专题训练(一) 证明三角形全等四种添加辅助线的方法-教学文档

专题训练(一) 证明三角形全等四种添加辅助线的方法-教学文档
专题训练(一) 证明三角形全等四种添加辅助线的方法-教学文档

专题训练(一)证明三角形全等四种添加辅助线的方法

?方法一直接连线构造全等三角形

1.如图1-ZT-1,AB=AD,BC=DC.求证:∠ABC=∠ADC.

图1-ZT-1

2.如图1-ZT-2,AB=AE,∠ABC=∠AED,BC=ED,AF⊥CD.求证:F是CD 的中点.

图1-ZT-2

3.如图1-ZT-3,AC,BD相交于点O,且AB=DC,AC=DB.求证:∠ABO=∠DCO.

图1-ZT-3

?方法二倍长中线构造全等三角形

4.如图1-ZT-4,AD是△ABC的边BC上的中线,AB=4,AC=8,求中线AD的取值范围.

图1-ZT-4

5.已知:如图1-ZT-5,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于点F.求证:∠BED=∠CAD.

(提示:等腰三角形的两底角相等)

图1-ZT-5

?方法三作垂直构造全等三角形

6.如图1-ZT-6所示,四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.

图1-ZT-6

7.如图1-ZT-7,∠AOB=90°,OM平分∠AOB,将三角尺的顶点P在射线OM上移动,两直角边分别与OA,OB相交于点C,D,则PC与PD相等吗?并说明理由.

图1-ZT-7

?方法四翻折构造全等三角形

8.如图1-ZT-8所示,BE平分∠ABC,E为AD的中点,且BC=BA+CD.求证:CE平分∠BCD.

图1-ZT -8

9.(1)如图1-ZT -9①,OP 是∠MON 的平分线,点A 为OM 上一点,点B 为OP 上一点.请你利用该图形在ON 上找一点C ,使△COB ≌△AOB.

参考这个作全等三角形的方法,解答下列问题:

(2)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD ,CE 分别是∠BAC ,∠BCA 的平分线,AD ,CE 相交于点F.请你判断并写出EF 与DF 的数量关系.

(3)如图③,在△ABC 中,如果∠ACB 不是直角,而(2)中的其他条件不变,那么(2)中所得结论是否仍然成立?请说明理由.

图1-ZT -9

详解详析

1.证明:连接AC .在△ABC 与△ADC 中,???AB =AD ,

BC =DC ,AC =AC ,

∴△ABC ≌△ADC (SSS), ∴∠ABC =∠ADC .

2.证明:如图,连接AC ,AD .

在△ABC 和△AED 中,

???AB =AE ,

∠ABC =∠AED ,BC =ED ,

∴△ABC ≌△AED (SAS),∴AC =AD .

∵AF ⊥CD ,∴∠AFC =∠AFD =90°.

在Rt △ACF 和Rt △ADF 中,?

??AC =AD ,AF =AF , ∴Rt △ACF ≌Rt △ADF (HL),

∴CF =DF ,∴F 是CD 的中点.

3.证明:连接BC .

在△ABC 和△DCB 中,

???AB =DC ,

AC =DB ,BC =CB ,

∴△ABC ≌△DCB (SSS),∴∠A =∠D .

在△AOB 和△DOC 中,???∠A =∠D ,

∠AOB =∠DOC ,AB =DC ,

∴△AOB ≌△DOC (AAS),∴∠ABO =∠DCO .

4.[解析] 通过作辅助线,把AB ,AD ,AC 转化到同一个三角形中,如图,证△ADB ≌△EDC ,推出EC =AB ,在△ACE 中,利用三角形的三边关系求解.

解:如图,延长AD 到点E ,使AD =ED ,连接CE .

∵D 是BC 的中点,

∴BD =CD .

在△ADB 和△EDC 中,???AD =ED ,

∠ADB =∠EDC ,BD =CD ,

∴△ADB ≌△EDC (SAS),∴EC =AB =4,

∴AC -EC =AC -AB =8-4=4,

AC +CE =AC +AB =12.

根据三角形的三边关系,得4<AE <12.

∵AE =2AD ,∴2<AD <6.

5.证明:如图,延长AD 到点G ,使得AD =GD ,连接BG .

∵AD 是BC 边上的中线,∴DC =DB .

在△ADC 和△GDB 中,

???AD =GD ,

∠ADC =∠GDB ,DC =DB ,

∴△ADC ≌△GDB (SAS),

∴∠CAD =∠G ,BG =AC .

又∵BE =AC ,∴BE =BG ,

∴∠BED =∠G ,∴∠BED =∠CAD .

