大数据结构知识点整理(清华大学出版社)

大数据结构知识点整理(清华大学出版社)
大数据结构知识点整理(清华大学出版社)

第一章绪论

1.数据结构:主要研究非数值计算问题中计算机的操作对象有哪些结构(逻辑结构)、这些结构在计算机中的表示及

其操作的定义和实现问题。

2.逻辑结构:不考虑实现,仅看问题域中数据元素根据相互间的逻辑关系形成的结构称为数据结构的逻辑结构。

通常说的数据结构即此义。分类:如书目表根据一对一相邻关系形成线性结构、棋盘格局间根据下棋规则(一对多)形成一个树形数据结构,城市间据通路(多对多)形成图状结构,此外还有集合结构(除同属一个集合外,无其它关联),共四类

3.数据结构(数据元素及关系/结构)在计算机中的表示或者说映像称为该数据结构的物理结构或存储结构。

4.顺序存储结构:关系采取顺序映像表示,即借助元素在存储器中的位置上的”相邻”关系隐式表示数据元素间具

有关系。此时物理结构对应一个数组。优点:可根据起始地址随机访问各元素。缺点:需事先分配一足够大空间,且插入删除结点需移动大量数据。

链式存储结构:关系采取链式映像表示,即借助附加信息指针显式表示元素间的关系,对应一个链表。优点是更有效利用空间、插入或者删除结点快,但要顺序访问各元素。

5.度量指标:算法运行时间主要取决于基本操作的执行次数(频度),执行次数通常随问题规模扩大而增加,增加越

快意味着算法随问题规模的扩大,运行时间增长的也快,从而该种算法效果较差;增长越慢算法越好,故可用基本操作的频度随问题规模的增长率反映算法的效率。

6.时间复杂度:频度函数的增长率基本与函数中“关键项”(去掉低次项和常数项)的增长率相同,故可用“关键项”

反映算法效率。假设关键项为f(n),用T(n)=O(f(n))表示算法时间增长率与f(n)增长率同阶。称O(f(n))为算法的渐近时间复杂度,简称时间复杂度。f(n)的增长率为f(n+1)/f(n),如对复杂度为O(n)的算法其运行时间随问题规模增长率为1+1/n,复杂度为O(1)的算法时间增长率为1。

7.按增长率由小至大的顺序排列下列各函数(2/3)n -2100 -㏒2n-n1/2-n -n㏒2n-n3/ 2-2n-n!-n n

第二章线性表

1.顺序表:借助元素在存储器中位置上的”相邻”关系表示数据元素间具有的关系,如此存储的线性表称为顺序

表。顺序表优点是实现简单方便,可随机访问各元素;缺点是插入或删除元素时会引起大量的数据元素移动(表尾除外);对于长度变化较大的线性表,要一次性地分配足够的存储空间,但这些空间常常得不到充分利用。2.线性链表:采用链式存储结构的线性表对应一个链表。结点包含数据域和指针域两部分。链表名指向第一个结点

(头指针),尾结点指针域值为NULL。链表优点是空间利用好,插入删除不移动数据,表头表尾操作快(改进的单链表),位置概念强;缺点是需要顺序访问各元素,位序概念弱。

顺序表相关程序:

#define LIST_INIT_SIZE 100 //…

#define LISTINCREMENT 10 //…

typedef ***** ElemType;

typedef struct{

ElemType *elem; //存储空间基址

int length; //…

int listsize; //……

}SqList;

SqList La,Lb,Lc;

Status InitList_Sq(SqList &L)

{//构造空线性表L

L.elem=(ElemType*)malloc(LIST_INIT_SIZE

*sizeof(ElemType)) if(L.elem==0) exit(OVERFLOW);

L.length=0; //初始化表长为0,“空”表

L.listsize=LIST_INIT_SIZE;//初始化存储容量

return(OK);

}//InitList_Sq

void ListDelete(SqList &L,int i,ElemType &e)

{//在顺序表L中删除第i个元素,用e返回其值.//i的合法值是[1,ListLength(L)]

if(i<1||i>L.length) return ERROR;//删除位置不合理

ElemType *p=&L.elem[i-1],*q=L.elem+L.length-1;

e=*p;

while(p

--L.length;

return Ok;

}//ListDelete_Sq

Status ListInsert_Sq(SqList &L,int i, ElemType e)

{//在顺序表L的第i个位置前插入元素e,i的合法值为1..L.length+1

if(i<1||i>L.length+1) return ERROR;//插入不合法

if(L.length>=L.listsize)

{ //表满,增加存储容量

ElemType*newbase=(ElemType *)realloc (L.elem,(L.listsize+LISTINCREMENT)*sizeof(ElemType)) if(!newbase) exit(OVERFLOW);

L.elem=newbase;

L.listsize+=LISTINCREMENT;

}

ElemType *q=&L.elem[i-1], *p=&L.elem[L.length-1]; while(p>=q)

{ *(p+1)=*p; --p; } //插入位置后的元素右移*q=e;

++L.length;

return OK;

}//ListInsert_S

线性表相关程序:

typedef ***** ElemType;

typedef struct LNode{

ElemType data; //数据域

struct LNode * next; //指针域

}LNode,*LinkList;//默认带头结点,需说明

LNode node1; LinkList La;

Status GetElem_L(LinkList L,int i,ElemType &e)

{//L为带头结点的单链表的头指针。第i个元素存在时,其值赋给e并返回OK,否则返回ERROR

LNode *p=L->next; //p指向”第1个”结点,

int j=1; // j为指向结点的位序

while(p&&j

{ //顺序查找,只要p不空且未到第i结点就前进p=p->next;

++j;

}

if(!p)return ERROR; //第i个元素不存在

e=p->data; //取第i个元素

return OK;

}

Status ListInsert_L(LinkList &L, int i, ElemType e)

{//向链表L中第i个位置插入e

LNode *p=L; int j=0; /*p始终指向第j个结点*/

while(p&&jnext; ++j;}//寻找第i-1个结点if(!p) return ERROR;

LNode *temp;

temp=(LNode *)Malloc(sizeof(LNode));

if(!temp) exit(OVERFLOW);

temp->data=e;

temp->next=p->next;

p->next=temp;

return(OK);

}//ListInsert_L

Status ListDelete_L(LinkList &L, int i, ElemType &e)

{

LNode *p=L,*q; int j=0; /*p始终指向第j个结点*/

while(p&&jnext; ++j;}//寻找第i-1个结点,

j 最终为i-1,除非到表尾p空if(!p||!p->next)

return ERROR;//第i个或更前结点不存在q=p->next;

e=q->data;

p->next=q->next;

free(q);

return(OK);

}//ListDelete_L

Status CreateList_L(LinkList &L, int n)

{//逆位序输入n个元素的值,建立带头结点的单链表L。

LNode *p;

L=(LinkList) malloc(sizeof(LNode));L->next=NULL;

for(int i=1;i<=n;++i)

{

p=(LNode *)malloc(sizeof(LNode));//LNode *等同

LinkList scanf(“…”,&p->data);

p->next=L->next;

