CRISPR干扰:一种由假说到现实的基因沉默技术-论文

CRISPR干扰:一种由假说到现实的基因沉默技术-论文
CRISPR干扰:一种由假说到现实的基因沉默技术-论文

基因沉默与RNAi技术

基因沉默与RNAi技术 定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA 与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。 RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。 基因沉默是一种RNA干扰技术。 RNA干扰是由双链RNA 引发的转录后基因静默机制。其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA ,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex ,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制. 一、基因沉默的分类及其机制 (一)转录水平基因沉默 转录水平基因沉默是指对基因专一的细胞核 RNA合成的失活, 它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。引起转录水平基因沉默的机制主要有以下几种: 1.基因及其启动子甲基化 甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率 在人类及高等植物中分别可达4%和36%。[4] 近来的研究表明,发生在转基因启动子5'端的甲基化是造成转录水平基因沉默的主要原因。虽然转基因的甲基化可延伸至转基因的3'端,但甲基化过程均是从启动子区域开始的。从所报道的转基因沉默例子来看,几乎所有的转基因沉默现象与转基因及其启动子的甲基化有关。 2.同源基因间的反式失活 反式失活主要是由于拥有同源序列的沉默位点和其他位点的DNA的相互作用而引起的基因沉默。通过顺式作用而甲基化并失活的基因能作为一种"沉默子",对其他与之分离的具有同源性的靶基因施加一种反式作用,使具有同源序列的靶基因发生甲基化并导致失活。反式失活的靶基因既可以与沉默基因是等位基因,也可以是非等位基因。 3.后成修饰作用导致的基因沉默 后成修饰作用是指转基因的序列和碱基组成不发生改变,但是其功能却在个体发育的某一阶段受到细胞因子的修饰作用后而关闭。这种修饰作用所造成的转基因沉默是可以随着修饰作用的解除而被消除。后成修饰作用导致的转基因沉默与受体植物的核型构成有关。 4.重复序列 外源基因如果以多拷贝形式整合到同一位点上,形成首尾相连的正向重复或头对头、尾对尾的反向重复,则不能表达,而且拷贝数越多,基因沉默现象越严重。这种重复序列诱导的基

基因工程的利与弊

基因工程的利与弊 王丽君 3213003964 基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡? 观点:辨证的看待基因工程的利与弊 一.基因工程可用来筛检 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。 二.基因治疗法 目前医学界正在临床试验多种遗传病的基因治疗法。最早采用基因治疗的是一种先天免疫缺乏症,又称气泡男孩症,患病婴幼童因为腺脱胺基因有缺陷,骨髓不能制造正常白血球发挥免疫功能,必须生活在与外界完全隔离的空气罩内。最新的治疗法是由病人骨髓分离出白血球的干细胞,把正常的酵素基因接在经过改造不具毒性的反录病毒,藉此病毒送入白血球干细胞,再将干细胞送回病人体内,则病人可产生健康的白血球获得免疫功能。这项临床试验,在美国的女病童证明很成功。 三.对农业界的贡献 基因转殖的细菌用处也很大,如改造细菌可以消化垃圾废纸,而这些细菌又可成为一种蛋白质的营养来源。基因转殖的细菌可带有人类基因,以生产医疗用的胰岛素及生长激素等。其实基因工程在农业上的应用,在某些方面而言并不稀奇。自古以来,人们即努力而有计划地进行育种,譬如一个新种小麦,乃是经过上千代重复杂交育成的。目前的小麦含有许多源

