4循环水泵的出力达不到设计参数等。在排除循环水泵因制造原因而达不到实际参数不可预见外,我们应根据供暖系统提供的参数,合理选择适用本系统的循环水泵的型号和参数,最大可能地满足系统要求。

2循环水泵的选择

2.1选择的原则

循环水泵在供暖系统中所占比例,无论是容量还是设备数量都是很大的,运行中的问题也比较多。因此,正确选择、合理使用和管理,确保正常供暖和提高经济效益是十分重要的。选择的原则是:设备在系统中能够安全、高效、经济地运行。选择的内容主要是确定它的型式、台数、规格、转速以及与之配套的电动机功率。

选择时应具体考虑以下几个原则:1所选的循环泵应满足系统中所需的最大流量和扬程,同时要使循环水泵的最佳工况点,尽可能接近系统实际的工作点,

且能长期在高效区运行,以提高循环水泵长期运行的经济性。2力求选择结构简单、体积小、重量轻、效率相对比较高的循环水泵。1力求运行时安全可靠、平稳、振动小、噪音低、抗汽蚀性能好。4选择适用于流量变化大而扬程变化不大的水泵,即G—H特性曲线趋于平坦的水泵。

2.2循环水泵的参数

2.2.1流量1根据设计热负荷计算流量;2根据室内采暖系统形式,在没有任何调节手段时,计算因重力或温降引起的垂直失调,并由此能克服或基本上克服这种垂直失调所需的最佳流量值;3根据室内采暖系统形式,在具备有调节功能手段且行为节能意识尚未具备时,可暂按2条确定流量。待行为节能意识到位或基本上到位后,届时再采用调速泵的调节实现节能,为时不晚。

必须指出,最佳循环流量值的概念不是“大流量”,而是建立在目前的室内系统尚不具备调节手段的前提下,把垂直失调率控制在15%以内,层间室内温度的差值控制在0.2—0.4℃之间的最小流量值。

2.2.2扬程1确定热源设备系统或换热设备系统的阻力:锅炉房系统应控制在15mH2O以内,换热设备系统应控制在10mH2O以内。2热力管网的最不利环路阻力,主干线按经济比摩阻30.70pa/m进行计算,局部阻力可考虑1.15—1.20的附加。3室内系统的阻力:一般为2—3 mH2O,水平单管串联在八组以上和共用立管分户控制系统应考虑3—5mH2O。4系统富裕压力一般为3—5mH2O。

2.2.3热水供暖系统的介质温度和工作压力,应根据设计计算而定,而不是锅炉的额定温度和压力。

为获得上述参数,新建供暖系统可通过计算求得,对扩建和改建的供暖系统,最好是对系统管路进行实际地测定,最后用理论计算校核,这样比较可靠。

2.3选择方法

利用“水泵性能表”选择水泵,目前市场水泵型号、品种繁多,适合于供暖系统的水泵有单级单吸或单级双吸立式管道泵、单级单吸卧式离心泵、直联单级单吸卧式离心泵、轴开式单级双吸卧式离心泵和单级双吸中开蜗壳式离心泵等。

选择步骤:

1原有计算的流量和扬程可不再进行附加。

2在已定的水泵系列表中找某一型号的泵,查找的流量和扬程与“水泵性能表”列出的代表性(一般为中间一行)的流量和扬程一致,或者虽不一致,但在上下两行工作范围内。如果有两种以上型号的泵都能满足要求,那就要权衡分析,通常应选其中比转速(ns)较高的、结构尺寸小、重量轻的泵。

3具体选定了泵的型号后,要检查泵在该系统中运行时的工作情况,观察它的流量和扬程变化范围,是否处在高效区内工作。如果运行工况点偏离高效区很远,则说明泵在该系统中工作经济性差,最好另行选择。

2.4循环水泵特性与热网特性的匹配

循环水泵的工作特性曲线能否与热网特性曲线相交在设计点上是很重要的,实践中,常出现热网特性曲线右移,表现在泵出口端的阀门不能全开,促使出口端的阀门长期处在节流状态,水流不断冲刷阀芯,一旦阀芯被冲刷变形,轻者失去关断功能,重者会失去节流作用,致使电机被过流烧坏,酿成事故。再说,水泵出口端的阀门主要作用是关闭,不允许长期大关度节流使用。造成这种状况的原因,有以下几方面:1凭经验过大的估算管网阻力,而不是进行系统的计算。2新建管网按规划负荷计算阻力,而实际运行负荷差距很大。3原有旧管网的管径比正常偏大,或利用二次网的管道改做一次管网使用。4水泵配用电机功率偏小,市场经济后,厂家只按泵的最高效率点的流量值配用电机功率。

为达到目的,针对上述的情况,采用以下四种措施组织实施:

1换水泵:重新选择循环水泵,满足热网所需流量和扬程的需要。

2换电动机,更换比原功率大一级的电动机,如原为90kw的电动机可更换为110kw或132kw的电动机。

3改变运行方式:如果原来系统配备的循环水泵是一开一备或二开一备,则应将备用泵开起来,就有可能满足系统要求。

4切削叶轮:切削叶轮直径后的水泵特性曲线与热网特性曲线应尽可能匹配。叶轮允许切削量为15—20%,即(D1一D2)/D1=0.15—0.20,当叶轮外径切削到0.9D1范围内,泵的效率几乎不变,当切削叶轮直径至0.8—0.9D1时,泵的效率下降1%左右。叶轮切削后泵的性能按下式计算:

G2=G1·D2/D1

H2=H1(D2/D1)2

N2= N1(D2/D1)3

式中:D1、D2—分别为叶轮切削前、后的叶轮直径(mm)G1、H1、N2—分别为叶轮直径切削前泵的流量(m3/h)、扬程(m)和功率(kw)

G2、H2、N2—分别为叶轮直径切削后泵的流量(m3/h)、扬程(m)和功率(kw)。

上述四项措施,最可取的方法就是切削叶轮,促使水泵特性曲线与热网特性曲线相匹配。这样可以既经济又快捷的满足供暖系统的要求。

2.5几点建议

2.5.1设有二台(含二台)以上循环水泵的供暖系统可不设备用泵,目前市场上较好的水泵,其连续运行时数均在10000小时以上,且安全可靠。

2.5.2直联单级单吸离心泵,适宜选用功率在200kw以下为好,流量在400m3/h以上时,应选用双涡室果壳水泵,因为它可以很好地消除叶轮在泵壳中工作的径向力,提高泵组的使用可靠性和寿命,同时可以降低因大流量而引起的噪声,该泵体积小、重量轻、效率高、不需设地脚螺栓,在同型号水泵中,推荐SB(R)—ZL型系列水泵。

2.5.3流量在800m3/h以上时,宜选用轴开式或中开式单级双吸离心泵,特别是流量大于1200m3/h、扬程大于50 mH2O的泵,应选用单级双吸离心泵为好。因为双吸泵在同比转速时的效率比单吸泵高出4—6%,并且运行平稳。轴开式单级双吸离心泵,推荐SBR型系列水泵,中开式单级双吸离心泵和中开式大容量单级双吸离心泵,推荐SL0(w)系列和0mega系列水泵。

2.5.4立式单级单吸管道泵和BA系列单级单吸泵,宜在功率45kw以下选用,由于泵的效率相对比较低,经济性差,宜慎选用。

2.5.5选用机械密封水泵,因为机械密封比填料密封的密封性能好,泄漏量少,轴与轴套不易损坏。机械密封的机械损失功率较小,约为填料密封的10—15%,所以近几年,机械密封被广泛使用在离心式水泵上。