L->next=p;//插入到表头

}

}//CreateList_L

相关两表的归并

void MergeList_Sq (SqList La,SqList Lb,Sqlist &Lc)

{//归并非降顺序表La与Lb构成非降顺序表Lc Lc.listsize=Lc.length=La.length+Lb.length;

Lc.elem=(ElemType*)

malloc(Lc.listsize*sizeof(ElemType));

If(!Lc.elem) exit(OVERFLOW); //存储分配失败

ElemType *pa=La.elem, *pb=Lb.elem, *pc=Lc.elem;

ElemType *pa_last=La.elem+La.listsize-1;

ElemType *pb_last=Lb.elem+La.listsize-1;

while(pa<=pa_last&&pb<=pb_last)

{//归并

if(*pa<=*pb) *pc++=*pa++;

else *pc++=*pb++;

}

while(pa

while(pb

}//MergeList_Sq

Status ListMerge_SortedL

(SortedSqList La,SortedSqList Lb,SortedSqList &Lc) {//将两个有序顺序表La与Lb归并为有序顺序表Lc

int la_len=ListLength_Sq(La);

int lb_len=ListLength_Sq(Lb);

int i=1,j=1,k=1;

ElemType a,b;

InitList_Sq(Lc);

while(i<=la_len&&j<=lb_len)

{ //归并

GetElem_Sq(La,i,a);GetElem_Sq(Lb,j,b);

if(a

else{ ListInsert_Sq(Lc, k++,b); ++j;}

}

while(i<=la_len) //插入La的剩余元素

{GetElem_Sq(La,i++,a); ListInsert_Sq(Lc, k++,a);} while(j<=lb_len) //插入Lb的剩余元素

{GetElem_Sq(Lb,j++,b); ListInsert_Sq(Lc,k++,b);} return OK;

}//复杂度O(ListLength(La)+ListLength(Lb),因只在表尾插入)

3.注意链表中next指针的应用,如插入,删除等操作各个元素的。

4.顺序表的就地逆置思路:分别设两个指针p与q指向第一个和最后一个元素,当p

++p,--q}。单链表的就地逆置思路:令指针p指向首元结点,头结点断开,{将p所指结点插入到表头后,p后移,直至p为空}

Status ListInverse_Sq(SqList &L) {//顺序表就地逆置

ElemType *p,*q;

ElemType e;

p=L.elem;q=L.elem+L.length-1;

while(p

{

temp=*p;

*p=*q;

*q=temp;

++p; --q;

}

return OK;

}

Status ListInverse_L(LinkList &L) { //思路:令指针p指向首元结点,头结点断开,{将p所指结点插入到表头后,p后移,至p空}

LNode *p,*q;

p=L->next;

L->next=NULL;

while(p!=NULL)

{

q=p->next; //令q指向p的后继结点,以便以后p后移接下来两句将p所指向节点插入到头结点后p->next=L->next;

L->next=p;

p=q;//q后移

}

return OK;

}

有序顺序表插入

Status ListInsert_SortedSq(SqList &L,ElemType e)

{//在非降顺序表L中插入元素e,使得L中各元素仍然非降。注意插入位置据e求得

//思路:从最后一个元素开始,只要它比待插入元素大就后移。条件不成立时退出循环,将e插入当前位置后即可。顺序表插入操作莫忘表满的处理。只要是顺序表的插入操作就需要判断是否表满,对于链表则无此要求if(L.length>=L.listsize)

{//表满,增加存储容量

ElemType *newbase=(ElemType *)

realloc(L.elem,(L.listsize+LISTINCREMENT)

*sizeof(ElemType));

if(!newbase) exit(OVERFLOW);

L.elem=newbase;

L.listsize+=LISTINCREMENT;

}

//下面从最后一个元素开始,只要大于e就后移,最后插入当前位置后

p=L.elem+L.length-1;

while(p>=L.elem&&*p>e){*(p+1)=*p;--p;}

*(p+1)=e;

++L.length; //表长加1

return OK;

}

5.循环链表、双向链表、双向循环链表的特点和基本操作。主要是插入删除的相关指针操作。

//---线性表的双向(循环)链表存储结构--- typedef struct DuLNode

{

ElemType data;

struct DuLNode *prior;

struct DuLNode *next;

}DuLNode,*DuLinkList;

Status ListInsert_DuL(DuLinkList &L,int i,ElemType &e)

{//在带头结点的双向链表L的第i个位置插入e,1≤i≤表长+1

DuLNode *p=L; int j=0;

while(jnext;++j;}

if(!p) return ERROR;

s=(DuLNode *)malloc(sizeof(DuLNode));

if(!s)exit(OVERFLOW);

s->data=e;

s->prior=p;

s->next=p->next; //记:注意分析指针改变p->next->prior=s;

p->next=s; //次序对结果的影响

return OK;

}

另外看下多项式的相关课件,老师复习提纲上有写这方面的代码。

第三章栈和队列

1.栈(Stack)是定义在线性结构上的抽象数据类型,其操作类似线性表操作,但元素的插入、删除和访问都必须在

表的一端进行,为形象起见,称允许操作端为栈顶(Top),另一端为栈底(base),注意Top指向待插入位置。特性:Last In First Out后进先出//总是访问最近插入的一个//按插入顺序倒着访问。

#define STACK_INIT_SIZE 100

#define STACKINCREMENT 10

typedef ?? SElemType;//栈元素类型

typedef struct{

SElemType *base; //栈底指针

SElemType *top; //栈顶指针

int stacksize; //栈容量

}SqStack

Status InitStack(SqStack &S)

{//构造空栈S

S.base=(SElemType*)

malloc(STACK_INIT_SIZE*sizeof(SElemType));

if(!S.base)exit(OVERFLOW); //存储分配失败

S.top=S.base; //空栈

S.stacksize=STACK_INIT_SIZE;

return(OK);

}//InitStack 复杂度”O(1)”

Status DestroyStack(SqStack &S)

{//销毁栈S

free(S.base);

S.base=NULL;

S.top=NULL;

S.stacksize=0;

return OK;

} //复杂度O(1)

Status ClearStack(SqStack &S)

{//置S为空栈

S.top=S.base; return OK;

} //复杂度O(1)

Status Push(SqStack &S, SElemType e)

{//插入e为栈顶元素

if(S.top-S.base==S.stacksize)//判断栈满

{//栈满则应重新分配空间

S.base=(SElemType *)realloc(S.base,

(S.stacksize+STACKINCREMENT)*sizeof(SElemType));

if(!S.base) exit(OVERFLOW);

S.top=(S.base+S.stacksize);//使得S.top重新指向

栈顶,因realloc S.stacksize+=STACKINCREMENT;

}

*S.top ++=e; //top指向待插入位置

return(OK);

}//Push ,复杂度O(1)

Status Pop(SqStack &S,SElemType &e)

{//若栈不空则栈顶元素出栈并用e带回其值

if(S.top==S.base) return ERROR;//判断栈空

e=*(--S.top); //栈顶元素为*(S.top-1)

return OK;

} //复杂度O(1)