基因沉默

基因沉默 摘要随着基因技术的迅速发展和广泛应用,在转基因技术实践中首先暴露出来的外源基因不能按照预期设想进行表达的问题越来越显得普遍,而人们对基因沉默现象的不断深入研究和探索,不仅揭示出了基因沉默的发生机制,也在一定程度上推动了新技术的产生和应用,这不仅推动了基因研究领域的发展,更在遗传群体构建、疾病治疗等方面建立了新方法、新体系,为生物学技术的发展做出了贡献。 关键字基因沉默分类机理应用 1.引言 基因沉默(Gene Silencing),又称为基因沉寂,是真核生物细胞基因表达调节过程中的一种特殊生理现象,是指细胞基因在表达过程中受到各种因素的综合作用而导致基因部分区段发生“沉寂”现象,从而失去转录活性并不予表达或表达减少。该现象最先于1986年Peerbolte在转基因植物研究中所发现,随后科学家在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现了基因沉默现象的存在。 转基因沉默是基因沉默现象最为频发和常见的,这也是转基因为何在受体难以百分之百全部表达的因素之一,其基本特征是导入并整合到受体基因组的外源基因在当代或后代中表达活性受到抑制。研究发现,其主要原因是由于转基因之间或转基因与内源基因之间存在着序列同源性,因此转基因沉默又被称为同源性依赖的基因沉默(homology-dependent gene silencing)。 根据沃森-克里克的核酸碱基互补配对模型,基因沉默可能涉及到DNA-DNA、DNA-RNA以及RNA-RNA三种不同形式的核酸分子之间的互作,简单地说就是插入的外源DNA或自身基因区段在核内高浓度的RNA作用下,能够与内源反向DNA 或者RNA进行碱基互补配对,并且在核内被重新甲基化,进而导致基因沉默;而另一种可能则是内源基因与转基因转录生成的RNA之间互补配对生成可被RNases酶性降解的双链RNA(dsRNA),其水解直接导致基因的不表达,即基因沉默效果。从染色体水平上看,基因沉默现象的实质是形成异染色质(Heterochromation)的过程,检查发现被沉寂的基因区段往往呈现出高浓缩状态,显然,这在一定程度上也决定了被沉寂基因的难表达性。实验早已证明,在高度浓缩的基因区段,正常的DNA转录活动是难以进行并维持的,换言之,即一旦形成异染色质进入高度浓缩状态,那么相应区段的基因片段就必然因为不能被

转基因技术的利弊及其所引发的思考

转基因技术的利弊及其所引发的思考基因工程,是指将生物体内控制特定性状的基因作为外源基因,按照人类的意愿在体外进行加工操作后,再引入受体生物,使其在受体生物体内稳定存在并表达,从而生产出人们所期望得到的产物或者达到某种目的的过程。 基因工程中应用最广泛的技术就是转基因技术,它可以克服物种之间的遗传屏障,按照人的意愿创造出自然界里原来没有的生命形态或者稀有物种,以满足人类的需求。转基因技术作为一种新兴的生物技术,为人类解决诸多方面面临的困难带来了福音,同时也带来了很多令人类措手不及的问题。本文列举了作者在读书过程中总结的转基因技术利与弊的一些方面,同时提出作者对其所进行的一些思考。 转基因技术给人类带来的福祉 一.转基因技术给农业带来的革命 由于在提高生产力以及提高产品品质上的突出成绩,转基因技术已经成为正在进行的农业技术改造的最重要的组成部分之一。 1.抗病虫害的农作物 目前已经发现了多种杀虫基因,其中应用最广的是Bt毒蛋白基因和蛋白酶抑制剂基因。Bt毒蛋白基因来源于苏云金芽孢杆菌,将该基因转移到植物体后,植物体内能合成Bt毒蛋白,被害虫吞食后可导致害虫死亡;蛋白酶抑制剂基因最早从菜豆中分离,

害虫食入它的表达产物后会无法消化某些必需蛋白质从而导致死亡。另外,动物的毒素基因以及植物凝集素基因也被应用于杀虫并且成绩斐然。 在抗病害方面,人们将病毒的外壳蛋白基因、病毒的卫星RNA 基因、异种植物编码的抗病基因导入植物体内,利用它们的表达产物对付病毒的侵害;将植物抗毒素基因、几丁质酶基因等导入植物体内使植物获得抗真菌的能力等等。 2.利用植物生产疫苗 在人生的旅途中,人类时时刻刻在与疾病做着顽强的斗争,而疫苗是人类在斗争中的重要武器之一。传统的生化方法生产疫苗成本高、危险性大,为了解决这个问题,科学家利用转基因技术,使得某些植物具备了产生人类需要的疫苗的能力。 细胞生物学家米奇海因正在培育可以防止霍兰产生的苜蓿苗。他将霍乱的抗原基因切下来,把这些基因导入到能够引起植物冠瘿病的土壤杆菌细胞中,让苜蓿感染这种带有外来基因的冠瘿病毒。通过这种方法将霍乱抗原基因带入苜蓿苗中,当人们食用这些苜蓿苗后,就可以获得对霍乱的免疫力。 种植这种植物来生产疫苗成本低、产量大、危险系数小,而且食用植物疫苗不需要注射器,可以避免注射器传染疾病的威胁。 二.转基因技术给畜牧业带来的变化 1.利用转基因技术实现优质高产 动物品种的遗传改良,即提高其抗性、品质和产量,为增加

