干法脱硫烟气在线监测系统常见故障治理研究

干法脱硫烟气在线监测系统常见故障治理研究
干法脱硫烟气在线监测系统常见故障治理研究

干法脱硫烟气在线监测系统常见故障治理研究

[摘要]烟气连续排放监测系统(以下简称cems)是火力发电脱硫综合治理的关键设备,本文结合神木发电厂干法脱硫烟气在线监测系统已发生及存在的潜在故障,探讨其相应解决方法和改进措施,降低cems系统故障发生率,提高数据可靠性,实现企业环境保护效益。

[关键词]干法脱硫 cems 故障治理

中图分类号:tf046.6 文献标识码:a 文章编号:1009-914x (2013)20-171-01

0.前言

随着发电企业环保节能减排工作不断深入推进,在加强污染治理的脱硫装置等环保系统不断投入的同时,对污染源监测系统的准确性和稳定性也提出了更为严格的要求。在电厂脱硫系统中,cems可对s02、nox和烟尘等污染物的排放进行实时有效监测和控制,确保电厂烟气排放连续监测系统连续稳定可靠地运行,同时其监测的有效准确性直接影响着企业的经济和社会效益。

1.烟气在线监测系统简介

神木电厂采用两炉一塔干法脱硫技术,cems分别由气态污染物监测子系统、颗粒物监测子系统、烟气参数监测子系统和数据采集处理与通讯子系统组成。通过采样和非采样方式,监测烟气中气态污染物浓度、颗粒物浓度、烟气温度、流速、氧量、湿度、压力等参数;计算烟气中污染物浓度和排放量;实现和打印各种参数、图表

常用脱硫技术

常用脱硫技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(一)湿法脱硫技术 1)、石灰石-石膏湿法 采用石灰石或石灰作为脱硫吸收剂。吸收塔内吸收浆液与烟气接触混合,烟气中二氧化硫与吸收浆液中碳酸钙以及鼓入的氧化空气发生反应,最终反应产物为石膏。脱硫后的烟气经除雾器排入烟囱。脱硫石膏浆经脱水装置脱水后回收。吸收浆液可循环利用。工艺流程 湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。工艺流程如下: 烟气经降温后进入吸收塔,吸收塔内烟气向上流动且被向下流动的循环浆液与逆流方式洗涤,循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可是气体和液体得以充分接触,以便脱除SO2、SO3、HCL和HF,最终被空气氧化为石膏 (CaSO4.2H2O)。

经过净化处理的烟气经除雾器去除清洁烟气中携带的浆液后进入烟囱排向大气。同时按特定程序不时用工艺水对除雾器进行冲洗(两个目的:一、防止除雾器堵塞,二、作为补充水稳定吸收塔液位)。 石灰石与二氧化硫反应生成的石膏通过石膏浆液泵排出,进入石膏脱水系统。 脱硫过程反应 SO2 + H2O → H2SO3吸收 CaCO3 + H2SO3→ CaSO3 + CO2 + H2O 中和 CaSO3 + 1/2 O2→ CaSO4氧化 CaSO3 + 1/2 H2O → CaSO3?1/2H2O 结晶 CaSO4 + 2H2O → CaSO4?2H2O 结晶 CaSO3 + H2SO3→Ca(HSO3)2 pH 控制 烟气中的HCL、HF和CaCO3反应生成CaCl2和CaF2,吸收塔中pH 值大小通过石灰石浆液进行调节与控制,pH值在5.5~6.2 脱硫效率控制的主要方法 1、控制吸收塔浆液的pH值(新石灰石浆液的投加) 2、增加烟气在吸收塔内部的停留时间 3、控制石膏晶体 技术特点 1、技术成熟,设备运行可靠性高; 2、适用于任何含硫量的烟气脱硫; 3、设备布置紧凑减少场地需求; 4、吸收剂资源丰富,价廉易得; 5、脱硫副产物便于综合利用,经济效益显著。