Status StackEmpty(SqStack S)

{

if(S.top==S.base) return TRUE;

else return FALSE;

}

int StackLength (SqStack S){ return (S.top-S.base); } Status GetTop(SqStack S,SElemType &e)

{

if(S.top==S.base) return ERROR;

e=*(S.top-1); //注意top指向待插入位置

return OK;

}

栈的遍历一直没用到,可以自己找找课件看。

2.队列类似线性表和栈,也是定义在线性结构上的ADT,与线性表和栈的区别在于,元素的插入和删除分别在表的两

端进行。类似日常生活中排队,允许插入的一端为队尾(rear),允许删除端称队头(front)。特性:First In First Out先进

先出,如操作系统中的作业队列和打印任务队列、日常生活中各类排队业务等均可用队列模拟。

#define *** QElemType

typedef struct QNode {

QElemType data;

struct QNode *next;

} QNode, *QueuePtr;

typedef struct {

QueuePtr front;//队头指针

QueuePtr rear; //队尾指针

} LinkQueue;// 链队列

Status InitQueue (LinkQueue &Q)

{// 构造一个空队列Q

Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));

if (!Q.front) exit (OVERFLOW);

Q.front->next = NULL; //莫忘!!

return OK;

}//时间复杂度O(1)

Status DestroyQueue (LinkQueue &Q)

{//销毁队列Q,此处不同于教材,先清空元素结点,后释放头结点

QueuePtr p=Q.front->next;

while(p)

{//依次释放首元素至最后一个元素

Q.front->next=p->next;

free(p);

p=Q.front->next;

}

free(Q.front);

Q.front=NULL;Q.rear=NULL;

return OK;

}//去掉下划线部分为置空操作, 复杂度O(n)

Status EnQueue (LinkQueue &Q, QElemType e)

{// 插入元素e为Q的新的队尾元素

QueuePtr p;

p=(QueuePtr)malloc(sizeof(QNode));

if (!p) exit(OVERFLOW);//存储分配失败

p->data = e; p->next = NULL;//莫忘!!

Q.rear->next = p; Q.rear = p;

return OK;

}//复杂度O(1)

Status DeQueue (LinkQueue &Q, QElemType &e)

{// 若队列不空,则删除Q的队头元素,用e 返回其“值”

if (Q.front ==Q.rear) return ERROR;//空队列

QueuePtr p= Q.front->next; e = p->data;

Q.front->next = p->next;

if(Q.rear == p) Q.rear=Q.front;//只1个结点时改尾指针

free (p);

return OK;

}//复杂度O(1)

3.循环队列

#define MAXQSIZE 100 //最大队列长度

typedef struct {

QElemType *base;// 动态分配存储空间

int front; // 头指针,队列不空则指向队列头元素

int rear; // 尾指针, 指向待插入元素位置

} SqQueue;

Status InitQueue (SqQueue &Q)

{// 构造一个空队列Q

Q.base=(QElemType*)malloc(MAXQSIZE*sizeof

(QElemType));

if (!Q.base) exit (OVERFLOW); // 存储分配失败

Q.front = Q.rear = 0;

return OK;

}//复杂度O(1)

Status DestroyQueue(SqQueue &Q)

{// 销毁队列Q

free(Q.base);

Q.front = Q.rear = 0;

return OK;

}//时间复杂度O(1),比链队列快Status ClearQueue(SqQueue &Q)

{// 将队列Q置空

Q.front=Q.rear=0;//只要想等即可

return OK;

}//复杂度O(1)比链队列快

Status EnQueue (SqQueue &Q, QElemType e)

{// 插入元素e为Q的新的队尾元素,无法插入(已满)则返回ERROR

if((Q.rear+1)%MAXQSIZE==Q.front) return ERROR;

//判断循环队列满的条件Q.base[Q.rear] = e;

Q.rear = (Q.rear+1) % MAXQSIZE; //加便可能越界,故取余

return OK;

}//时间复杂度O(1)

Status DeQueue (SqQueue &Q, ElemType &e)

{ //队列不空则删除队头元素, 用e带回其值并返OK;否则返ERROR

if (Q.rear==Q.front) return ERROR;//判断循环队列空

e = Q.base[Q.front];

Q.front = (Q.front+1) % MAXQSIZE;

//加就可能越界,故取余 return OK;

} //时间复杂度O(1)

int QueueLength(SqQueue Q)

{ //返回队长

return (Q.rear-Q.front+MAXQSIZE)%MAXQSIZE ; //减可能为负

}//时间复杂度O(1),比链队列快,可修改链队列定义 Status QueueEmpty(SqQueue Q) { //判断队列空 if (Q.rear==Q.front) return TRUE; else return FALSE; }//O(1)

Status GetHead(SqQueue Q,QElemType &e) {

if (Q.rear==Q.front) return ERROR;

e=Q.base[Q.front]; return OK;

}// O(1)若要修改对头元素的值可新设SetHead(&Q,e)

4. 证明:若借助栈由输入序列12……n 得到的输出序列为p 1p 2……p n (它是输入序列的一个排列),则在输出序列中不

可能出现这样的情形:存在ij,从而i

第四章 串 第五章 数组和广义表

1. 三元组顺序表存储结构: #define MAXSIZE 12500 typedef struct {

int i, j; //非零元的下标 ElemType e; //非零元的值 } Triple; // 三元组类型 typedef struct{

Triple data[MAXSIZE + 1];//data[0]不用 int mu,nu,tu;//行列数与非零元个数 } TSMatrix; // 稀疏矩阵类型

2. 初始化一个“空”的稀疏矩阵,按照目标矩阵中的出现次序对原矩阵中的元素逐个转置,列号col 从1变到n ,

每次从头至尾扫描M.data ,对列标等于col 的三元组,将其行标、列标互换后依次放入T.data[ ]中。

3. 稀疏矩阵的十字链表表示: typedef Struct{

OLink *rhead,*chead; //行头指针与列头指针数组 int mu, nu, tu }CrossList

4. 上下三角矩阵存到一位数组的下标转换。相关稀疏矩阵的程序可以看看课件。

第六章 树和二叉树

1. 树的结构特点:树是一个层次结构,“有且仅有一个根结点无前驱(第一层);有一或多个叶结点无后继;其余结

点有唯一前驱和若干后继”。递归定义:树由根结点(唯一)及该根结点的若干(零或多个)“子树”组成。不含任何结点也是树,称为空树

2. 树的相关术语如结点,度,见P120。

(1) 结点(node):一个数据元素及其若干指向其子树的分支。

(2) 结点的度(degree) 、树的度:结点所拥有的子树的棵数称为结点的度。树中结点度的最大值称为树的度。 (3) 叶子(left)结点、非叶子结点:树中度为0的结点称为叶子结点(或终端结点)。相对应地,度不为0的结点

M.chead

M.rhead

(整理)SQLServer数据库基本知识点.