生物类论文:基因工程的利与弊

基因工程的利与弊 刘建20101103805 内蒙古师范大学生命科学与技术学院生物科学(汉班) 呼和浩特010022 摘要 基因工程对于人类的利弊一直是个争议的问题,主要是这项技术创造出原本自然界不存在的重组基因。但它为医药界带来新希望,在农业上提高产量改良作物,也可对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。但它亦引起很大的忧虑与关切。当此科技由严谨的实验室转移至大规模医药应用或商业生产时,我们如何评估它的安全性?此项技术是否可能因为人为失控,反而危害人类健康并破坏大自然生态平衡? 关键词:基因工程转基因道德伦理 正文 生物学家早在一百多年前就知道,生物的表征遗传自其亲代。生物细胞的细胞核,含有染色体,其组成分为DNA。DNA含有四种碱基--腺嘌呤(adenine,),胸腺嘧啶(thymine,),胞嘧啶(cytosine,)和鸟嘌呤(guanine,(它们分别简称A、T、C、G)。这些碱基在DNA 中看似杂乱无章,但它们的排列顺序,正代表遗传讯息。每三个碱基代表一种胺基酸的密码。基因就是这些遗传密码的组合,亦即代表蛋白质的胺基酸序列。每个基因含有启动控制区,以调控基因的表达。

基因工程技术(基因工程是一项很精密的尖端生物技术。可以把 某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基 因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功 能。)在医药及农业上应用广泛。这项尖端科技加上最近突破性的生 殖科技,却引发人们极大的隐忧及争论。 观点:辨证地看待基因工程的利与弊 基因工程对当今社会的发展功不可没。 一、基因工程是在对促进生物学的发展具有重要意义 基因工程是在分子生物学、分子遗传学、微生物学、细胞工程等学科发展和研究成果的基础上诞生的,反过来也可促进现代生物学的发展。生物界是通过长期的进化发展而来的,因而通过基因工程手段,不仅可以阐明生命发生的现象和规律,揭示重要基因功能以及重要性状形成的分子机制,还能模拟自然界生物进化历程,更进一步丰富和完善生物进化的理论,促进生物学研究的全面发展。 二、基因工程在社会各个方面广泛应用 医药业,可生产重要药品,很大限度地降低生产成本;治疗过去人们认为难以治愈的遗传疾病和各类部分疾病,解除人类病痛烦恼,提高人体健康水平和人均寿命。 基因工程同时有望解决粮食危机和温室效应之类的环境污染问题。 (1)基因工程用来筛检及治疗遗传疾病。 遗传疾病乃是由于父或母带有致病基因。基因筛检法可以快速诊

转基因技术的优缺点

转基因食品的优缺点【专题】转基因食品【专题】转基因食品(2)优点: 1.解决粮食短缺问题。 2.减少农药使用,避免环境污染。 3.节省生产成本,降低食物售价。 4.增加食物营养,提高附加价值。 5.增加食物种类,提升食物品质。 6.促进生产效率,带动相关产业发展。缺点:1.可能对蝴蝶等昆虫造成伤害。2.可能影响周边的植物的生长。3.可能使昆虫或病菌在演化中增加抵抗力,或产生新的物种,之后一样有可能会伤害作物。安全性评估: 对于转基因食品的安全性,目前国际上没有统一说法,争论的重点应在转基因食物是否会产生毒素、是否可通过DNA 蛋白质过敏反应、是否影响抗生素耐性等方面。 转基因食品安全吗弗兰肯斯坦是英国作家玛丽·谢利1918年所著小说中的生理学研究者,他最后被自己创造的怪物所毁灭。现在欧洲人把基因改良作物提供的食物称作“弗兰肯斯坦食物”,意谓转基因植物将造成生态灾难,威胁人类的生存。这种譬喻固然夸张了一点,但他们的担忧不是全然没有道理。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

基因工程的利与弊

基因工程的利与弊 基因工程的原理:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 操作方法是:将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA 分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 例如:将大鼠的生长激素基因导入小鼠受精卵.首先在大鼠的体细胞中提取染色体,分离目标基因.用限制性核酸内切酶处理载体,再将载体与基因片段连接(这里用到DNA连接酶)。通过显微注射的方法将这些重组基因注入小鼠的受精卵内,最后让这些受精卵生长发育。结果小鼠生出几只带有大鼠生长激素基因的小鼠,这些小鼠的生长速度非常快,其个体是同窝其他小鼠的1.8倍,成为“巨型小鼠”。 基因工程中的载体常选取大肠杆菌的环状DNA,用到的工具酶有限制性内切酶、DNA 连接酶,其次还得用到DNA聚合酶。限制性核酸内切酶,用来切割目的基因和载体,主要是2型酶;DNA连接酶,用来连接目的基因和载体,有两类,连接平末端的和粘性末端的,若末端不相同连不起来的话,还得用DNA聚合酶来加片段,如加CCC-和GGG-,再用连接平末端的连接酶来连接。 将目的基因导入受体细胞的方法有: 植物常用的是农杆菌转化法、基因枪法和花粉管通道法。农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物和裸子植物的受伤部位。农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减数分裂稳定的遗传给后代。基因枪法基本原理是通过动力系统将带有基因的金属颗粒(金粒或钨粒),将DNA吸附在表面,以一定的速度射进植物细胞,从而实现稳定转化的