2.5.6循环水泵的扬程必须认真计算,决不是越大越好,扬程偏高不仅轴功率急剧增加,浪费电能,重要的是泵的特性曲线与热网特性曲线不能匹配,严重影响供暖效果,但这种现象在行业中时有发生,望引以为戒。

3循环水泵的并联效果

3.1同性能(同型号)泵并联

3.1.1并联后的流量是单台泵额定流量的迭加:在供暖的特定密闭循环系统中,当网路特性曲线较平坦时(图1中2#线),即系统内管道实际阻力偏小,运行一台泵时泵出口端的阀门不能全部打开,二台泵并联后,泵出口端的阀门能全部打开,此时两台泵并联后的总流量可接近于两台泵额定流量的迭加数。如果二台泵并联后,泵出口端的阀门还不能打开,须启动第三台泵并联后,泵出口端的阀门才能全部打开时,此时三台泵并联后的总流量可接近于三台泵额定流量的迭加数。

3.1.2不适宜采用并联:在供暖的特定密闭循环系统中,当网路特性曲线较陡时(图1中3#线),说明系统内管道的实际阻力偏大,并联泵的效果特别差,此时应对管网阻力进行分析计算,找出阻力特别大的管段,采用泵串联的方式,可有效克服该管段的阻力,改善供暖效果。

3.1.3并联泵数量不宜超过三台:在供暖的特定密闭循环系统中,当网路特性曲线属正常时(图1中1#线),即管道比摩阻按规范30—70pa/m计算,单台泵运行时泵出口端的阀门能全部打开,此时如果启动第二台泵,二台泵并联后的总流量是单台泵额定流量的1.57倍,损失21.5%,如果继续启动第三台泵,那么三台泵并联后的总流量是单台泵额定流量的1.8倍,损失40%,若是再增加并联泵数量,其效果必然越来越差,因此,在正常的网路系统中,我们推荐单台泵运行,必要时最多不宜超过三台泵并联运行。

3.2不同性能泵的并联两台不同性能泵的并联时,当网路特性曲线较平坦(图1中2#线)即系统内管道的实际阻力偏小,其总流量接近于两台泵额定流量之和;当网路特性曲线较陡时(图1中3#线),说明系统管道内实际阻力偏大,大小两台泵并联后,小容量的泵就没有效果。同样,当网路特性曲线属正常时(图1中1#线),大小两台泵并联后,小容量泵的作用也是微不足道的。

4循环水泵与系统的管路联接

4.1水的高流速引起泵出入口管段附件阻力骤增热网系统中主干线的水流速是遵照规范要求比摩阻在30—70Pa/m范围内进行计算的,那么水泵出入口管段的水流速应该如何控制,依据管段附件(阀门、弯头等)的阻力与水流速平方

成正比的关系,即,R=ζ·V2/2g。泵的生产厂家要求把泵的出入口管段水流速控制在2~2.5m/s最大不得超过3.0m/s的规定,并要求在水泵的出入口段按计算的水流速配置扩散管。扩散管一般由厂家随机配给,如果自行加工配置,需符合图2要求,α角度不能太大,太大容易产生涡流,α角度也不能太小,太小会增加阻力,因此,需控制在7°<α<12°为好。

在实际操作中,由于忽视水流速对泵出入口管段附件的阻力影响,对扩散管选用和管路附件的配置不够重视;促使泵的出入口管段内的附件因水流速偏高,产生较大的阻力,致使热网系统不能得到足够的流量和资用压头而影响供暖效果。现举例说明:

某工程热水供暖系统选用一台SB—ZL250-200-370A型泵,参数为G=800m3/h、H=32m、N=90km、η=86%、转速=1450r/min。

首先按泵的进口管DN250和出口管加扩散管后DN250计算水流速:

V250=3.69×10-4=4.72m/s

查热水网路局部阻力当量长度表得:

计算泵出入口管段的附件阻力损失:

∑R250=×ζ=×(0.5×2+0.3+0.5+7.0+1.5+2.0)=13.98 mH2O

如果按泵的进口管DN300(加扩散管后)出口管ON300(即扩二级的扩散管后)计算水流速:

V300=3.69×10-4=3.28 m/s

再计算管段内的附件阻力损失:

∑R300=×(0.5×2+0.3×2+0.5+7.0+1.5+2.0)=6.92 mH2O

由此看来水流速对循环水泵出入口管段内的附件阻力损失较大,尤其是止回阀,阻力损失分别为R250=7.96mH2O和R300=3.84mH2O。为此,我们去冬在北京中纺局供热系统、天津武清供热站、山东胶州热力公司(一次网)、和青岛海洋大学供热中心的系统中,将原有止回阀取消后进行供热,取得了很好效果。如天津武清供热站使用一台132km轴开式单级双吸离心泵供暖43万m2,效果良好;青岛海洋大学在相对位差60米的坡形地理上,使用一台132km中开式单

级双吸离心泵供暖25万m地取得很好的供暖效果。

关于止回阀的作用,主要是防止水倒流而引起泵的叶轮倒转,特别是突然停电会造成这种现象。按规范要求:水泵的正常启动和停止,须关闭泵出口阀后,才能操作泵的启停。据泵业专家和厂方介绍,泵的叶轮在短时间内倒转(10分钟以内),对泵没有影响,即使是单吸离心泵的叶轮螺母,也不会因短时间倒转而松动。至于可否取消止回阀,还有待商讨。但在泵的出入口段增加扩散管,降低水流速,减少阻力损失,提高泵的运行效率,应必须做好,为此,建议在泵的入口管段,水流速控制在2m/s以内;在泵的出口管段,水流速控制在2.5m/s 以内。

4.2管路的联接方式

循环水泵的进出口管道与系统母管的联接,习惯做法为T字形接口,这样既不合理,又增加阻力,按4.1节的例题计算T字形接管的阻力,分别为R250=3.98mH2O和R300=1.9mH2O。如果充分利用文丘里的引流原理,把管路联接方式改为如图3的接口,那么就可以把原来并联运行的流体干扰的不利因素,转换为引流的有利因素,这样可把这部分的局部阻力降到0.5mH2O左右。

实践证明,这种管路的联接方式,虽然会给施工安装带来一些不便,但长期的运行效果,其经济性是非常可贵的。

另外,在安装管路附件,如软接头、止回阀、蝶阀及过滤器等,要注意将这些附件装在泵进出口的扩散管后的大口径上,不要装在小口径管上,否则会增加更大的阻力。附件之间的安装要留有足够的距离,特别是蝶阀和止回阀之间,常常因距离太小,影响蝶阀和止回阀的开启,致使系统中的流量和扬程不足,影响供暖效果,这样的教训还时有发生,望引以为戒。再有联接的所有管道和附件,不允许将重量作用于水泵上,应另设支架固定为好。

5循环水泵的运行管理

5.1安装调试

供暖用的循环水泵,一般为单级单吸或单级双吸离心泵,水泵由泵厂整装出厂,即水泵、电机与底板组成整体设备,所以安装比较简单,根据安装的场合,遵照水泵安装的要求,进行就位安装。

调试前必须彻底清除管道内水中的垃圾、杂物,包括锈屑、焊渣、泥浆等,

否则在运转时,大杂物吸入水泵体内会损坏叶轮、主轴变形;水中的细尘,特别是硬质的微粒,会使机械密封摩擦环摩毛而损坏。所以,必须严格清除水中的垃圾,使水清澈后才能投入运行。

采用机械密封的水泵,切忌在断水的情况下运转,校正转向时,也只可作瞬间点动。机械密封的二个光滑摩擦面,是靠水膜润滑的,由于二端有压差,所以运转中会有微渗水,并从轴承套下面的小孔流出,微量的水滴不到地上就会被蒸发,如果发现滴水连续不断,说明机械密封已经被摩毛或裂开;必须检修更换新的机械密封件。