SQL Server 数据库基本知识点一、数据类型

二、常用语句 (用到的数据库Northwind) 查询语句 简单的Transact-SQL查询只包括选择列表、FROM子句和WHERE子句。它们分别说明所查询列、查询的 表或视图、以及搜索条件等。例如,下面的语句查询Customers 表中公司名称为“Alfreds Futterkiste”的ContactName字段和Address字段。 SELECT ContactName, Address FROM Customers WHERE CompanyName='Alfreds Futterkiste' (一) 选择列表 选择列表(select_list)指出所查询列,它可以是一组列名列表、星号、表达式、变量(包括局部变量和全局变量)等构成。 1、选择所有列 例如,下面语句显示Customers表中所有列的数据: SELECT * FROM Customers 2、选择部分列并指定它们的显示次序查询结果集合中数据的排列顺序与选择列表中所指定的列名排列顺序相同。 例如: SELECT ContactName, Address FROM Customers 3、更改列标题 在选择列表中,可重新指定列标题。定义格式为: 列标题 as 列名 列名列标题如果指定的列标题不是标准的标识符格式时,应使用引号定界符,例如,下列语句使用汉字显示列标题: SELECT ContactName as 联系人名称, Address as地址 FROM Customers 4、删除重复行

SELECT语句中使用ALL或DISTINCT选项来显示表中符合条件的所有行或删除其中重复的数据行,默认 为ALL。使用DISTINCT选项时,对于所有重复的数据行在SELECT返回的结果集合中只保留一行。 SELECT DISTINCT(Country) FROM Customers 5、限制返回的行数 使用TOP n [PERCENT]选项限制返回的数据行数,TOP n说明返回n行,而TOP n PERCENT 时,说明n是 表示一百分数,指定返回的行数等于总行数的百分之几。 例如: SELECT TOP 2 * FROM Customers SELECT TOP 20 PERCENT * FROM Customers (二)FROM子句 FROM子句指定SELECT语句查询及与查询相关的表或视图。在FROM子句中最多可指定256个表或视图,它们之间用逗号分隔。在FROM子句同时指定多个表或视图时,如果选择列表中存在同名列,这时应使用对象名限定这些列 所属的表或视图。例如在Orders和Customers表中同时存在CustomerID列,在查询两个表中的CustomerID时应 使用下面语句格式加以限定: select * from Orders,Customers where Orders.CustomerID =Customers.CustomerID 在FROM子句中可用以下两种格式为表或视图指定别名: 表名 as 别名 表名别名 select * from Orders as a,Customers as b where a.CustomerID =b.CustomerID SELECT不仅能从表或视图中检索数据,它还能够从其它查询语句所返回的结果集合中查询数据。 例如: select * from Customers where CustomerID in (select CustomerID from Orders where EmployeeID=4) 此例中,将SELECT返回的结果集合给予一别名CustomerID,然后再从中检索数据。 (三) 使用WHERE子句设置查询条件 WHERE子句设置查询条件,过滤掉不需要的数据行。例如下面语句查询年龄大于20的数据:select CustomerID from Orders where EmployeeID=4

大数据库面试基础知识总结材料

1. 数据抽象:物理抽象、概念抽象、视图级抽象,模式、模式、外模式 提示: (1). 概念模式:(面向单个用户的) 是数据中全部数据的整体逻辑结构的描述。它由若干个概念记录类型组成。 (2). 外模式:(面向全局的) 是用户与数据库系统的接口,是用户用到的那部分数据的描述。它由若干个外部记录类型组成。(3). 模式:(面向存储的) 是数据库在物理存储方面的描述,它定义所有的部记录类型、索引、和文件的组织方式,以及数据控制方面的细节。 模式描述的是数据的全局逻辑结构,外模式描述的是数据的局部逻辑结构。对应与同一个模式可以有任意多个外模式。在数据库中提供两级映像功能,即外模式/模式映像和模式/模式映像。对于没一个外模式,数据库系统都有一个外模式/模式映像它定义了该外模式与模式之间的对应关系。这些映像定义通常包括在各自外模式的描述中,当模式改变时,由数据库管理员对各个外模式/模式的映像做相应改变,可以使外模式保持不变,从而应用程序不必修改,保证了数据的逻辑独立性。数据库中只有一个模式,也只有一个模式,所以模式/模式映像是唯一的,它定义了数据全局逻辑结构与存储结构之间的对应关系。当数据库的存储结构改变了,由数据库管理员对模式/模式映像做相应改变,可以使模式保持不变,从而保证了数据的物理独立性。 2. SQL语言包括数据定义、数据操纵(Data Manipulation),数据控制(Data Control) 数据定义:Create Table,Alter Table,Drop Table,Craete/Drop Index等 数据操纵:Select ,insert,update,delete, 数据控制:grant,revoke 3. SQL常用命令 CREATE TABLE Student( ID NUMBER PRIMARY KEY, NAME V ARCHAR2(50) NOT NULL);//建表 CREATE VIEW view_name AS Select * FROM Table_name;//建视图 Create UNIQUE INDEX index_name ON TableName(col_name);//建索引 INSERT INTO tablename {column1,column2,…} values(exp1,exp2,…);//插入 INSERT INTO Viewname {column1,column2,…} values(exp1,exp2,…);//插入视图实际影响表 UPDA TE tablename SET name=’zang 3’ condition;//更新数据 DELETE FROM Tablename WHERE condition;//删除 GRANT (Select,delete,…) ON (对象) TO USER_NAME [WITH GRANT OPTION];//授权 REVOKE (权限表) ON(对象) FROM USER_NAME [WITH REVOKE OPTION] //撤权 列出工作人员及其领导的名字: Select https://www.360docs.net/doc/ec14682299.html,,https://www.360docs.net/doc/ec14682299.html, FROM EMPLOYEE E S WHERE E.SUPERName=https://www.360docs.net/doc/ec14682299.html, 4. 视图 提示: 计算机数据库中的视图是一个虚拟表,其容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查

《数据库原理》知识点总结 (3)

目录未找到目录项。 一数据库基础知识(第1、2章) 一、有关概念 1.数据 2.数据库(DB) 3.数据库管理系统(DBMS) Access 桌面DBMS VFP SQL Server Oracle 客户机/服务器型DBMS MySQL DB2 4.数据库系统(DBS) 数据库(DB) 数据库管理系统(DBMS) 开发工具 应用系统 二、数据管理技术的发展 1.数据管理的三个阶段 概念模型 一、模型的三个世界 1.现实世界 2.信息世界:即根据需求分析画概念模型(即E-R图),E-R图与DBMS无关。 3.机器世界:将E-R图转换为某一种数据模型,数据模型与DBMS相关。

注意:信息世界又称概念模型,机器世界又称数据模型 二、实体及属性 1.实体:客观存在并可相互区别的事物。 2.属性: 3.关键词(码、key):能唯一标识每个实体又不含多余属性的属性组合。 一个表的码可以有多个,但主码只能有一个。 例:借书表(学号,姓名,书号,书名,作者,定价,借期,还期) 规定:学生一次可以借多本书,同一种书只能借一本,但可以多次续借。 4.实体型:即二维表的结构 例student(no,name,sex,age,dept) 5.实体集:即整个二维表 三、实体间的联系: 1.两实体集间实体之间的联系 1:1联系 1:n联系 m:n联系 2.同一实体集内实体之间的联系 1:1联系 1:n联系 m:n联系 四、概念模型(常用E-R图表示) 属性: 联系: 说明:①E-R图作为用户与开发人员的中间语言。 ②E-R图可以等价转换为层次、网状、关系模型。 举例: 学校有若干个系,每个系有若干班级和教研室,每个教研室有若干教员,其中有的教授和副教授每人各带若干研究生。每个班有若干学生,每个学生选修若干课程,每门课程有若干学生选修。用E-R图画出概念模型。