转基因生物的利弊分析

转基因生物的利弊分析 第二临床医学院2012101061 黄俊霖 内容摘要:转基因生物指经遗传基因修饰了的生物体。转基因生物包括转基因 动物、转基因工程药物和转基因作物,用转基因生物材料制成的食品称为转基因食品。转基因生物及其产品是现代生物技术或基因工程技术的产物,是当代科学技术的进步与成功。但它也与科学技术一样是柄“双刃剑”,福祸相依,如何趋利避害、化险为夷,在于对其正反两方面的关系和机制有充分的认识,要掌握得法、监管适宜、运用得当。必须加强转基因生物安全监管,给公众以充分信息,让公众从非理性的恐慌和迷茫中明智地走出来。 关键词:转基因生物、食品安全、基因经济、人类环境与健康 20世纪以来,生物技术以前所未有的速度迅速发展,并在医药、农业及食品工业等领域获得广泛的应用,取得了巨大的经济效益和社会效益。转基因技术作为生物技术的核心, 是指利用分子生物学手段将人工分离和修饰过的基因导入生物体基因组中,使其生物性状或机能发生部分改变。这一技术称为转基因技术,在中国亦称为“遗传工程”、“基因工程”。经转基因技术修饰的生物体常被称为“遗传修饰过的生物体”(genetically modifiedorganism,简称GMO)。 目前, 转基因作物在一些发达国家像美国、阿根廷逐渐推广,上市的转基因食品已达几千种,转基因动物的研究给疾病的治疗、新药的制造带来了新的契机。总之,转基因技术的发展与应用给农业、医药的发展与之,转基因技术的发展与应用给农业、医药的发展与疾病的治疗提供了崭新的空间,将给人类带来巨大的利益。毫无疑问,转基因技术将成为近期内发展最快、应用潜力最大的生物技术领域之一。 一、转基因生物的优点 1、转基因植物 1.1抗除草剂转基因植物 杂草是农作物生产的大害,将抗除草剂基因转入栽培作物,可以有效地使用除草剂除治田间杂草,保护作物免受药害,从而增产增收。抗除草剂基因植物是最先进入田间生产的转基因植物,也是当前种植面积最大的一类转基因作物。 1.2抗虫转基因植物 害虫是农业生产的另一大患害。全世界每年用于化学杀虫的费用高达数十亿美元。杀虫剂大量使用既增加农业成本又造成环境污染,特别是难降解、亲脂性的农药,其不但残留高,还可以通过食物链逐级富集放大,破坏生态平衡。因此,将各种抗虫基因导入栽培作物,由植物自身合成杀虫剂具有重大的经济和环境效益。2、转基因动物 利用DNA重组技术将特定的外源基因导入动物染色体,使其发生整合并能遗传,这将产生新的动物个体或品系。这些转基因动物作为医学研究的模型,用于疾病的病因、发病机制和治疗等方面的研究。研究转基因动物的重要目的之一是用它来培养人体器官,解决人体器官移植供体短缺问题,也可利用这种动物“生产”获得所需的药物,因为某种药品无法或极难用人工合成的方法来获得,只能从生

基因编辑技术简介

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN ——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内切酶是否可以应用于基因编辑技术,韩春雨团队发表文章,利用NgAgo蛋白实现了格DNA引导的基因组编辑,但其实验结果目前依然存在争议。