开泵前,只允许在泵出口端阀门关闭的状态下才能进行,当水泵转速达到最高值时,才可以慢慢开启阀门;直至开足。停泵前,须关闭泵出口端的阀门后才能实行停泵操作,但不允许较长时间地在泵进出口管路阀门关闭的状态下运行。

在试运行的过程中,必须观察并记录水泵进出口端的压差,这个静压差加上动压即为水泵的扬程,由于动压在一般情况下较小(约为0.2—0.3m),所以在压力表上反映的静压差,可视为水泵的扬程。由于我们选用水泵的G—H特性曲线比较平坦,当实际扬程高出水泵额定扬程时,说明系统阻力偏大,流量会急剧下降。发现这种情况,要及时分析查找管路系统的原因,一定要把阻力降下来,才有可能满足系统中的流量要求。

5.2运行管理

设备的操作和维护人员,必须严格遵守设备操作、使用和维护检修的规程。循环泵在运行中,每班必须检查泵的运行情况,包括泵体与电机振动、声响、轴承的外壳温度、密封漏水和运行电流值,并做好记录。

离心泵的检修可以实施状态计划修理,就是通常讲的状态维修,这种维修方式是根据日常检测结果,确定了设备状态的基础上进行的预防性维修。供暖用的循环泵,一年中只有冬季使用,在停运的这段时间内,可根据冬季运行中发现的问题,有针对性地修理为宜,不需拆的尽量不拆。如机械密封不拆是好的,拆了再装有可能就漏水,所以在检修中既有预防性又有计划性,如果在运行中发现泵的性能下降,应拆下叶轮检查,很可能叶轮已被汽蚀损坏,需要更换叶轮;如果在运行中发现机械密封漏水,则需要更换机械密封件;如果在运行中发现轴承声

响振动较大,则需要更换轴承等等。如果一切很好,只需拆下轴承盖加些润滑脂就可以了。

运行中的另一个问题是汽蚀,每一种型号的离心泵,都有一定的必须汽蚀余量,如果泵在运行中产生噪音和振动,并伴随有流量、扬程和效率的降低,有时甚至不能工作,拆开检查时可发现叶片人口边靠近前盖板和叶片靠近进出口处和前后盘上有麻点或蜂窝状破坏,这就是由于汽蚀引起的破坏,在实际运行中要引起注意。

循环泵选型计算书(1)

水泵选型计算书 一、设计工况 已知太原某建筑面积A为3.3万m2,楼高24层,每层3米,5层以上为高区,以下为低区,供暖面积各为1.25万m2,预留0.8万m2供暖住宅。现设20台GG-399型96kW锅炉。 二、设计参数 2.1气象资料(太原) 采暖室外计算温度-12℃ 采暖室外平均温度-2.7℃ 采暖期天数135天 室外平均风速3m/s 2.2室内设计参数 采暖室内计算温度18℃ 2.3采暖设计热负荷指标 2.3.1采暖设计负荷指标qs(W/m2) 46.37 在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其他供热设施供给的热量。 2.3.2耗热量指标qh(W/m2) 32 全国主要城市采暖期耗热量指标和采暖设计热负荷指标 城市名采暖期 天数(d) 采暖室外 计算温度 (d) 采暖室外 平均温度 (d) 节能建筑现有建筑 耗热量指标 q h(W/m2) 设计负荷指 标q h(W/m2) 耗热量指标 q h(W/m2) 设计负荷指 标q h(W/m2) 北京120 -9 -1.6 20.6 28.37 31.82 43.82 天津119 -9 -12 20.5 28.83 31.54 44.36 石家庄112 -8 -0.6 20.3 28.38 31.23 43.66 太原135 -12 -2.7 20.8 30.14 32 46.37 沈阳152 -19 -5.7 21.2 33.10 32.61 50.91 大连131 -11 -1.6 20.6 30.48 31.69 46.89 长春170 -23 -8.3 21.7 33.83 33.38 52.04 哈尔滨176 -26 -10 21.9 33.69 34.41 52.93 济南101 -7 -0.6 20.2 31.38 29.02 45.08

供热燃气热水锅炉选型方案说明

供热燃气热水锅炉选型方案说明 天水成纪房地产开发公司拟对已建(分路口小区),供热采暖系统进行改造,经对小区现场实地勘察,以及和建设方对采暖问题的相关探讨,现将供热设备选型的基本参数及热力数据提供如下: 一.供热采暖的基本参数 1.供热总面积:70000m2 2.采暖形式均为地板辐射式散热 3.现有供热设备为地源热泵机组 4.单独为20000m2(两栋高层),采用燃气热水锅炉供热的可行性方案。 二.采暖热负荷的概算 采用面积热指标法对采暖热负荷进行计算,按下式进行 Q=q i F×10-3 根据《采暖通风与空气调节设计规范》GBJ19及《城市热力网设计规范》CJJ34,按当地最大热指标取值为75W/m2 的理论计算值。公式中: F—建筑面积(m2) Q—建筑物采暖设计热负荷(KW), q i—建筑物采暖面积热负荷(W/ m2) 1.总热功率:5250KW=5.25MW(取值5.6MW) 2.总耗热量:450×104 Kcal (65Kcal/m2.C0)

3.热源条件:燃气工业热水锅炉 4.供热型式;由锅炉房提供热源通过二次换热系统,为小区楼房输送地暖供热。 三.锅炉房水循环量理论计算值(G) ?t/h G=0.86?K?Q C?[ tg?th] 式中 Q————锅炉额定热功率 K————管网散热损失系数,取1.05 C————管网热水的平均比热容,kJ/Kg?0c tg————热水供水温度550C(地暖) th————热水回水温度450C(地暖) 代入数据计算值为:G=337m3/h 11.小区供热形式为地暖系统,属低温大流量辐射供热,供热锅炉房循环水量比传统散热器采暖系统要大,按照小区楼房分布位置及楼层高度参数,通过二次换热系统采取分区供热型式,能够满足小区整体供热质量和效果。 2.供热系统阻力由沿程压力损失,局部压力损失及设备内阻等因素决定,以输送管道规格及配件等数据计算确定。在循环水泵选型时综合考虑。 3.二次换热机组在循环水泵选型时应综合考虑上述流量,管道系统阻力及扬程的设计参数。 四.燃气热水锅炉选型 1.为保证小区采暖质量,综合考虑地暖系统的实际耗热

循环水泵选型

循环水泵选型—美宝环保 循环水泵广泛用于冶金、电站、发电厂、轻纺、化工等领域,在管路或封闭回路中的水循环或热换介质的输送系统中所应用的循环水泵。但是循环水泵选型是很多人的难题,下面美宝环保给大家分享循环水泵选型依据,帮助大家选出合适的循环水泵。 循环水泵选型选型依据,应根据工艺流程,给排水要求,从五个方面加以考虑,既液体输送量、装置扬程、液体性质、管路布置以及操作运转条件等。 1、流量是选循环水泵的重要性能数据之一,它直接关系到整个装置的的生产能力和输送能力。选择循环水泵时,以较大流量为依据,兼顾正常流量,在没有较大流量时,通常可取正常流量的1.1倍作为较大流量。 2、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5—10余量后扬程来对循环水泵进行选择。 3、液体性质,包括液体介质名称,物理性质,化学性质和其它性质,物理性质有温度c,粘度u,介质中固体颗粒直径和气体的含量等,这涉及到系统的扬程,气蚀余量计算和合适循环水泵的类型:化学性质,主要指液体介质的化学腐蚀性和毒性,是选用泵材料和选用那一种轴封型式的重要依据。 4、装置系统的管路布置条件指的是送液高度送液距离送液走向,吸如侧较低液面,排出侧较大液面等一些数据和管道规格及其长度、材料、管件规格、数量等,以便进行系梳扬程计算和汽蚀余量的校核。 5、操作条件的内容很多,如液体的操作T饱和蒸汽力P、吸入侧压力PS、排出侧容器压力PZ、海拔高度、环境温度操作是间隙的还是连续的、循环水泵的位置是固定的还是可移的。 上面5点是循环水泵选型依据,可以从哪些方面入手选型。根据美宝环保经验,目前的循环水泵大多采用无泄漏磁力泵。