(完整版)非常实用的数据结构知识点总结

数据结构知识点概括 第一章概论 数据就是指能够被计算机识别、存储和加工处理的信息的载体。 数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。 数据结构的定义: ·逻辑结构:从逻辑结构上描述数据,独立于计算机。·线性结构:一对一关系。 ·线性结构:多对多关系。 ·存储结构:是逻辑结构用计算机语言的实现。·顺序存储结构:如数组。 ·链式存储结构:如链表。 ·索引存储结构:·稠密索引:每个结点都有索引项。 ·稀疏索引:每组结点都有索引项。 ·散列存储结构:如散列表。 ·数据运算。 ·对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。 ·常用的有:检索、插入、删除、更新、排序。 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。 ·结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:·是抽象数据的组织和与之的操作。相当于在概念层上描述问题。 ·优点是将数据和操作封装在一起实现了信息隐藏。 程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。 算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。 评价算法的好坏的因素:·算法是正确的; ·执行算法的时间; ·执行算法的存储空间(主要是辅助存储空间); ·算法易于理解、编码、调试。 时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。 渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。 时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O (n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

数据库知识点总结

二、名词解释 1.数据冗余定义:同一数据存储在不同的数据文件中的现象。 2.DBA 数据库管理员 3.事务指访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。 4.数据字典:数据库中所有对象及其关系的信息集合。 5.数据独立性包括数据的物理独立性和逻辑独立性。 6.物理独立性是指用户的应用程序与存储在磁盘上的数据库中数据是相互独立的 7.逻辑独立性是指用户的应用程序与数据库的逻辑结构是相互独立的 8. 存储过程是一组为了完成特定功能的SQL语句集 9.触发器可以查询其他表,而且可以包含复杂的SQL 语句。它们主要用于强制服从复杂的业务规则或要求 10.SQL语言中的视图 答:在SQL中,外模式一级数据结构的基本单位是视图,它是从若干基本表和(或)其它视图中构造出来的,视图并不存储对应的数据,只是将视图的定义存于数据字典中。 四、简答题 1.数据库管理系统的主要功能有哪些? 答:数据库定义、操纵、保护、存储、维护和数据字典。 2.数据库系统中的常见故障有哪些? 答:.事务故障,系统故障、介质故障。 3.简述SQL语言的组成。 答:分为四个部分: 数据定义、数据操纵、数据控制、嵌入式SQL语言的使用规定。 4.说明关系模型有哪三类完整性规则? 答:实体完整性、参照完整性、用户自定义完整性。 5.请阐述在网状模型和关系模型中,实体之间联系的实现方法。 答:在网状模型中,联系用指针实现。 在关系模型中,联系用关键码(或外键,或关系运算) 来实现。 6.DBS由哪几个部分组成? 答:DBS由四部分组成:数据库、硬件、软件、数据库管理员。 7.数据库的并发操作会带来哪些问题? 答:数据库的并发操作会带来三类问题:丢失更新问题;不一致分析问题和“脏数据”的读出。 8.简述客户/服务器模式DBS的一般结构。此时数据库应用的功能如何划分? 答:DBS :数据库系统(Database System),DBS是实现有组织地、动态地存储大量关联数据,方便多用户访问的计算机软件、硬件和数据资源组成的系统,即采用了数据库技术的计算机系统。 9.什么是日志文件?为什么要设立日志文件? 答:(1)日志文件是用来记录事务对数据库的更新操作的文件。 (2)设立日志文件的目的是:进行事务故障恢复;进行系统故障恢复;协助后备副本进行介质故障恢复。 10.SQL中表达完整性约束的规则主要有哪几种? 答:有主键约束、外键约束、属性值约束和全局约束等。 11.什么是分布式数据库的分布透明性?

数据库原理王珊知识点整理

目录 1.1.1 四个基本概念 (1) 数据(Data) (1) 数据库(Database,简称DB) (1) 长期储存在计算机内、有组织的、可共享的大量数据的集合、 (1) 基本特征 (1) 数据库管理系统(DBMS) (1) 数据定义功能 (1) 数据组织、存储和管理 (1) 数据操纵功能 (2) 数据库的事务管理和运行管理 (2) 数据库的建立和维护功能(实用程序) (2) 其它功能 (2) 数据库系统(DBS) (2) 1.1.2 数据管理技术的产生和发展 (3) 数据管理 (3)

数据管理技术的发展过程 (3) 人工管理特点 (3) 文件系统特点 (4) 1.1.3 数据库系统的特点 (4) 数据结构化 (4) 整体结构化 (4) 数据库中实现的是数据的真正结构化 (4) 数据的共享性高,冗余度低,易扩充、数据独立性高 (5) 数据独立性高 (5) 物理独立性 (5) 逻辑独立性 (5) 数据独立性是由DBMS的二级映像功能来保证的 (5) 数据由DBMS统一管理和控制 (5) 1.2.1 两大类数据模型:概念模型、逻辑模型和物理模型 (6) 1.2.2 数据模型的组成要素:数据结构、数据操作、数据的完整性约束条件. 7 数据的完整性约束条件: (7)

关系数据模型的优缺点 (8) 1.3.1 数据库系统模式的概念 (8) 型(Type):对某一类数据的结构和属性的说明 (8) 值(Value):是型的一个具体赋值 (8) 模式(Schema) (8) 实例(Instance) (8) 1.3.2 数据库系统的三级模式结构 (9) 外模式[External Schema](也称子模式或用户模式), (9) 模式[Schema](也称逻辑模式) (9) 内模式[Internal Schema](也称存储模式) (9) 1.3.3 数据库的二级映像功能与数据独立性 (9) 外模式/模式映像:保证数据的逻辑独立性 (10) 模式/内模式映象:保证数据的物理独立性 (10) 1.4 数据库系统的组成 (10) 数据库管理员(DBA)职责: (10)

数据结构复习要点(整理版).docx

第一章数据结构概述 基本概念与术语 1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。 2. 数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。 (补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。 ) 3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也 叫做属性。) 4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。 数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。 依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种: 1. 集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。 2. 线性结构:结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。 3. 树形结构:结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素 (根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。 4. 图状结构:结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。 (2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构: 1. 顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。 2. 链式存储结构:借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。 5. 时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n 无关系T(n)=O(1) 2. 线性阶:算法的时间复杂度与问题规模 n 成线性关系T(n)=O(n) 3. 平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++ 时间复杂度的大小比较: O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