转基因技术的利与弊

转基因技术的利与弊 科学家发明转基因技术的初衷是想利用该技术造福人类,既可加快农作物和家畜品种的改良速度,提高人类食物的品质,又可以生产珍贵的药用蛋白,为患病者带来福音。比如说,抗虫的转基因玉米不会被虫咬,可以让人们放心食用;将能产生人体疫苗的基因转入植物食品,人们就可以在食用食物的同时增加自身对疾病的抵抗力。 但是,人类对自然界的干预是否会造成潜在的尚不可能预知的危险?大量转基因生物会不会破坏生物多样性?转基因产品会不会对人类健康造成危害?一些科学家们开始担心对生物、植物生命进行的“任意修改”,创造出的新型遗传基因和生物可能会危害到人类。它们可能会对生态环境造成新的污染,即所谓的遗传基因污染,而这种新的污染源很难被消除。还有,转基因农作物和以此为原材料制造的转基因食品对人体的影响也尚未有定论。 目前,国内外学者对转基因技术的负面影响也作了大量研究,出现了许多相关报道,如英国的权威科学杂志《自然》刊登了美国康奈尔大学副教授约翰·罗西的一篇论文,引起世界震惊。论文指出,研究人员在实验室里把抗虫害转基因玉米“BT玉米”的花粉撒在苦苣菜叶上,然后让蝴蝶幼虫啃食这些菜叶。4天之后,有44%的幼虫死亡,活着的幼虫身体较小,并且没有精神。而另一组幼虫啃食撒有普通玉米花粉的菜叶,就没有出现死亡率高或发育不良的现象。论文据此推断,BT转基因玉米花粉中含有毒素。另据报道,英国伦理和毒性中心的实验报告说,与一般大豆相比,耐除草剂的转基因大豆中,防癌的成分异黄酮减少了。与普通大豆相比,两种转基因大豆中的异黄酮成分减少了12%~14%,还有巴西坚果事件等。面对国际上出现的种种关于转基因作物的争议,许多科学家、学术团体纷纷以各种形式发表对转基因技术的支持态度。由美国Tuskegee大学Prakash教授2000年1月起草的题为“科学家支持农业生物技术的声明”,已征集到世界上3 000多位科学家的签名,其中包括DNA双螺旋结构的发现者、诺贝尔奖得主James Watson,绿色革命的创始人、诺贝尔奖得主Norman Borlaug,世界粮食奖获得者、国际水稻研究所首席育种家Gurdev Khush。该声明称,“对植物负责任的遗传修饰既不新也不危险。如抗病虫等诸多性状已通过有性杂交和细胞培养的方法经常性地引入作物中。与传统的方法相比较,通过重组DNA技术引入新的或不同的基因并不一定会有新的或更大的风险,且商品化的产品的安全性则由于目前的安全管理规则而得到了更进一步的保障。遗传新技术为作物改进提供了更大的灵活性和精确性。” 因此,笔者认为和现代任何一项工业技术一样,转基因技术也具有两面性,有长亦有短。在发展转基因技术等生物技术时,应该扬长避短、趋利避害、规范管理,使转基因技术能够健康发展。 转基因技术的发展展望 当前条件下,转基因技术还存在许多不足,还处于不断的发展与完善之中,表现在:转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高;难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因;不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制;制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键;对传统伦理是一种挑战,对人类的生存有一定的负面作用等。但笔者相信只要通过科学家的进一步研究和各国对转基因技术的规范管理,保证转基因技术的研究和开发的健康而有序,制定相关的法律、法规,健全转基因生物和转基因食品的管理,如对转基因作物进行监管,对转基因食品进行标识等,应该更深入的了解转基因技术其中的奥秘,只有更了解它才能利用好它,让我们的生活更加

基因表达技术

基因表达技术 https://www.360docs.net/doc/ec16060752.html, 2007年5月16日09:43 生物技术世界 目前,基因表达已经成为生物学、医学和药物开发研究中的主流技术。基因表达就是基因转录及翻译的过程。广义来说,基因表达有两类:分析型和功能型。前者是指检测和定量基因,尤其是在比较两个样本时,如处理/非处理,疾病/正常。功能型的基因表达,目的是获得一定数量的蛋白质。Invitrogen公司的JudyMacemon称,在她的顾客中,对研究基因功能的基因表达/敲除感兴趣的人是采用基因表达制造蛋白质的人的两倍。 cDNA过度表达优势大 经典的基因表达操作常对病变细胞或组织、以及用药治疗之后的情况进行比较。为了验证某种化合物对基因的效果,研究人员用siRNA或反义化合物返回去做敲除试验。这些技术可以让基因或者基因组表现出特殊的沉默现象。OpenBioSystems公司的PaulTodd博士指出,虽然基因敲除很流行,但它不是证实基因性能的唯一方法。 Todd博士把cDNA过度表达称之为基因敲除的“合理逆转”。siRNA是让基因沉默,以确定基因下游的效应,而cDNA 引入许多目标基因的复制样本,引起基因及其下游产物都超表达。很多时候,从cDNA获得的信息要比siRNA的信息要更好,Todd认为这与设计无关。 采用siRNA方法,研究人员必须确定短寡聚核苷酸序列,该方法可以最佳方式敲除目标基因。并非所有的寡聚物都能发挥效用,因此,就无法做到把所有基因的反应都准确预测出来。通常要敲除20~80%的序列,采用cDNA会出现过表达现象,这样就可以提供足够的目标基因用于插入。Todd认为,cDNA可以确保产生更多的信使RNA,也就会产生更多的蛋白质或下游产物。 cDNA优于siRNA的主要优势在于前者具有更广泛的潜在应用范围,可以用股票的短期销售或者是长期交易进行比喻。短期销售只可能赚到原来的股票价格,然而,长期购买,股票可能会翻两倍或者是三倍。siRNA试验的信号只限制于基因原始状态的性能,因为可能从最高水平降低为零。cDNA能正调节一个基因的性能,而且,把目标基因与绿色荧光蛋白相融合,可以直接观察到在活细胞中产生的蛋白质及其分布位置。 基因表达在药物发现上有许多应用。在最近纽约科学院的一次会议上,Avalon制药公司副总裁PaulYoung向大家