6.证明:如图,过点D 作DE ⊥BA ,DF ⊥BC ,垂足分别为E ,F . ∵DE ⊥BA ,DF ⊥BC ,

∴∠DEB =∠DFB =90°.

∵BD 平分∠ABC ,∴∠DBE =∠DBF .

在△DEB 和△DFB 中,???∠DEB =∠DFB ,

∠DBE =∠DBF ,BD =BD ,

∴△DEB ≌△DFB ,∴DE =DF .

在Rt △DEA 和Rt △DFC 中,???AD =CD ,DE =DF ,

∴Rt △DEA ≌Rt △DFC (HL),∴∠C =∠EAD .

∵∠BAD +∠EAD =180°,

∴∠BAD +∠C =180°.

7.解:PC 与PD 相等.理由如下:

过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F .

∵OM 平分∠AOB ,

∴∠POE =∠POF .

(完整版)全等三角形基础练习证明题

全等三角形的判定 班级: 姓名: 1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证BE =CF 。 2.已知AC =BD ,AE =CF ,BE =DF ,求证AE ∥CF 3.已知AB =CD ,BE =DF ,AE =CF ,求证AB ∥CD 4.已知在四边形ABCD 中,AB =CD ,AD =CB ,求证AB ∥CD 5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证⊿ABD ≌⊿ACE . 6.已知CD ∥AB ,DF ∥EB ,DF =EB ,求证AF =CE 7.已知BE =CF ,AB =CD , ∠B =∠C ,求证AF =DE 8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF 9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。 10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。 11.已知∠1=∠2,∠3=∠4,求证AC =AD 12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF 13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。 14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。 A C D B 1 2 3 4 A B C D E F 1 2 A B C E H A C M E F B D A B C D F E C B D E F D C F E A B A D E B C 1 2 A D C E F B A D B A D F E C M A B C D 1 2 D C F E A B

七年级全等三角形证明经典题

七年级数学下册《全等三角形》专题练习 1、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C(做AB=AE交AC于E点) 6、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE(做AD=AF交AB于F点) 8. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求 证:BC=AB+DC。 C D B A

9、已知:AB 知:如图所示,AB = AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。 35.在△ABC 中,?=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ?≌CEB ?;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗若成立,请给出证明;若不成立,说明理由. A B C D D C B A F E P E D C B A D C B A M F E C B A F E D C B A F D C B F E D C B A D B C A F E

46. 如图, AB=12, CA⊥AB于A, DB⊥AB于B, 且AC=4m, P点从B向A运动, 每分钟走1m, Q 点从B向D运动, 每分钟走2m,P、Q两点同时出发, 运动几分钟后△CAP≌△PQB 试说明理由. 47、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E. (图1) (图2) (图3) (1)试说明: BD=DE+CE. (2) 若直线AE绕A点旋转到图(2)位置时(BDCE), 其余条件不变, 问BD与DE、CE的关系如何请直接写出结果, 不需说明.

几种证明全等三角形添加辅助线方法

全等三角形复习课 适用学科数学适用年级初中二年级 适用区域通用课时时长(分钟)120 知识点全等三角形的性质和判定方法 熟练掌握全等三角形的性质和判定方法,并学会用应用 教学目标 学会做辅助线证明三角形全等,常用的几种作辅助线的方法 教学重点 通过学习全等三角形,提高学生观察能力和分析能力 教学难点 教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1.如图1,AD是厶ABC的中线,求证:AB+ AC>2AD。 图1 图2 证明:延长AD至E,使AD= DE,连接CE如图2。??? AD是厶ABC的中线,二BD= CD。 又???/ 1 = Z 2,AD= DE, ???△ ABD^A ECD( SAS。AB= CE ???在△ ACE中,CE+ AC>AE, ??? AB+ AC> 2AD。 、沿角平分线翻折构造全等三角形

例 2.如图 3,在厶 ABC 中,/ 1 = / 2,/ ABC = 2/C 。求证:AB + BD = AC 。 A D 图3 ■ 3 ---- -- C 图4 证明:将厶ABD 沿AD 翻折,点B 落在AC 上的E 点处,即:在AC 上截取 AE = AB,连接EDb 如图4。 ???/ 1 = / 2, AD =AD , AB = AE, ???△ ABD^A AED ( SAS 。 ??? BD = ED,/ ABC =/ AED = 2/C 。 而/AED =/ C +/ EDC ???/ C =/ EDC 所以 EC = ED = BD 0 ??? AC = AE + EC,二 AB + BD = AG 三、作平行线构造全等三角形 例3.如图5,A ABC 中,AB = AG E 是AB 上异于A 、B 的任意一点,延长 AC 至U D , 使 CD = BE,连接 DE 交 BC 于 F 。求证:EF = FD 证明:过E 作EM // AC 交BC 于M ,如图6 则/ EMB =/ ACB / MEF =/ CDR ??? AB = AC,A / B =/ ACB ???/ B =/ EMB 。故 EM = BE ??? BE = CD,二 EM = CB 又???/ EFM=/ DFC / MEF =/ CDF