《数据库原理》知识点总结

《数据库原理》知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

目录未找到目录项。 一数据库基础知识(第1、2章) 一、有关概念 1.数据 2.数据库(DB) 3.数据库管理系统(DBMS) Access 桌面DBMS VFP SQL Server Oracle 客户机/服务器型DBMS MySQL DB2 4.数据库系统(DBS) 数据库(DB) 数据库管理系统(DBMS) 开发工具 应用系统 二、数据管理技术的发展 1.数据管理的三个阶段 概念模型 一、模型的三个世界 1.现实世界

2.信息世界:即根据需求分析画概念模型(即E-R图),E-R图与DBMS 无关。 3.机器世界:将E-R图转换为某一种数据模型,数据模型与DBMS相关。 注意:信息世界又称概念模型,机器世界又称数据模型 二、实体及属性 1.实体:客观存在并可相互区别的事物。 2.属性: 3.关键词(码、key):能唯一标识每个实体又不含多余属性的属性组合。 一个表的码可以有多个,但主码只能有一个。 例:借书表(学号,姓名,书号,书名,作者,定价,借期,还期) 规定:学生一次可以借多本书,同一种书只能借一本,但可以多次续借。 4.实体型:即二维表的结构 例 student(no,name,sex,age,dept) 5.实体集:即整个二维表 三、实体间的联系: 1.两实体集间实体之间的联系 1:1联系 1:n联系 m:n联系 2.同一实体集内实体之间的联系 1:1联系 1:n联系 m:n联系 四、概念模型(常用E-R图表示) 属性: 联系: 说明:① E-R图作为用户与开发人员的中间语言。 ② E-R图可以等价转换为层次、网状、关系模型。 举例: 学校有若干个系,每个系有若干班级和教研室,每个教研室有若干教员,其中有的教授 和副教授每人各带若干研究生。每个班有若干学生,每个学生选修若干课程,每门课程有若干学生选修。用E-R图画出概念模型。

数据结构复习提纲(整理)

复习提纲 第一章数据结构概述 基本概念与术语(P3) 1.数据结构是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科. 2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合 2.数据元素是数据的基本单位 3.数据对象相同性质的数据元素的集合 4.数据结构包括三方面内容:数据的逻辑结构.数据的存储结构.数据的操作. (1)数据的逻辑结构指数据元素之间固有的逻辑关系. (2)数据的存储结构指数据元素及其关系在计算机内的表示 ( 3 ) 数据的操作指在数据逻辑结构上定义的操作算法,如插入,删除等. 5.时间复杂度分析 -------------------------------------------------------------------------------------------------------------------- 1、名词解释:数据结构、二元组 2、根据数据元素之间关系的不同,数据的逻辑结构可以分为 集合、线性结构、树形结构和图状结构四种类型。 3、常见的数据存储结构一般有四种类型,它们分别是___顺序存储结构_____、___链式存储结构_____、___索引存储结构_____和___散列存储结构_____。 4、以下程序段的时间复杂度为___O(N2)_____。 int i,j,x; for(i=0;i

2021年自考02331数据结构重点总结最终修订

自考02331数据构造重点总结(最后修订) 第一章概论 1.瑞士计算机科学家沃思提出:算法+数据构造=程序。算法是对数据运算描述,而数据构造涉及逻辑构造和存储构造。由此可见,程序设计实质是针对实际问题选取一种好数据构造和设计一种好算法,而好算法在很大限度上取决于描述实际问题数据构造。 2.数据是信息载体。数据元素是数据基本单位。一种数据元素可以由若干个数据项构成,数据项是具备独立含义最小标记单位。数据对象是具备相似性质数据元素集合。 3.数据构造指是数据元素之间互有关系,即数据组织形式。 数据构造普通涉及如下三方面内容:数据逻辑构造、数据存储构造、数据运算 ①数据逻辑构造是从逻辑关系上描述数据,与数据元素存储构造无关,是独立于计算机。 数据逻辑构造分类:线性构造和非线性构造。 线性表是一种典型线性构造。栈、队列、串等都是线性构造。数组、广义表、树和图等数据构造都是非线性构造。 ②数据元素及其关系在计算机内存储方式,称为数据存储构造(物理构造)。 数据存储构造是逻辑构造用计算机语言实现,它依赖于计算机语言。 ③数据运算。最惯用检索、插入、删除、更新、排序等。 4.数据四种基本存储办法:顺序存储、链接存储、索引存储、散列存储 (1)顺序存储:普通借助程序设计语言数组描述。 (2)链接存储:普通借助于程序语言指针来描述。 (3)索引存储:索引表由若干索引项构成。核心字是能唯一标记一种元素一种或各种数据项组合。 (4)散列存储:该办法基本思想是:依照元素核心字直接计算出该元素存储地址。 5.算法必要满足5个准则:输入,0个或各种数据作为输入;输出,产生一种或各种输出;有穷性,算法执行有限步后结束;拟定性,每一条指令含义都明确;可行性,算法是可行。 算法与程序区别:程序必要依赖于计算机程序语言,而一种算法可用自然语言、计算机程序语言、数学语言或商定符号语言来描述。当前惯用描述算法语言有两类:类Pascal和类C。 6.评价算法优劣:算法"对的性"是一方面要考虑。此外,重要考虑如下三点: ①执行算法所耗费时间,即时间复杂性; ②执行算法所耗费存储空间,重要是辅助空间,即空间复杂性; ③算法应易于理解、易于编程,易于调试等,即可读性和可操作性。

数据库知识点整理(全)

UNIT 1 四个基本概念 1.数据(Data):数据库中存储的基本对象 2.数据库的定义 :数据库(Database,简称DB)是长期储存在计算机内、有组织的、可共享的大量数据集合 3.数据库管理系统(简称DBMS):位于用户与操作系统之间的一层数据管理软件(系统软件)。 用途:科学地组织和存储数据;高效地获取和维护数据 主要功能: 数据定义功能; 数据操纵功能; 数据库的运行管理; 数据库的建立和维护功能(实用程序) 4.数据库系统(Database System,简称DBS):指在计算机系统中引入数据库后的系统 数据库系统的构成 数据库 数据库管理系统(及其开发工具) 应用系统 数据库管理员(DBA)和用户 数据管理技术的发展过程 人工管理阶段 文件系统阶段 数据库系统阶段 数据库系统管理数据的特点如下 (1) 数据共享性高、冗余少;(2) 数据结构化;(3) 数据独立性高;(4) 由DBMS进行统一的数据控制功能 数据模型 用来抽象、表示和处理现实世界中的数据和信息的工具。通俗地讲数据模型就是现实世界数据的模拟。 数据模型三要素。

数据结构:是所研究的对象类型的集合,它是刻画一个数据模型性质最重要的方面;数据结构是对系统静态特性的描述 数据操作:对数据库中数据允许执行的操作及有关的操作规则;对数据库中数据的操作主要有查询和更改(包括插入、修改、删除);数据操作是对系统动态特性的描述 数据的约束条件:数据及其联系应该满足的条件限制 E-R图 实体:矩形框表示 属性:椭圆形(或圆角矩形)表示 联系:菱形表示 组织层数据模型 层次模型 网状模型 关系模型(用“二维表”来表示数据之间的联系) 基本概念: 关系(Relation) :一个关系对应通常说的一张表 元组(记录): 表中的一行 属性(字段):表中的一列,给每一个属性名称即属性名 分量:元组中的一个属性值,分量为最小单位,不可分 主码(Key):表中的某个属性组,它可以唯一确定一个元组。 域(Domain):属性的取值范围。