转基因技术的利弊

转基因技术的利弊 注:内容来源于网络,仅供参考 目录 1、概念 (2) 2、发展史 (2) 3、主要分类 (3) 4、应用领域 (3) 4.1药物领域 (3) 4.2食品领域 (3) 5、转基因作物的特点 (4) 5.1缺点 (4) 5.2优点 (4) 6、社会质疑及争议 (5) 6.1众说纷纭 (5) 6.2舆论误导 (6) 6.3存在风险 (7) 6.4已上市的转基因食品要比同类食品更安全 (9) 7、重要事件 (10) 7.1动物异常 (10) 8、各国情况 (12) 8.1美国 (12) 8.2欧洲 (13) 8.3俄罗斯 (13) 8.4日本 (14) 8.5印度 (14) 8.6中国 (15) 9、转基因标识 (15) 10、转基因的利弊至今无定论 (16) 11、各国政策 (17)

1、概念 转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 2、发展史 1974年,科恩(Cohen)将金黄色葡萄球菌质粒上的抗青霉素基因转到大肠杆菌体内,揭开了转基因技术应用的序幕。 1978年,诺贝尔医学奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成 生物学的新时代。 1982年,美国Lilly公司首先实现利用大肠杆菌生产重组胰岛素,标志着世界第一个基因工程药物的诞生。 1992年荷兰培育出植入了人促红细胞生成素基因的转基因牛, 人促红细胞生成素能刺激红细胞生成,是治疗贫血的良药。转基因技术标志着不同种类生物的基因都能通过基因工程技术进行重组,人类可以根据自己的意愿定向地改造生物的遗传特性,创造新的生命类型。

转基因的利弊

基因改造生物带给人类收益还是危害 5月16日消息:通过基因改造的生物是否会打破自然界的生态平衡,从而导致对环境的危害?面对基因改造生物可以带给人类的巨大收益和可能带来的危害,人类该何去何从?昨天,在由国家环保总局主办,由加拿大食品检验署、南京环境科学研究所等单位协办的生物安全培训班上,到会的各路专家再次把关注的目光投到了转基因作物的安全性上。 国家环保总局自然司柏成寿告诉记者,通过基因方式对生物体进行改良取得了很大的成效。很多物种在改良后产量有了增加,也增强了防御自然灾害及病虫害的能力。但值得注意的是,改良后的品种可能会对环境产生一定危害。 他举例说,像“抗虫棉”,这种棉花经过一定的基因转化后,可以使自然界中原来危害棉花的害虫死去,但它也可以使很多非目标的有益昆虫死去。还有一些农作物被注入一种抗除草剂基因,当农田中施加除草剂时,所有的杂草都会死去,只保留下农作物本身。但在某种情况下,这种抗除草剂的农作物会和杂草出现杂交,这种杂草就被称为“超级杂草”,消灭起来就非常困难。 北京大学生命科学院许崇任和国家环保总局南京环境科学研究所的刘标还列举了近年来引起社会广泛关注的转基因作物事件,包括:将巴西豆的基因转入大豆,虽然可以改良大豆营养组成,但可能会引起部分人群发生过敏反应。转Bt基因玉米可以提高有益昆虫绿草蛉的死亡率和延长发育时间。用食转基因马铃薯的蚜虫饲喂瓢虫,会影响瓢虫的生殖力及存活。而蚜虫是温带作物中重要的害虫,瓢虫是其天敌。 通过基因改造的生物是否会打破自然界的生态平衡,从而导致对环境的危害?面对基因改造生物可以带给人类的巨大收益和可能带来的危害,人类该何去何从?昨天,在由国家环保总局主办,由加拿大食品检验署、南京环境科学研究所等单位协办的生物安全培训班上,到会的各路专家再次把关注的目光投到了转基因作物的安全性上。 国家环保总局自然司柏成寿告诉记者,通过基因方式对生物体进行改良取得了很大的成效。很多物种在改良后产量有了增加,也增强了防御自然灾害及病虫害的能力。但值得注意的是,改良后的品种可能会对环境产生一定危害。 他举例说,像“抗虫棉”,这种棉花经过一定的基因转化后,可以使自然界中原来危害棉花的害虫死去,但它也可以使很多非目标的有益昆虫死去。还有一些农作物被注入一种抗除