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

管路阻力计算和水泵选型

2.1水系统管路阻力估算、管路及水泵选择 a)确定管径 一般情况下,按5℃温差来确定水流量(或按主机参数表中的额定水流量),主管道按主机最大能力的总和估算,分支管道按末端名义能力估算。根据能力查下面《能力比摩阻速查估算表》,选定管型。 b)沿程阻力计算 根据公式沿程阻力=比摩阻×管长,即H y=R×L,pa,计算时应选取最不利管路来计算:第一步:采用插值法计算具体的适用比摩阻,比如能力为,范围属于“6<Q≤11”能力段,K r=,进行插值计算。 R=104+()×= pa/m 第二步:根据所需管长计算沿程阻力,假设管长L=28m,则 H y= R×L=×28= pa= kpa c)局部阻力计算 作为估算,一般地,把局部阻力估算为沿程阻力的30-50%,当阀门、弯头、三通等管件较多的时候,取大值。实际计算采用如下公式: Hj=ξ*ρv2/2,ξ---局部阻力系数,ρv2/2---动压 ρv2/2动压查表插值计算,ξ局部阻力系数参考下表取值:

d)水路总阻力计算及水泵选型 水路总阻力包括:所有管道的沿程阻力、阀门、弯头、三通等管件的局部阻力、室外主机的换热器阻力(损失)、室内末端阻力(损失),后面两项与不同的主机型号和末端相关。计算式为: H q=H y+H j+H z+H m+H f H z——室外主机换热器阻力,一般取7m水柱 H m——室内末端阻力 H f——水系统余量,一般取5m水柱; 总阻力计算完成后,就可以根据总阻力选取流量满足要求的情况下能提供不小于总阻力扬程的水泵来匹配水系统。选取水泵时要根据“流量——扬程曲线”来确定,但扬程和流量不能超出所需太大(一般不超过20%),避免导致出现水力失调和运行耗能较高。 水系统的沿程阻力和局部阻力与系统水流量和所采用的管径相关,流量、管径及所使用各种配件的多少决定总阻力,流量取决于主机能力(负荷)及送回水温差,流量确定的情况下,管径越大,总阻力越小,水泵的耗能越小,但管路初投资会增大。 PE-RT地暖管的规格(参考)(红色字的为推荐使用规格、计算基准) ?计算例 现有项目系统图如下:

太阳能热水系统循环泵的选型

太阳能热水系统循环泵的选型 提要:在太阳能集中式热水系统中会用到比较多的管道循环泵,来实现太阳能集热系统的热量吸收、转移和交换。从式(2)可知:太阳能热水系统循环水泵的扬程取决于两个因素,一个是水泵提升水的高度,另一个是系统循环回路的流动阻力。 来源:山东德州飞天工贸有限公司 0 前言 在太阳能集中式热水系统中会用到比较多的管道循环泵,来实现太阳能集热系统的热量吸收、转移和交换。所以,循环泵的流量和扬程就成为一个比较关键的技术参数,会直接影响到系统的运行效果,在此,对太阳能集热系统中循环泵的选型做一详细阐述。 1太阳能集中集热—集中储热式系统中集热循环泵选型 1.1循环泵流量确定 对于太阳能热水系统,集热循环管路为闭合回路,管道计算流量为全部集热器循环流量,按公式(1)计算: q=A·QS(1)式中: q—循环流量,L/h; A-太阳能集热器的总集热面积,m2; QS—集热循环流量,由于太阳辐照量的不确定性,太阳能热水系统的集热循环流量一般按照每平方米集热器的流量为 0.01~0.02L/s考虑,即36~72L/(h·m 2),对于真空管太阳能集热器可取低值,对于平板太阳能集热器取高值。假设,集热循环流量取50L/(h·m2),太阳能集热器的总集热面积为100m2,经计算集热器循环流量为5000L/h。水泵的流量选择应使水泵的工作流量在计算的集热循环流量附近。 1.2水泵的扬程 太阳能热水系统循环泵扬程计算方法: H=(1.1~1.2)(Hs+Hx)(2)式中: Hs—太阳能热水系统提升液体介质(水)的高度,mH2O; Hx—太阳能热水系统总流动阻力(扬程阻力和局部阻力之和),mH2O。 从式(2)可知:太阳能热水系统循环水泵的扬程取决于两个因素,一个是水泵提升水的高度,另一个是系统循环回路的流动阻力。

最新1-1-1-1自然循环热水供暖系统工作原理及系统形式

项目一:室内热水供暖工程施工 模块一:识读、绘制室内热水供暖系统施工图 单元1 热水供暖系统形式 1-1-1-1自然循环热水供暖系统工作原理及系统形式 1.自然循环热水供暖系统的工作原理 图 1-1-1为自然循环热水供暖系统的工作原理图。图中假设系统有一个加热中心(锅炉)和一个冷却中心(散热器),用供、回水管路把散热器和锅炉连接起来。在系统的最高处连接一个膨胀水箱,用来容纳水受热膨胀而增加的体积。 运行前,先将系统内充满水,水在锅炉中被加热后,密度减小,水向上浮升,经供水管道流入散热器。在散热器内热水被冷却,密度增加,水再沿回水管道返回锅炉。 在水的循环流动过程中,供水和回水由于温度差的存在,产生了密度差,系统就是靠供、回水的密度差作为循环动力的。这种系统称为自然(重力)循环热水供暖系统。 图1-1-1 自然循环热水供暖系统工作原理图 1-热水锅炉 2-供水管路 3-膨胀水箱 4-散热器 5-回水管路 2.自然循环热水供暖系统的形式特点 图1-1-2是自然循环热水供暖系统的两种主要形式,左侧立管为双管上供下回式系统;右侧立管为单管上供下回式(顺流式)系统。上供下回式系统的供水干管敷设在所有散热器之上,回水干管敷设在所有散热器之下。

图1-1-2 自然循环热水供暖系统 1-回水立管 2-散热器回水支管 3-膨胀水箱连接管 4-供水干管 5-散热器供水支管 6-供水立管 7-回水干管 8-充水管(接上水管) 9-止回阀 10-泄水管(接下水道) 11-总立管 (1)自然循环双管上供下回式系统,其特点是:各层散热器都并联在供、回水立管上,热水直接流经供水干管、立管进入各层散热器,冷却后的回水经回水立管、干管直接流回锅炉,如果不考虑水在管道中的冷却,则进入各层散热器的水温相同。分析该系统循环作用压力时,因假设锅炉是加热中心,散热器是冷却中心,可以忽略水在管路中流动时管壁散热产生的水冷却,认为水温只是在锅炉和散热器处发生变化。 (2)自然循环单管上供下回式系统,其特点是:热水进入立管后,由上向下顺序流过各层散热器,水温逐层降低,各组散热器串联在立管上。每根立管(包括立管上各组散热器)与锅炉、供回水干管形成一个循环环路,各立管环路是并联关系。 3. 热水供暖系统的排空气问题 无论是自然循环还是机械循环热水供暖系统,都应考虑系统充水时,如果未能将空气完全排净,随着水温的升高或水在流动中压力的降低,水中溶解的空气会逐渐析出,空气会在管道的某些高点处形成气塞,阻碍水的循环流动。空气如果积存于散热器中,散热器就会不热。另外,氧气还会加剧管路系统的腐蚀。所以,热水供暖系统应考虑排空气的问题。 4. 自然循环上供下回式热水供暖系统排空气及供回水干管的坡度设置 在自然循环系统中,水的循环作用压力较小,流速较低,水平干管中水的流速小于0.2m /s,而干管中空气气泡的浮升速度为0.1~0.2 m/ s ,立管中约为0.25 m / s ,一般超过了水的流动速度。此外,自然循环上供下回式热水供暖系统的供水干管应设沿水流方向下降的坡度,坡度值为0.5%~1.0%。散热器支管也应沿水流方向设下降坡度,坡度值为1%,因此空气能够逆着水流方向向高处聚集。自然循环上供下回式热水供暖系统可通过设在供水总 立管最上部的膨胀水箱排空气。