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

全等三角形证明题(含答案版)

1、如图,四边形ABCD是边长为2的正方形,点G是 BC延长线上一点,连结AG,点E、F分别在AG 上,连接BE、DF,∠1=∠2 ,∠3=∠4. (1)证明:△ABE≌△DAF; (2)若∠AGB=30°,求EF的长. 【解析】 (1)∵四边形ABCD是正方形, ∴AB=AD, 在△ABE和△DAF中,? ? ? ? ? ∠ = ∠ = ∠ = ∠ 3 4 1 2 DA AB , ∴△ABE≌△DAF. (2)∵四边形ABCD是正方形, ∴∠1+∠4=90o ∵∠3=∠4, ∴∠1+∠3=90o ∴∠AFD=90o 在正方形ABCD中,AD∥BC, ∴∠1=∠AGB=30o 在Rt△ADF中,∠AFD=90o AD=2 , ∴AF=3 , DF =1, 由(1)得△ABE≌△ADF, ∴AE=DF=1, ∴EF=AF-AE= 1 3- . 2、如图, , AB AC AD BC D AD AE AB DAE DE F =⊥=∠ 于点,,平分交于点 ,请你写出图中三对全等三角形,并选取其中一对加以 证明. 【解析】 (1) ADB ADC △≌△、 ABD ABE △≌△、AFD AFE △≌△、 BFD BFE △≌△、 ABE ACD △≌△(写出其中的三对即 可). (2)以 △ADB≌ADC为例证明. 证明: ,90 AD BC ADB ADC ⊥∴∠=∠= °. 在Rt ADB △和Rt ADC △中, ,, AB AC AD AD == ∴Rt ADB △≌Rt ADC △. 3、在△ABC中,AB=CB,∠ABC=90o,F为AB延长线上 一点,点E在BC上,且AE=CF. (1)求证:Rt△AB E≌Rt△CBF; (2)若∠CAE=30o,求∠ACF度数.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 A D B C

∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) B A C D F 2 1 E

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形证明经典100题

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD A D B C B A C D F 2 1 E C D B A

8. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E C D B A

12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C D C B A F E

全等三角形证明经典50题(含答案)

1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE 2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 4.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBA 5.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线 交AP 于D .求证:AD +BC =AB . P E D C B A F A E D C B

6.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F , 若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立 请给予证明;若不成立请说明理由. 7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积 相等的三角形.(直接写出结果,不要求证明): 8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线 垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE . O E D C B A F E D C B A

全等三角形之辅助线(习题及答案)

全等三角形之辅助线(习题) 例题示范 例1:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】1 读题标注:2梳理思路: 要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明. 观察图形,发现不存在全等的三角形. 结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE 在Rt △ACE 和Rt △ADE 中 AE AE AC AD =??=?(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等) 过程规划:1.描述辅助线:连接AE 2.准备条件:∠C =∠ADE =90°3.证明△ACE ≌△ADE 4.由全等性质得,CE = DE

巩固练习1.已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF . 2.已知:如图,∠C =∠F ,AB =DE ,DC = AF ,BC =EF .求证:AB ∥DE .过程规划: 过程规划:

3.已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的 中点.求证:BE=DF. 4.已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°, 点E,F分别在AB,BC上,且AE=BF,AF交DE于点G.求证:DE⊥AF.

八年级全等三角形证明经典题

全等三角形证明经典题 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = 3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 5. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = A D B C C D B B A C D F 2 1 E A

6. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 7. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 8. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 一:如果abc=1,求证 11++a ab +11++b bc +11 ++c ac =1 二:已知a 1+b 1= )(29b a +,则a b +b a 等于多少? B B A C D F 2 1 E C D B A

9. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证: AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C 14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

全等三角形中辅助线的添加解析

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1) △ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,连接BE

全等三角形证明100题

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。 2:已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB :3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 :4:已知:∠1=∠2,CD=DE ,EF 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 B C A D B C B A C D F 2 1 E

7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

11:如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA : 12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 13:已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

全等三角形证明经典试题50道

全等三角形证明经典试题50道 1. (已知:如图,E,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B . 求证:AE =CF . 【答案】∵AD ∥CB ∴∠A=∠C 又∵AD=CB ,∠D=∠B ∴△ADF ≌△CBE ∴AF=CE ∴AF+EF=CE+EF 即AE=CF 2. 已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC 证明:在△ABC 与△DCB 中 (ABC DCB ACB DBC BC BC ∠=∠?? ∠=∠??=? 已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC ) ∴△ABC ≌△DCB ∴AB =DC 3. 如图,点D ,E 分别在AC ,AB 上.