基因沉默

RNA干扰基因沉默 基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。一方面,基因沉默是遗传修饰生物(genetically modified organisms)实用化和商品化的巨大障碍,另一方面,基因沉默是植物抗病毒的一个本能反应,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略——RNA介导的病毒抗性(RNA-mediated virus resistance,RMVR)。

转基因植物和转基因动物中往往会遇到这样的情况,外源基因存在于生物体内,并未丢失或损伤,但该基因不表达或表达量极低,这种现象称为基因沉默。 转基因沉默分为转录水平的沉默(TGS)和转录后水平的沉默(PTGS)。TGS是指转基因在细胞核内RNA合成受到了阻止导致基因沉默,PTGS是指 RNAi——基因沉默指南 基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成以染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。 基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。

基因编辑技术简介

基因编辑技术简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA 序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI 形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内

人工微RNA定向基因沉默

人工miRNA定向基因沉默 摘要:描述一个基因的功能通常包括对功能丧失等位基因的详细的分析。在模式植物例如拟 南芥和水稻中,插入序列索引的收集为潜在无效等位基因分析提供了很大帮助,而这些都可以 通过网站(e.g., https://www.360docs.net/doc/ec16060752.html,)容易的获取。然而,这对于非模式生物是不可能的,要研 究非模式生物,需要敲除大量的同系物,而且部分缺失基因功能或者调节缺失基因功能不容易 应用,然而当无效等位基因是致死的时,这种方法却很有效。采用定向基因沉默技术的转基因 途径可以替换无效等位基因,也可以用于基因功能的精细研究,例如,通过组织特异性的和可 诱导的基因沉默。 这一章将阐述人工miRNA的产生以及人工miRNA(amiRNAs)作为基因沉默工具在不同植物定向 1.六寡核苷酸:两个是对载体普遍的(A 和B,表一),四个是特异修饰的。 它们的序列是amiRNA设计程序的输出结果。 2.模板质粒:PRS300(包括Arabidopsis athMIR319a)或者PNW55(包括水 稻osa-MIR528) 3.进行PCR,琼脂糖凝胶电泳,以及凝胶提取所需的装置和化学试剂。

图三,构建amiRNA前体的模版质粒——aMIRNA。(a)Plasmid pRS300包含pBluescript SK中的osa-MIR528前体(通过SmaI位点克隆)。(b)质粒pNW55包含pBluescript KS中的osa-MIR528前体(也是通过SmaI克隆)。质粒全部序列是在http://wmd3. https://www.360docs.net/doc/ec16060752.html,.可获取的。缩写:A,B,寡核苷酸结核位点;T3,T7 :RNA聚合酶/寡核苷酸结合位点;Amp:氨苄青霉素抗性基因;MCS:多克隆位点。aMIRNA的大小和围绕区域在图四中指示。 图四,图示产生aMIRNA前体的PCR反应。(a)为有寡核苷酸结合位点的模版质粒(图三);(b)PCR扩增(a)(b)(c),(c)(a)(b)(c)通过PCR融合产生(d)(d)只有中央部分编码aMIRNA 前体,在底部的图中已列出。缩写:Ath:拟南芥;Osa:栽培稻;A, B, I, II, III, IV:寡核苷酸识别物;MCS:多克隆位点;a), (b), (c), (d):PCR片段。 3.2.2寡核苷酸要产生一个aMIRNA的转基因,需要六个PCR寡核苷酸引物。四个引物

转基因食品的利与弊

转基因食品的利与弊 有利的方面 1 、过去改变植物的品种主要是通过育种,这种传统的育种方式需要的时间长,杂交出的品种不易控制,目的性差,其后代可能高产但不抗病,也可能抗病但不高产,也许是高产但品质差,所以必需一次一次地进行选育。而转基因技术就不同了,可以选择任何1个目的基因转进去,就可得到1个相应的新品种,不精品文档,你值得期待 用再花那么长的时间筛选了。 2 、传统的育种只能是水稻对水稻,玉米对玉米,进行杂交,不能水稻对玉米,水稻更不能和细菌进行杂交。而转基因技术不但可以把不同植物的基因进行组合,而且还可以把动物的基因,甚至人的基因组合到植物里去。比如:科学家看中了一种北极熊的基因,认为它有抵抗冷冻的作用,于是将其分离取出,再植入番茄之中,培育出耐寒番茄。 ●通过转基因技术可培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等特性的作物新品种,以减少对农药化肥和水的依赖,降低农业成本,大幅度地提高单位面积的产量,改善食品的质量,缓解世界粮食短缺的矛盾。例如:马铃薯植人天蚕素的基因后,抗清枯病、软腐病的能力大大提高,过去这两种病每年会带来近3成的减产,一种抗科罗拉多马铃薯甲虫的马铃薯,可使美国每年少用37万kg的杀虫剂;阿根廷播种转基因豆种后,大豆抗病和抗杂草能力大为增加,使用农药和除草剂的量减少,生产成本比原来下降了15%。 ●利用转基因技术生产有利于健康和抗疾病的食品。杜邦和孟山都公司即将推出多种可榨取有益心脏的食用油的大豆。两大公司还将联手推出味道更鲜美且更容易消化的强化大豆新品种。艾尔姆公司与其他公司合作,正在研究高含量抗癌物质的西红柿,以及可用于生产血红蛋白的玉米和大豆。此外,含疫苗的香蕉和马铃薯也正在加紧研究中;日本科学家利用转基因技术成功培育出可减少血清胆固醇含量、防止动脉硬化的水稻新品种;欧洲科学家新培育出了米粒中富