采暖循环泵流量扬程计算

(转)循环泵的流量和扬程计算 2011-12-07 16:25 事例见最后 1、先计算出建筑的热负荷然后 0.86*Q/(Tg-Th)=G 这是流量 2、我设计的题目是沧州市某生活管理处采暖系统的节能改造工程。这个集中供热系统的采暖面积是33.8万平方米。通过计算可知,该系统每年至少可节煤5000吨。换句话说,30%多的能量被浪费了。如果我的设计被采纳,这个管理处每年可以节约大约一百万元的经费(如果煤价是200元/吨)。而我所做的仅仅是装调节阀,平衡并联管路阻力;安装温度计,压力表,对采暖系统进行监控;换掉了过大的循环水泵和补给水泵;编制了锅炉运行参数表。 原始资料 1.供热系统平面图,包括管道走向、管径、建筑物用途、层高、面积等。 2.锅炉容量、台数、循环水泵型号及台数等。本系统原有15吨锅炉三台,启用两台;10吨锅炉三台,启用一台;配有12SH-9A型160KW循环水泵三台,启用两台。 3.煤发热量为23027KJ/kg(5500kcal/kg)。 4.煤耗量及耗煤指标,由各系统资料给出。采暖面积:33.8万m2;单位面积煤耗量:39.54kg/m2?年。 5.气象条件:沧州地区的室外供热计算温度是-9℃,供热天数122天,采暖起的平均温度-0.9℃。 6.锅炉运行平均效率按70%计算。 7.散热器以四柱为主,散热器相对面积取1.5。 8.系统要求采用自动补水定压。 设计内容 1.热负荷的校核计算 《节能技术》设计属集中供热系统的校核与改造。鉴于设计任务书所提供的原始资料有限,拟采用面积热指标法进行热负荷的概算。 面积热指标法估算热负荷的公式如下: Qnˊ= qf × F / 1000 kW 其中:Qnˊ——建筑物的供暖设计热负荷,kW; F ——建筑物的建筑面积,㎡; qf ——建筑物供暖面积热指标,W/㎡;它表示每1㎡建筑面积的供暖设计热负荷。 因此,为求得建筑物的供暖设计热负荷Qnˊ,需分别先求出建筑物供暖面积热指标qf 和建筑物的建筑面积F。 1.1 热指标的选择 由《节能技术》附表查得:住宅的热指标为46~70W/㎡。

采暖循环泵流量扬程计算

采暖循环泵流量扬程计 算 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

(转)循环泵的流量和扬程计算 2011-12-0716:25 事例见最后 1、先计算出建筑的热负荷??然后 0.86*Q/(Tg-Th)=G 这是流量 2、我设计的题目是沧州市某生活管理处采暖系统的节能改造工程。这个集中供热系统的采暖面积是33.8万平方米。通过计算可知,该系统每年至少可节煤5000吨。换句话说,30%多的能量被浪费了。如果我的设计被采纳,这个管理处每年可以节约大约一百万元的经费(如果煤价是200元/吨)。而我所做的仅仅是装调节阀,平衡并联管路阻力;安装温度计,压力表,对采暖系统进行监控;换掉了过大的循环水泵和补给水泵;编制了锅炉运行参数表。 原始资料 1.?供热系统平面图,包括管道走向、管径、建筑物用途、层高、面积等。 2.?锅炉容量、台数、循环水泵型号及台数等。本系统原有15吨锅炉三台,启用两台;10吨锅炉三台,启用一台;配有12SH-9A型160KW循环水泵三台,启用两台。 3.?煤发热量为23027KJ/kg(5500kcal/kg)。 4.?煤耗量及耗煤指标,由各系统资料给出。采暖面积:33.8万m2;单位面积煤耗量: 39.54kg/m2?年。 5.?气象条件:沧州地区的室外供热计算温度是-9℃,供热天数122天,采暖起的平均温度- 0.9℃。 6.?锅炉运行平均效率按70%计算。 7.?散热器以四柱为主,散热器相对面积取1.5。 8.?系统要求采用自动补水定压。 设计内容 1.热负荷的校核计算

《节能技术》设计属集中供热系统的校核与改造。鉴于设计任务书所提供的原始资料有限,拟采用面积热指标法进行热负荷的概算。 面积热指标法估算热负荷的公式如下: Qnˊ=qf×F/1000kW 其中:Qnˊ——?建筑物的供暖设计热负荷,kW; F——?建筑物的建筑面积,㎡; qf——?建筑物供暖面积热指标,W/㎡;它表示每1㎡建筑面积的供暖设计热负荷。 因此,为求得建筑物的供暖设计热负荷Qnˊ,需分别先求出建筑物供暖面积热指标qf?和建筑物的建筑面积F。 1.1?热指标的选择 由《节能技术》附表查得:住宅的热指标为46~70W/㎡。 我们知道,热指标与建筑物所在地的气候条件和建筑类型等因素有关。根据建筑物的实际尺寸,假定一建筑模型,使用当地的气象资料,计算出所需热指标。这样可以使热指标接近单位面积的实耗热量,以减小概算误差。 建筑模型:长30米,宽10米,高3.6米。普通内抹灰三七砖墙;普通地面;普通平屋顶。东、西及北面均无窗,南面的窗墙面积比按三比七。不考虑门的耗热量。 注:考虑到简化计算热指标时,选用的建筑模型忽略了门的耗热量,东窗、西窗和北窗的耗热量,且业主有安装单层窗户的可能性,还考虑到室外管网热损失及漏损,为使概算热指标接近实际情况,楼层高度取值适当加大;本设计若无特殊说明,资料即来源于《供热工程》;若无沧州的数据,则取与之毗邻的天津市的资料进行计算。 1.1.1?冷风渗透耗热量Q′2的计算 根据附录1-6,沧州市的冷风朝向修正系数:南向n=0.15。

循环水泵选型专题研究

温州发电厂四期“上大压小”扩建工程 初步设计 水工部分 循环水泵选型专题 浙江省电力设计院 设计证书号:A133007109 勘察证书号:120001-kj 2012年12月

温州发电厂四期“上大压小”扩建工程 初步设计 水工部分 循环水泵选型专题 批准: 审核: 校核: 编写:

目录 1概述 (1) 2循环水泵的结构形式和循环水系统水量调节 (2) 2.1循环水泵的结构形式 (2) 2.2循环水系统水量调节 (2) 3循环水泵型式及配置方案 (4) 3.1本工程循环水泵可能的配置方案 (4) 3.2循环水泵型式及配置方案 (6) 3.3循环水泵配置推荐方案 (9) 4循环水泵容量、运行方式 (9) 5结论 (10)