大学数据结构期末知识点重点总结

第一章概论 1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算 2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系 可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R) 结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据 关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系 3.数据类型 a.基本数据类型 整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型 复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型 4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多) 5.四种基本存储映射方法:顺序、链接、索引、散列 6.算法的特性:通用性、有效性、确定性、有穷性 7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化 8.渐进算法分析 a.大Ο分析法:上限,表明最坏情况 b.Ω分析法:下限,表明最好情况 c.Θ分析法:当上限和下限相同时,表明平均情况 第二章线性表 1.线性结构的基本特征 a.集合中必存在唯一的一个“第一元素” b.集合中必存在唯一的一个“最后元素” c.除最后元素之外,均有唯一的后继 d.除第一元素之外,均有唯一的前驱 2.线性结构的基本特点:均匀性、有序性 3.顺序表 a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度 b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元) c. 线性表的优缺点: 优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样 缺点:空间难以扩充 d.检索:ASL=【Ο(1)】 e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】 f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】 4.链表 4.1单链表 a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】 d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n)】 e.不足:next仅指向后继,不能有效找到前驱 4.2双链表 a.增加前驱指针,弥补单链表的不足 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;) d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;) 4.3顺序表和链表的比较 4.3.1主要优点 a.顺序表的主要优点 没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利 b.链表的主要优点 无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况 4.3.2应用场合的选择 a.不宜使用顺序表的场合 经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素 b.不宜使用链表的场合 当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择 第三章栈与队列 1.栈 a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种 b.应用: 1)数制转换 while (N) { N%8入栈; N=N/8;} while (栈非空){ 出栈; 输出;} 2)括号匹配检验 不匹配情况:各类括号数量不同;嵌套关系不正确 算法: 逐一处理表达式中的每个字符ch: ch=非括号:不做任何处理 ch=左括号:入栈 ch=右括号:if (栈空) return false else { 出栈,检查匹配情况, if (不匹配) return false } 如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式: 计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式: <表达式> ::= <项><项> + | <项><项>-|<项> <项> ::= <因子><因子> * |<因子><因子>/|<因子> <因子> ::= <常数> ?<常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式 InfixExp为中缀表达式,PostfixExp为后缀表 达式 初始化操作数栈OP,运算符栈OPND; OPND.push('#'); 读取InfixExp表达式的一项 操作数:直接输出到PostfixExp中; 操作符: 当‘(’:入OPND; 当‘)’:OPND此时若空,则出错;OPND若 非空,栈中元素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若为‘(’,弹出即 可 当‘四则运算符’:循环(当栈非空且栈顶不是 ‘(’&& 当前运算符优先级>栈顶运算符优先 级),反复弹出栈顶运算符并输入到 PostfixExp中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP; while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP; 运算符:退出两个操作数, 计算,并将结果入栈} c.递归使用的场合:定义是递归的;数据结构是 递归的;解决问题的方法是递归的 2.队列 a.若线性表的插入操作在一端进行,删除操作 在另一端进行,则称此线性表为队列 b.循环队列判断队满对空: 队空:front==rear;队满: (rear+1)%n==front 第五章二叉树 1.概念 a. 一个结点的子树的个数称为度数 b.二叉树的高度定义为二叉树中层数最大的叶 结点的层数加1 c.二叉树的深度定义为二叉树中层数最大的叶 结点的层数 d.如果一棵二叉树的任何结点,或者是树叶, 或者恰有两棵非空子树,则此二叉树称作满二 叉树 e.如果一颗二叉树最多只有最下面的两层结点 度数可以小于2;最下面一层的结点都集中在 该层最左边的位置上,则称此二叉树为完全二 叉树 f.当二叉树里出现空的子树时,就增加新的、特 殊的结点——空树叶组成扩充二叉树,扩充二 叉树是满二叉树 外部路径长度E:从扩充的二叉树的根到每个 外部结点(新增的空树叶)的路径长度之和 内部路径长度I:扩充的二叉树中从根到每个内 部结点(原来二叉树结点)的路径长度之和 2.性质 a. 二叉树的第i层(根为第0层,i≥0)最多有 2^i个结点 b. 深度为k的二叉树至多有2k+1-1个结点 c. 任何一颗二叉树,度为0的结点比度为2的 结点多一个。n0 = n2 + 1 d. 满二叉树定理:非空满二叉树树叶数等于其 分支结点数加1 e. 满二叉树定理推论:一个非空二叉树的空子 树(指针)数目等于其结点数加1 f. 有n个结点(n>0)的完全二叉树的高度为 ?log2(n+1)?,深度为?log2(n+1)?? g. 对于具有n个结点的完全二叉树,结点按层 次由左到右编号,则有: 1) 如果i = 0为根结点;如果i>0,其父结点 编号是(i-1)/2 2) 当2i+1∈N,则称k是k'的父结点,k'是 的子结点 若有序对∈N,则称k' k″互为兄弟 若有一条由k到达ks的路径,则称k是 的祖先,ks是k的子孙 2.