转基因技术带来的实质利弊及社会恐慌

2014-2015学年第二学期 《自然辩证法概论》期末课程论文 转基因技术带来的实质利弊及社会恐慌 ——聚焦转基因食品的技术异化

摘要 转基因技术作为一种最新的育种技术,其在生物学甚至科学史上的地位毋庸置疑。虽然其从产生到发展已经经过了三十年的时间,但将该项技术应用于生产及生活,还是遭到了各方的质疑。尤其对于普通消费者而言,其潜在的危险不可预知性是民众所不能接受的。对于转基因技术本身的发展,普通民众并无异议,但对于其商业化,还存在着很多问题,如果不全面考虑,只能是酿成技术异化的恶果。 关键词:转基因,利益和风险分配,技术异化,知情权

一、转基因技术在世界背景下的产生及发展 基因作为一种生物学上的重要发现,现如今对社会大众已经并不陌生。基因问题的相关研究也已进行了相当长的时间,对此,各个国家及其民众,无不表现出高规格的重视、尊重及支持态度。但是将基因的相关技术大规模地应用于现实生活中,普通人还是想都不敢想。基因的相关技术,似乎只存在于实验室和影视作品中更符合大部分的想象。将其应用于现实生活中,就不仅仅涉及到科学技术层面的问题,而是演变成覆盖伦理、健康、安全、社会、哲学等等各个领域的综合性问题了。这其中,尤其是将转基因技术应用于食品的相关领域中,受到社会各界的特别关注。俗话说病从口入,食品安全,是关乎个人发展、社会安定、国家发展、民族未来甚至是人类生存的重要问题。如果处理不当,不仅会造成严重的社会恐慌和政治动荡,甚至会酿成难以挽回的生态灾难。 诞生于20世纪80年代的转基因技术迄今为止经过短短30年的发展,已成为新的科技革命的主体之一,相关研究的进展和突破也大大加速了农作物更新换代的速度及种植业结构的变革,转基因技术因此也被认为是继工业革命、计算机革命后的第3次技术革命[1]。在这样的科学发展背景下,各国纷纷启动并大力支持本国的基因组学相关研究。各国都将生物技术领域的竞争作为国际科技竞赛甚至是经济比拼的重点。在这样新技术发展需要的驱动下,转基因技术在全世界迅猛发展。尤其是对于发展中国家,转基因技术被认为是难得的历史机遇,甚至是发展中国家赶超发达国家的重要新契机。但事实上,美国等发达国家及背后相关大型跨国公司起步早,资金雄厚,迄今为止依然在该项新技术的竞赛领跑,发展中国家依然占据劣势地位。在这样的客观事实面前,一些发展中国家明显忍受不了落后,有相当一部分,想要抢占转基因技术在推广应用上的先机。甚至颇有些失去理智地进行大面积的转基因作物种植,在实践上紧跟美国的步伐,但却将自己的国家自己的民众置于试验品的尴尬境地下,最后转基因食品是否对人体对环境有不良影响,还需要很长的一段时间来检验。 转基因技术最初实验成功始于1983年,通过一种借助于农杆菌的方法获得了首个引入外源基因的植物[2]。这之后,仅仅经过了四年,就在美国开展了第一例抗虫转基因番茄的田间应用实验。1994年,也是在美国,延熟保鲜转基因番茄作为第一例进入到应用阶段的转基因作物被正式投放市场。时至今日,转基因技术所衍生的物种数量、作物种植面积呈几何式增长。 一直以来,对转基因技术的疑问都并不在于技术本身,而在于在对该项技术可能带来的风险没有完整评估的情况下,就大刀阔斧地推进其商业化推广进程,进行多种类、大面积的种植。大约始于1996年,转基因作物开始从单纯的实验阶段向商业化种植阶段迅猛的发展,其中主要的转基因作物为棉花、大豆、玉米、

相关文档
最新文档