【内容摘要】本报告针对温州发电厂四期“上大压小”扩建工程(2×660MW超超临界机组)循环冷却水系统之循环水泵的配置方案,结合汽轮机组冷端参数优化结果、不同性能与不同结构形式水泵的选型、系统的水力计算等优化计算与比较,提出循环冷却水系统循环水的优选方案: 1) 循环水系统采用一机二泵扩大单元制供水方案; 2) 循环水系统流量调节在一机二泵扩大单元制供水的基础上,推荐循泵双速电机方案; 3) 循环水泵结构形式推荐国产立式、固定叶、可抽芯式混流泵; 4) 循环水泵运行方式推荐夏季一机二泵、春秋季二机三泵、冬季一机一泵,并依据机组负荷、凝汽器背压等运行参数调整循泵的运行台数与高、低转速。达到了循环水泵性能高、结构选型合理、运行经济调节灵活、工程投资低廉、设备备用率高的目的。 1概述 本工程建设规模为2×660MW超超临界凝汽式燃煤机组,同步建设 烟气脱硫、脱硝装置。 温州发电厂位于温州市东北方向的乐清市北白象镇磐石,距温州市16公里,距乐清市中心约18公里,距柳市镇8公里,距瓯江入海口13公里。 本工程循环冷却水采用扩大单元制直流供水系统,每台660MW机组配2台循环水泵,1根压力供水管道,1根排水箱涵。 循环水系统工艺流程依次为: 取水口→钢闸门→拦污栅→旋转滤网→循环水泵→出口阀门→供水管→凝汽器→排水箱涵→虹吸井→排水箱涵→虹吸井。 循环水泵是电厂的主要辅机设备之一,其型式、数量配置及参数的

浅析机械循环热水采暖系统中的通病

浅析机械循环热水采暖系统中的通病 摘要:近年来,机械循环热水采暖系统在民用建筑中被普遍采用。文章分析了几个该系统中常出现的问题并且给出了相应的解决方案,为系统的顺利运行提供了必要保障。 1 (1) 到 问题;(2)循环水泵容量不够。主要表现是锅炉的供水温度比较正常但是回水温度明显低于设计值,导致供、回水温差过大,这样热量不能正常输送。 对上述两种原因一般采取如下办法解决:(1)及时准确地了解住宅小区的供暖总面积和运行锅炉的总容量,加以核算,如果确实是锅炉出力的问题,可增加锅炉运行的数量,如果无锅炉可增,则应考虑对现有锅炉进行必要的扩容。(2)如果是

水泵的容量不足,可以改换大功率水泵或提高水泵的转速。 1.2建筑物供热网络末端暖气不热 在供暖期间,一个住宅小区中总有一些距离热力点最远的楼号的散热器不太热,室温达不到要求,而其他楼号的供暖情况正常。 造成这种现象的原因,一般是热网的水平失调。主要是由于在设计热网系统时, 多。( 起来的散热量大于房间所需热负荷,而下层散热器温度却低于设计值。未考虑管道散热的上层散热器越多,温降越大,下层散热器的温度就越低。如此恶性循环,就出现上层过热而下层不热现象。 至于双管系统出现上层过热下层不热的现象主要是由于垂直失调。实际情况中双管系统中上层下层重力水头的差别很大,但在设计中往往不仔细计算。

对于单管系统上冷下热的现象,在计算散热器负荷时,要扣除管道的散热量。在计算散热器片数时,如果需要进行尾数化整,应按照水流方向,采取“上游舍,下游进”的原则。同时还要注意考虑热媒的管道温降,或者做适当附加,即考虑立管散热的影响。例如:一个供暖层数≥8层的建筑,立管末端的散热器面积应适当附加,最末1-2层附加15%,最末3-4层附加10%,最末5-6层附加5%。为解决上下温 )设计 3)该 罐最好为“通过式”,如下图a。实验证明,水流速>0.15m/s时,水平与倾斜的管道中的气泡不上升而被水带着同向流动。当水流速>0.25m/s时,立管中的空气也会被水带走。所以,当水流速2结语 以上所介绍的机械循环热水采暖系统中常见的问题主要是从设计的角度出发,提供了几种常见的分析。但在实际过程中,散热器不热还有许多非设计原因,如:

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型 1、冷水泵: 在冷水环路中,驱动水进行循环流动的装置。我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷水由于阻力的限制不会自然流动,这就需要水泵驱动冷水进行循环以达到换热的目的。 2、冷却水泵: 在冷却水环路中驱动水进行循环流动的装置。我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。外形同冷冻水泵。 3、补水泵: 空调补水所用装置,负责将处理后的软化水打入系统中。外形同上水泵。 常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷水系统,冷却水系统和补水系统中。对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。 水泵并联运行情况

水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故建议: 1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。 2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过3台。 3)大中型工程应分别设置冷、热水循环泵。 一般,冷水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。 4、水泵流量的计算: 1)冷水泵/冷却水泵流量计算公式:L=Q×(1.15~1.2)/(5℃×1.163)式中:Q为制冷主机的制冷量,kW;L为冷水/冷却水泵的流量,m3/h。 2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。补给水箱的有效容积可按1~1.5h的正常补水量考虑。 5、水泵扬程的确定: 1)冷水泵扬程的组成: 制冷机组蒸发器水阻力: 一般为5~7m H2O; 末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力: 一般为5~7m H2O(具体值可参看产品样本); 回水过滤器,二通调节阀等的阻力: 一般为3~5m H2O;

热水采暖系统常见故障的排除

热水采暖系统常见故障的排除 摘要:热水采暖系统常见故障的排除,局部散热器不热 ,热力失效,回水温度过高,系统回水温度过低,其它故障及排除方法。 关键词:热水采暖系统常见故障排除东北地区局部散热器热力失效回水温度故障排除 东北地区冬季气候寒冷,每年要有六个月的冬季采暖期。近年来热水采暖以其在技术和经济上的显着优越性得到广大用户的青睐。 目前热水采暖广泛用于工业和民用建筑中。但是由于施工作业人员在热水采暖系统的施工、调整与运行管理方面的经验不足,系统在运行时可能会出现一些故障,影响正常供热。经过多年的现场实践,总结了热水采暖系统几种常见的故障及其排除方法,供大家参考。 一、局部散热器不热 局部散热器不热的原因大体有以下几种情况:阀门失灵,阀盘脱落在阀座内堵塞了热媒流动通道,这时可打开阀门压盖进行修理,或把失灵阀门更换掉。集气罐存气太多,阻塞管路,也会产生局部散热器不热的情况,这时应打开系统中所设置的放气附件,如集气罐上的排气阀,散热器上的手动放风门等。 管路堵塞,出现这种故障,当送水时间较短时,可用手在管线转弯处与阀门前摸其温度,敲打听声;当送水时间过长,系统较大时,堵塞处前后出现死水段,靠手摸不容易确定堵塞位置,这时可用放水的方法查找,放水点可在不热段管道的中间依次向两端进展。放水时,如来水端热水继续往前延伸,说明堵塞点在此之后;再取余下管段中段进行放水,若发现来水段热水不继续向前延伸,说明堵塞点在第一次放水点与第二次放水点之间。当把堵塞点找出后,段开管子,将管内污物清除或把该管段更换。 采暖系统管道坡度安装的不合理,致使管道出现鼓肚,在其内部产生气塞,堵塞或减小了该管段的流通截面积,从而引起局部不热。这时应调整管段坡度,使其符合设计要求的坡度及坡向。 室内系统的送、回水管道与室外热网的送、回水相互接反,或全部在送(或回)水管上,室内系统不能形成一个循环环路。这时应认真查找,了解外网情况,将接错的管道改正过来。 二、热力失效 采用双管上分式采暖系统时,多层建筑上层散热器过热,下层散热器过冷。产生这种垂直热力失调的原因有两种可能。 其一,通过上下层散热器的热媒流量相差较大。排除这种故障的方法是关小上层散热器支管上的阀门,以减少其热媒流量。 其二,支管下端管段被氧化铁皮、水垢等堵塞,增加了该循环系统的阻力,破坏了系统各环路压力损失的平衡。对于这种情况及时清除管段中的污物或更换支立管,减少阻力损失,恢复系统各