(1) 已知,BD=CE,CD=BE,求证:AB=AC; (2) 分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的命题,命题2是命题.(选择“真”或“假”填入空格). 【答案】 (1) 连结BC,∵ BD=CE,CD=BE,BC=CB. ∴△DBC≌△ECB (SSS) ∴∠DBC =∠ECB ∴ AB=AC (2) 逆,假; 4. 如图,在□ABCD中,分别延长BA,DC到点E,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F,G。求证:△AEF≌△CHG. 【答案】证明:∵□ABCD ∴ AB=CD,∠BAD=∠BCD AB∥CD ∴∠EAF=∠HCG ∠E=∠H ∵ AE=AB,CH=CD ∴ AE=CH

几种证明全等三角形添加辅助线的方法

教学难点通过学习全等三角形,提高学生观察能力和分析能力教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, . ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。 二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB +BD=AC。

证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC 上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 .

证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。 又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。

全等三角形三种证明方法经典例题

全等三角形经典例题 典型例题: 知识点一:全等三角形判定1 例1:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,有下面四个论断:(1)AD =CB ;(2)AE =CF ;(3)DF =BE ;(4)AD ∥BC 。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。 思路分析: 1)题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。 2)解题思路:根据全等三角形判定1:三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1)(2)(3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。 ; 解答过程: 已知:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,AD =CB ,AE =CF ,DF =BE 。求证:AD ∥BC 。 证明:∵AE =CF ∴AE +EF =CF +EF ∴AF =CE 在△AFD 和△CEB 中, ∵ & ∴△AFD ≌△EBC (SSS ) ∴∠A =∠C ∴AD ∥BC 解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。 小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生的逻辑思维能力,进一步规范了三角形全等证明题的书写。 知识点二:全等三角形判定2 AD CB AF CE DF BE =??=? ?=?

例2:已知:如图,是和的平分线,。 * 求证:(1)△OAB ≌△OCD ;(2)。 思路分析: 1)题意分析:本题主要考查全等三角形判定2中的对应关系。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先证明两边及夹角分别对应相等。 解答过程:证明:(1)∵OP 是和的平分线, ∴∠AOP =∠COP ,∠BOP =∠DOP ∴∠AOP -∠BOP =∠COP -∠DOP < ∴∠AOB =∠COD 在△OAB 和△OCD 中, ∵ ∴△OAB ≌△OCD (SAS ) (2)由(1)知△OAB ≌△OCD ∴AB =CD 解题后的思考:在判断三角形全等时,一定要根据全等三角形判定2,找准对应边和对应角。 . 例3:已知:如图,AB ∥CD ,AB =CD ,求证:AD ∥BC ,AD =BC 思路分析: 1)题意分析:本题主要考查全等三角形判定2的应用。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先将用于证明三角形全等的条件准备好。即如何由已知条件证明出两边和一角相等,以及如何用上AB ∥CD 这个条件。 解答过程: 连接BD ∵ AB ∥CD 、 OP AOC ∠BOD ∠OA OC OB OD ==,AB CD =AOC ∠BOD ∠OA OC AOB COD OB OD =?? ∠=∠??= ?

全等三角形证明经典50题

1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 2.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB = 3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 7.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 8.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB = 9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2 10.已知:∠1=∠2,CD=DE,EF//AB,求证: EF=AC A D B C B B A C D F 2 1 E C D B A A D B C

11.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 12.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。求证:BC=AB+DC。 13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 14.已知:AB=CD,∠A=∠D,求证:∠B=∠C 15.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

(完整版)几种证明全等三角形添加辅助线的方法

教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD ⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。 证明:作CF⊥AC交AD的延长线于F。如图8。 ∵∠BAC=90°,AD⊥BM, ∴∠FAC=∠ABM=90°-∠BAE。 ∵AB=AC,∠BAM=∠ACF=90°, ∴△ABM≌△CAF(ASA)。 ∴∠F=∠AMB,AM=CF。 ∵AM=CM,∴CF=CM。 ∵∠MCD=∠FCD=45°,CD=CD, ∴△MCD≌△FCD(SAS)。所以∠F=∠DMC。 ∴∠AMB=∠F=∠DMC。 五、沿高线翻折构造全等三角形 例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。求证:AB>AC。

相关文档
最新文档