树/森林与二叉树的相互转换 a.树转换成二叉树 加线: 在树中所有兄弟结点之间加一连线 抹线: 对每个结点,除了其最左孩子外, 与其余孩子之间的连线 旋转: 45° b.二叉树转化成树 加线:若p结点是双亲结点的左孩子,则将 的右孩子,右孩子的右孩子, 所有右孩子,都与p的双亲用线连起来 线 调整:将结点按层次排列,形成树结构 c.森林转换成二叉树 将各棵树分别转换成二叉树 将每棵树的根结点用线相连 为轴心,顺时针旋转,构成二叉树型结构 d.二叉树转换成森林 抹线:将二叉树中根结点与其右孩子连线,及 沿右分支搜索到的所有右孩子间连线全部抹 掉,使之变成孤立的二叉树 还原:将孤立的二叉树还原成树 3.周游 a.先根(次序)周游 若树不空,则先访问根结点,然后依次先根周 游各棵子树 b.后根(次序)周游 若树不空,则先依次后根周游各棵子树,然后 访问根结点 c.按层次周游 若树不空,则自上而下自左至右访问树中每个 结点 4.存储结构 “左子/右兄”二叉链表表示法:结点左指针指 向孩子,右结点指向右兄弟,按树结构存储, 无孩子或无右兄弟则置空 5. “UNION/FIND算法”(等价类) 判断两个结点是否在同一个集合中,查找一个 给定结点的根结点的过程称为FIND 归并两个集合,这个归并过程常常被称为 UNION “UNION/FIND”算法用一棵树代表一个集合, 如果两个结点在同一棵树中,则认为它们在同 一个集合中;树中的每个结点(除根结点以外) 有仅且有一个父结点;结点中仅需保存父指针 信息,树本身可以存储为一个以其结点为元素 的数组 6.树的顺序存储结构 a. 带右链的先根次序表示法 在带右链的先根次序表示中,结点按先根次序 顺序存储在一片连续的存储单元中 每个结点除包括结点本身数据外,还附加两个 表示结构的信息字段,结点的形式为: info是结点的数据;rlink是右指针,指向结点 的下一个兄弟;ltag是一个左标记,当结点没 有子结点(即对应二叉树中结点没有左子结点 时),ltag为1,否则为0 b. 带双标记位的先根次序表示法 规定当结点没有下一个兄弟(即对应的二叉树 中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法 结点按层次次序顺序存储在一片连续的存储单 元中 第七章图 1.定义 a.假设图中有n个顶点,e条边: 含有e=n(n-1)/2条边的无向图称作完全图 含有e=n(n-1) 条弧的有向图称作有向完全图 若边或弧的个数e < nlogn,则称作稀疏图, 否则称作稠密图 b. 顶点的度(TD)=出度(OD)+入度(ID) 顶点的出度: 以顶点v为弧尾的弧的数目 顶点的入度: 以顶点v为弧头的弧的数目 c.连通图、连通分量 若图G中任意两个顶点之间都有路径相通,则 称此图为连通图 若无向图为非连通图,则图中各个极大连通子 图称作此图的连通分量 d.强连通图、强连通分量 对于有向图,若任意两个顶点之间都存在一条 有向路径,则称此有向图为强连通图 否则,其各个极大强连通子图称作它的强连通 分量 e.生成树、生成森林 假设一个连通图有n个顶点和e条边,其中n-1 条边和n个顶点构成一个极小连通子图,称该 极小连通子图为此连通图的生成树 对非连通图,则将由各个连通分量构成的生成 树集合称做此非连通图的生成森林 2.存储结构 a.相邻矩阵表示法 表示顶点间相邻关系的矩阵 若G是一个具有n个顶点的图,则G的相邻矩 阵是如下定义的n×n矩阵: A[i,j]=1,若(Vi, Vj)(或)是图G的边 A[i,j]=0,若(Vi, Vj)(或)不是图G的边 b.邻接表表示法 为图中每个顶点建立一个单链表,第i个单链表 中的结点表示依附于顶点Vi的边(有向图中指 以Vi为尾的弧)(建立单链表时按结点顺序建 立) 3.周游 a. 深度优先周游: 从图中某个顶点V0出发,访问此顶点,然后依 次从V0的各个未被访问的邻接点出发,深度优 先搜索遍历图中的其余顶点,直至图中所有与 V0有路径相通的顶点都被访问到为止 b. 广度优先周游: 从图中的某个顶点V0出发,并在访问此顶点之 后依次访问V0的所有未被访问过的邻接点,随 后按这些顶点被访问的先后次序依次访问它们 的邻接点,直至图中所有与V0有路径相通的顶 点都被访问到为止,若此时图中尚有顶点未被 访问,则另选图中一个未曾被访问的顶点作起 始点,重复上述过程,直至图中所有顶点都被 访问到为止 4.拓扑排序 拓扑排序的方法是:1)选择一个入度为0的顶 点且输出之 2)从图中删掉此顶点及所有的出边 3)回到第1步继续执行,直至图空或者图不空 但找不到无前驱(入度为0)的顶点为止 5.单源最短路径(Dijkstra算法) 6.每对顶点间的最短路径(Floyd算法) 7.最小生成树 a.Prim算法 b.Kruskal算法 c.两种算法比较:Prim算法适合稠密图, Kruskal算法适合稀疏图 第八章内排序 算法最大时间平均时间 直接插入排 序 Θ(n2) Θ(n2) 冒泡排序Θ(n2) Θ(n2) 直接选择排 序 Θ(n2) Θ(n2) Shell排序Θ(n3/2) Θ(n3/2) 快速排序Θ(n2) Θ(nlog n) 归并排序Θ(nlog n) Θ(nlog n) 堆排序Θ(nlog n) Θ(nlog n) 桶式排序Θ(n+m) Θ(n+m) 基数排序Θ(d·(n+r)) Θ(d·(n+r)) 最小时间S(n) 稳定性 Θ(n) Θ(1) 稳定 Θ(n) Θ(1) 稳定 Θ(n2) Θ(1) 不稳定 Θ(n3/2) Θ(1) 不稳定 Θ(nlog n) Θ(log n) 不稳定 Θ(nlog n) Θ(n) 稳定 Θ(nlog n) Θ(1) 不稳定 Θ(n+m) Θ(n+m) 稳定 Θ(d·(n+r)) Θ(n+r) 稳定 第十章检索 1.平均检索长度(ASL)是待检索记录集合中元 素规模n的函数,其定义为: ASL= Pi为检索第i个元素的概率;Ci为找到第i个元 素所需的比较次数 2.散列 a.除余法 用关键码key除以M(取散列表长度),并取余 数作为散列地址 散列函数为:hash(key) =key mod M b.解决冲突的方法 开散列方法:把发生冲突的关键码存储在散列 表主表之外(在主表外拉出单链表) 闭散列方法:把发生冲突的关键码存储在表中 另一个位置上 c.线性探查 基本思想:如果记录的基位置存储位置被占用, 就在表中下移,直到找到一个空存储位置;依 次探查下述地址单元:d0+1,d0+2,...,m-1, 0,1,...,d0-1;用于简单线性探查的探查 函数是:p(K, i) = i d.散列表的检索 1.假设给定的值为K,根据所设定的散列函数h, 计算出散列地址h(K) 2. 如果表中该地址对应的空间未被占用,则检 索失败,否则将该地址中的值与K比较 3. 若相等则检索成功;否则,按建表时设定的 处理冲突方法查找探查序列的下一个地址,如 此反复下去,直到某个地址空间未被占用(可 以插入),或者关键码比较相等(有重复记录, 不需插入)为止 e.散列表的删除:删除后在删除地点应加上墓 碑(被删除标记) f.散列表的插入:遇到墓碑不停止,知道找到真 正的空位置 第十一章索引技术 1.概念: a.主码:数据库中的每条记录的唯一标识 b.辅码:数据库中可以出现重复值的码 2.B树 a.定义:B树定义:一个m阶B树满足下列条 件: (1) 每个结点至多有m个子结点; (2) 除根和叶外 其它每个结点至少有??个子结点; (3) 根结点至少有两个子结点 例外(空树,or独根) (4) 所有的叶在同一层,可以有??- 1到m-1个 关键码 (5) 有k个子结点的非根结点恰好包含k-1个关 键码 b.查找 在根结点所包含的关键码K1,…,Kj中查找给 定的关键码值(用顺序检索(key少)/二分检索 (key多));找到:则检索成功;否则,确定要查 的关键码值是在某个Ki和Ki+1之间,于是取 pi所指结点继续查找;如果pi指向外部结点, 表示检索失败. c.插入 找到的叶是插入位置,若插入后该叶中关键码 个数

相关文档
最新文档