循环水泵性能曲线的选择有那些

在中央空调循环水系统中,循环水泵主要为冷(热)媒的循环流动提供动力,但随着室外温度变化,系统所需要的循环水流量会发生很大的变化。这就要求水泵在设计选型时要考虑多方面的因素。供暖、制冷系统中的循环水泵总是与特定的管路相连,循环水泵的工作状态点由水泵的性能曲线与管路的特性曲线共同决定。水泵的工作特性曲线有平坦型、陡降型和驼峰型三种。根据用途、管路特性、流量变化的不同,应选择不同特性的水泵。 当水泵的性能曲线为驼峰型时,水泵的性能曲线与管网的性能曲线可能有A 和B两个交点,而B工况点为不稳定工作点。因此在实际使用中,应尽量避免使系统工作在水泵性能曲线的左支,工作点应选在曲线的下降段,以保证运转工况的稳定。对于供暖与空调的水系统采用量调节的情况,系统内水流量变化较大时,建议尽可能避免选用驼峰型水泵,以防进入非稳定工作区,引起流量调节的失灵。 性能曲线为平坦型的水泵其最大优点是:循环水泵在较大的流量变化范围内都能在较高的效率区间运行,节能效果明显。可满足循环水系统流量变化时,扬程变化小的特点,使系统运行时,具有良好的水力稳定性,降低水力失调的程度。当系统选用单台水泵或者两台但为一用一备时,则应选用性能曲线较为平坦的水泵。两台水泵的流量和扬程特性曲线分别为A变为B,当泵的流量发生变化时,假设管路特性曲线由原来的a变为b,从图中可以看出性能曲线比较平坦的水泵B的扬程变化为ΔB,性能曲线比较陡的水泵A的扬程变化为ΔA,由图中可以看出ΔA>ΔB.显然从系统的水力稳定性来看选泵B的方案优于选泵A的方案。 当循环水系统所需的流量及流量的变化量较大,且单台水泵的流量或调节量

不能达到设计要求时,可以采用水泵并联运行的方式。泵A的特性曲线为A1,较陡,两台并联后的特性曲线为A2;泵B的特性曲线为B1,较平坦,两台并联后的特性曲线为B2;管路特性曲线为R.显而易见,泵A并联后的流量增量ΔQa 大于泵B并联后的流量增量ΔQb.因此泵的特性曲线越陡(比转数越大),流量增量ΔQ越大,越适宜于并联工作;反之,泵的特性曲线越平坦(比转数越小),流量增量ΔQ越小,越不适宜于并联工作。如果选型时不考虑水泵的特性曲线,将会引起并联后流量增量不大,不能通过并联使流量大幅度地提高,也不能通过运行台数的增减有效地调节流量。

循环水泵选型

热网循环水泵的选型及驱动配置 专题报告

目录 一工程概况 (1) 二循环水泵配置的重要性 (1) 三热网循环水泵的选型 (1) 四选型的分析 (2) 五循环水泵的驱动方式 (3) 六计算分析 (3) 七结论 (4)

[内容提要]: 热网循环水泵组是换热首站的重要辅机之一,其选型对电站的安全性和经济性具有十分重要的影响。本专题从循环水泵选型及驱动配置方面分析比较, 一工程概况 本专题是针对某电厂1、2号2x300MW机组的纯凝改供热改造。改造后2台机共建一座换热首站,两台机组能提供2×198MW(折合1425GJ/h)的供热能力,可供873万m2的采暖需求,热网的循环水量为6400t/h。根据外网鉴定供热协议要求,供热供回水温度为130℃/70℃。由于本工程为改造项目,换热站站址的选择和现有厂用电容量的要求,对改造有很大的局限性。 二循环水泵配置的重要性 热网循环泵是热电企业向热用户输送供热介质的动力来源,是换热首站的大动脉,也是热电企业供暖期间厂用电消耗的主要辅机之一。投资在项目改造中占有较大的比例,泵组的运行可靠性与经济性显得尤为重要。而循环水系统的优化、泵组的选型及布置的优劣,不仅直接影响其自身的安全性和经济性,而且对整个工程的投资与安全经济运行都会产生十分重要的影响。 三热网循环水泵的选型 1、选型的基本原则 循环水泵选型的基本原则有一下几点: 1) 循环水泵的总流量小于设计总流量; 2) 循环水量的扬程不小于运行流量条件下的热网总阻力。 3) 流量——扬程曲线应平缓,并联运行水泵的特性曲线宜相同, 4) 循环水泵的承压、耐温能力应满足各种运行工况的要求。 5) 应尽量减少并联水泵的台数,设置3台或3台以下时,应设置备用泵,设置4台及4台以上时,可不设备用泵。 2、循环水泵选型的方法 循环水泵的运行方式是按照供热系统的运行方式确定: 1) 质调节是通过抽汽调节阀调节进汽量、进汽压力来调整供水温度。采用质调节只调节水温,不调节流量,热力工况稳定,但消耗电能较多。 2) 量调节是通过调节热网循环泵的投运台数和通过改变热网循环水泵的转速来调节循环水量。采用量调节供水温度不变,只调节流量,这种方法能够节省厂用电,但系统中

暖通空调系统水泵选型

暖通空调系统水泵选型 1、冷冻水泵: 在冷冻水环路中驱动水进行循环流动的装置。我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷冻水由于阻力的限制不会自然流动,这就需要水泵驱动冷冻水进行循环以达到换热的目的。 2、冷却水泵: 在冷却水环路中驱动水进行循环流动的装置。我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。外形同冷冻水泵。 3、补水泵: 空调补水所用装置,负责将处理后的软化水打入系统中。外形同上水泵。 常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷冻水系统,冷却水系统和补水系统中。对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。 水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故建议: 1.选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。 2.水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过三台。 3. 大中型工程应分别设置冷,热水循环泵。 一般,冷冻水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。 水泵流量的计算 (1)冷冻水泵,冷却水泵流量计算公式: L(m3/h)=Q(Kw)×(1.15~1.2)/(5℃×1.163) 式中:Q----制冷主机的制冷量,Kw。 L----冷冻冷却水泵的流量,m3/h。 (2)补给水泵的流量: 正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。 补给水箱的有效容积可按1~1.5h的正常补水量考虑。 水泵扬程的确定 (1)冷冻水泵扬程的组成: 制冷机组蒸发器水阻力:一般为5~7mH2O;(具体可参看产品样本) 末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(具

地暖循环水泵选型方法和实例计算

地暖循环水泵选型方法和实例计算 注意:本文系转载文章,旨在提供解决问题的思路和方法,存在数据、单位错误的错误,借鉴时请注意。(山东汉霖太阳能有限公司整理、排版) 1 循环水泵选型方法 循环水泵选型的一般方法是根据水力计算的结果,得出地暖系统所需的水流量和克服地暖系统管网及壁挂炉本身阻力所需的扬程,综合考虑循环水泵在地暖系统中的工作效率,选择合适的循环水泵。 1.1 系统流量 G=3.6Q/C(Tg-Th) (1) G—供暖管网所需流量,m3/h Q—房屋所需采暖热负荷,kW C—水的比热,kJ/(kg?℃) Tg—供暖出水温度,K Th—供暖回水温度,K Q=K1K2qA (2) Q—住房供暖所需热负荷,kcal/h; K1—考虑邻居采暖不同步的安全系数,此处取1.2; K2—考虑间歇供暖的安全系数,此处取1.2; q—标准住宅热指标估算值,kcal/㎡; A—标准住宅建筑面积,㎡; 1.2 系统阻力 系统阻力分为沿程压力损失、局部压力损失及机器内阻,沿程压力损失是指在管道中连续的、一致的压力损失;局部压力损失是指管道系统中特殊的部件,由于其改变了水流方向,或使局部水流通道变窄(比如缩径、三通、阀门、接头、过滤器等)所造成的非连续性压力损失;机器内阻是机器本身的阻力。 1.2.1 沿程压力损失 地暖管为圆管且内壁较为光滑,属低粗糙程度,选择沿程压力损失的计算公式如下: Hf=λ?L/D?V2/2g (3) Hf—沿程压力损失, mm/m

λ—摩擦阻力系数(并非定值) L—环路水管长度,m D—管道内径,m V—水平均流速m/s Re<2300为层流流动: λ=64/Re (4) Re>2300为紊流流动: λ=0.316Re-0.25 (5) Re=VD/γ(6) γ:动力粘度系数,㎡/s 公式(6)用于判断水流方式:层流或紊流 表2 水温及先关水流动力粘度 1.2.2 局部压力损失 局部压力损失主要受限于一些阀门、滤网的流通能力,选择计算公式如下: ΔP=102(G/KV0.01)2 (7) O ΔP;局部压力损失,mmH 2 G—供暖管网所需水流量,l/h KV0.01—流通能力(压差等于0.01bar), l/h 1.2.3 机器本身的内阻 是一个实测值,由于壁挂炉行业起步较高,标准化程度较好,所以不同厂家的同一类型产品内阻相差不大。 1.3 循环水泵效率曲线 目前燃气采暖热水炉中所应用的水泵绝大部分为后向叶轮式离心泵,此种水泵效率较低,根据某水泵厂家提供资料,其效率与流量曲线如图1所示:由图1看出,不同扬程的循环水泵效率相差不大,水泵运行的最高效率点在水泵流量为1.4m3/h处,最高效率接近20%。 2 实例计算 例:这里以北京一套三室两厅总面积120㎡的住房为例,假设其采用冷凝壁挂炉加地暖形式采暖,三个房间、一个客厅(40㎡)、一个厨房、外加一个卫生间共六条并联支路,采用ZF25F×15-6-CJ/T251型号的分集水器,设计供水温度50℃,回水温度

热水采暖系统的分类与特点

热水采暖系统的分类与特点 一、重力循环与机械循环1.重力循环膨胀水箱作用1)吸纳系统水温升高时热胀而多出的水量;2)补充系统水温降低和泄漏时短缺的水量;3)排除水在加热过程中所释放出来的空气;4)稳定系统的压力。2.重力循环:水平供水干管标高应沿水流方向下降,气水逆向流动。3.优缺点:不需要外来动力,运行时无噪声,调节方便,管理简单;由于作用压头小,所需管径大,只宜用于没有集中供热热源、对供热质量有特殊要求的小型建筑物中。4.机械循环:膨胀水箱不能排气,供水干管末端集气罐,干管向集气罐抬起。二、按供水温度分类1.高温水采暖系统:供水温度高于100℃的系统;2.低温水采暖系统:供水温度低于100℃的系统;高温水采暖系统优缺点:散热器表面温度高,易烫伤皮肤,烤焦有机灰尘,卫生条件及舒适度较差,但可节省散热器用量,供回水温差较大,可减小管道系统管径,降低输送热媒所消耗的电能,节省运行费用。3.用于对卫生要求不高的工业建筑及其辅助建筑中。4.低温水采暖系统是民用及公用建筑的主要采暖系统型式。三、按供回水的方式分类1.上供下回式:布置管道方便,排气顺畅, 用得最多。 2.上供上回:采暖干管不与

地面设备及其它管道发生占地矛盾,但立管消耗管材量增加,立管下面均要设放水阀,主要用于设备和工艺管道较多的、沿地面布置干管发生困难的工厂车间。 3.下供上回:称为倒流式系统,无效热损失小,底层散热器平均温度升高,从而减少底层散热器面积,有利于解决一层散热器面积过大,难于布置的问题。立管中水流方向与空气浮升方向一致,有利于排气,当热媒为高温水时,底层散热器供水温度高,然而水静压力也大,有利于防止水的汽化。 4.下供下回:供水干管无效热损失小、可减轻竖向失调,有利于水力平衡。天棚下无干管比较美观,可以分层施工,分

热水供暖系统中循环水泵的选择和使用

热水供暖系统中循环水泵的选择和使用 摘要:本文就循环水泵的选择原则、参数确定和选择中的几个问题进行分析,指出泵的特性与热网特性不相匹配的原因和解决的方法。对并联泵的效果和管路联接方式进行了分析计算后,提出一些建设性意见和建议。 关键词:循环水泵并联管路联接 1 前言 由热源设备、热网和室内采暖系统组成的热水供暖系统是一个系统工程、一个整体,忽略任何一部分都会严重影响系统的供暖效果。循环水泵是联接热源、热网和室内采暖系统的枢纽设备,通过它把温暖送给千家万户,所以,循环水泵的性能和参数的合理性,就显得格外重要。因此合理选择和正确安装使用循环水泵,是取得较为满意的供暖效果的关键。作者在近几年的实践中,遇到因循环水泵选择和使用不当而影响供暖效果的现象有以下几种:1循环水泵出口端的阀门不能百分之百打开,只能按电动机的允许额定电流控制阀门的开度,否则会引起电动机的实际运行电流超过其允许的额定电流而烧坏电动机。2循环水泵的使用往往不是一台,而是二台、三台、多台并联使用,更有七台泵同时并联使用的先例,而且多台并联使用,有的是同型号、同性能,也有型号不同、性能也不相同。1管道系统与泵的联接方式各异,不在同一位置、不在同一平面,造成系统不顺、阻力

增加。4循环水泵的出力达不到设计参数等。在排除循环水泵因制造原因而达不到实际参数不可预见外,我们应根据供暖系统提供的参数,合理选择适用本系统的循环水泵的型号和参数,最大可能地满足系统要求。 2 循环水泵的选择 2.1 选择的原则 循环水泵在供暖系统中所占比例,无论是容量还是设备数量都是很大的,运行中的问题也比较多。因此,正确选择、合理使用和管理,确保正常供暖和提高经济效益是十分重要的。选择的原则是:设备在系统中能够安全、高效、经济地运行。选择的内容主要是确定它的型式、台数、规格、转速以及与之配套的电动机功率。 选择时应具体考虑以下几个原则:1所选的循环泵应满足系统中所需的最大流量和扬程,同时要使循环水泵的最佳工况点,尽可能接近系统实际的工作点,且能长期在高效区运行,以提高循环水泵长期运行的经济性。2力求选择结构简单、体积小、重量轻、效率相对比较高的循环水泵。1力求运行时安全可靠、平稳、振动小、噪音低、抗汽蚀性能好。4选择适用于流量变化大而扬程变化不大的水泵,即G—H特性曲线趋于平坦的水泵。 2.2 循环水泵的参数 2.2.1 流量1根据设计热负荷计算流量;2根据室内采暖系统形式,在没有任何调节手段时,计算因重力或温降引起的垂直失调,并由此能克服或基本上克服这种垂直失调所需的最佳流量值;3根据

相关文档
最新文档