干法脱硫技术

干法脱硫技术 摘要:本文主要论述了干法脱除烟气中SO2的各种技术应用及其进展情况,对烟气脱硫技术的发展进行展望,即研究开发出优质高效、经济配套、性能可靠、不造成二次污染、适合国情的全新的烟气污染控制技术势在必行。 关键词:烟气脱硫二氧化硫干法 前言:我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SOx 可导致酸雨形成,NOX也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大[1]。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的低费用、低耗本的脱硫技术。 烟气脱硫技术是控制SO2和酸雨危害最有效的手段之一,按工艺特点主要分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。 湿法脱硫是采用液体吸收剂洗涤SO2烟气以脱除SO2。常用方法为石灰/石灰石吸收法、钠碱法、铝法、催化氧化还原法等,湿法烟气脱硫技术以其脱硫效率高、适应范围广、钙硫比低、技术成熟、副产物石膏可做商品出售等优点成为世界上占统治地位的烟气脱硫方法。但由于湿法烟气脱硫技术具有投资大、动力消耗大、占地面积大、设备复杂、运行费用和技术要求高等缺点,所以限制了它的发展速度。 干法脱硫技术与湿法相比具有投资少、占地面积小、运行费用低、设备简单、维修方便、烟气无需再热等优点,但存在着钙硫比高、脱硫效率低、副产物不能商品化等缺点。 自20世纪80年代末,经过对干法脱硫技术中存在的主要问题的大量研究和不断的改进,现在已取得突破性进展。有代表性的喷雾干燥法、活性炭法、电子射线辐射法、填充电晕法、荷电干式吸收剂喷射脱硫技术、炉内喷钙尾部增湿法、烟气循环流化床技术、炉内喷钙循环流化床技术等一批新的烟气脱硫技术已成功地开始了商业化运行,其脱硫副产物脱硫灰已成功地用在铺路和制水泥混合材料方面。这一些技术的进步,迎来了干法、半干法烟气脱硫技术的新的快速发展时期。 传统的石灰石/石膏法脱硫与新的干法、半干法烟气脱硫技术经济指标的比较见表1。表1说明在脱硫效率相同的条件下,干法、半干法脱硫技术与湿法相比,在单位投资、运行费用和占地面积的方面具有明显优势,将成为具有产业化前景的烟气脱硫技术。 3、电子射线辐射法烟气脱硫技术电子射线辐射法是日本荏原制作所于1970年着手研究,1972年又与日本原子能研究所合作,确立的该技术作为连续处理的基础。1974年荏原制作所处理重油燃烧废气,进行了1000Nm3/h规模的试验,探明了添加氨的辐射效果,稳定了脱硫脱硝的条件,成功地捕集了副产品和硝铵。80年代由美国政府和日本荏原制作所等单位分担出资在美国印第安纳州普列斯燃煤发电厂建立了一套最大处理高硫煤烟气量为24000Nm3/h地电子束装置,1987年7月完成,取得了较好效果,脱硫率可达90%以上,脱硝率可达80%以上。现日本荏原制作所与中国电力工业部共同实施的“中国EBA工程”已在成都电厂建成一套完整的烟气处理能力为300000Nm3/h的电子束脱硫装置,设计入口SO2浓度为1800ppm,在吸收剂化学计量比为0.8的情况下脱硫率达80%,脱硝率达10%[6]。 该法工艺由烟气冷却、加氨、电子束照射、粉体捕集四道工序组成,其工艺流程图如图2所示。温度约为150℃左右的烟气经预除尘后再经冷却塔喷水冷却道60~70℃左右,在反应室前端根据烟气中SO2及NOX的浓度调整加入氨的量,然后混合气体在反应器中经电子束照射,排气中的SO2和NOX受电子束强烈作用,在很短时间内被氧化成硫酸和硝酸分子,被与周围的氨反应生成微细的粉粒(硫酸铵和硝酸铵的混合物),粉粒经集尘装置收集后,洁净的气体排入大气[7]。 6、炉内喷钙尾部增湿烟气脱硫技术 炉内喷钙尾部增湿也作为一种常见的干法脱硫工艺而被广泛应用。虽然喷钙尾部增湿脱硫的基本工艺都是将CaCO3粉末喷入炉内,脱硫剂在高温下迅速分解产生CaO,同时与烟气中的SO2反应生成CaSO3。由于单纯炉内喷钙脱硫效率往往不高(低于20%~50%),脱硫剂利用率也较低,因此炉内喷钙还需与尾部增湿配合以提高脱硫效率。该技术已在美国、日本、加拿大和欧洲国家得到工业应用,是一种具有广阔发展前景的脱硫技术。目前,典型的炉内喷钙尾部增湿脱硫技术有美国的炉内喷钙多级燃烧器(LIMB)技术、芬兰的炉内喷石灰石及氧化钙活化反应(LIFAC)技术、奥地利的灰循环活化(ARA)技术等,下面介绍一下LIFAC技术[11]。

脱硫系统问题分析及处理方式

脱硫系统问题分析及处理方式 脱硫效率低 1.脱硫效率低的原因分析: (1)设计因素 设计是基础,包括L/G、烟气流速、浆液停留时间、氧化空气量、喷淋层设计等。应该说,目前国内脱硫设计已经非常成熟,而且都是程序化,各家脱硫公司设计大同小异。 (2)烟气因素 其次考虑烟气方面,包括烟气量、入口SO2浓度、入口烟尘含量、烟气含氧量、烟气中的其他成分等。是否超出设计值。 (3)脱硫吸收剂 石灰石的纯度、活性等,石灰石中的其他成分,包括SiO2、镁、铝、铁等。特别是白云石等惰性物质。 (4)运行控制因素 运行中吸收塔浆液的控制,起到关键因素。包括吸收塔PH值控制、吸收塔浆液浓度、吸收塔浆液过饱和度、循环浆液量、Ca/S、氧化风量、废水排放量、杂质等。 (5)水 水的因素相对较小,主要是水的来源以及成分。 (7)其他因素 包括旁路状态、GGH泄露等。 2.改进措施及运行控制要点 从上面的分析看出,影响FGD系统脱硫率的因素很多,这些因素叉相互关联,以下提出了改进FGD系统脱硫效率的一些原则措施,供参考。 (1)FGD系统的设计是关键。

根据具体工程来选定合适的设计和运行参数是每个FGD系统供应商在工程系统设计初期所必须面对的重要课题。特别是设计煤种的问题。太高造价大,低了风险大。 特别是目前国内煤炭品质不一,供需矛盾突出,造成很多电厂燃烧煤种严重超出设计值,脱硫系统无法长期稳定运行,同时对脱硫系统造成严重的危害。(2)控制好锅炉的燃烧和电除尘器的运行,使进入FGD系统的烟气参数在设计范围内。必须从脱硫的源头着手,方能解决问题。 (3)选择高品位、活性好的石灰石作为吸收剂。 (4)保证FGD工艺水水质。 (5)合理使用添加剂。 (6)根据具体情况,调整好FGD各系统的运行控制参数。特别是PH值、浆液浓度、CL/Mg离子等。 (7)做好FGD系统的运行维护、检修、管理等工作。 除雾器结垢堵塞 1.除雾器结垢堵塞的原因分析 经过脱硫后的净烟气中含有大量的固体物质,在经过除雾器时多数以浆液的形式被捕捉下来,粘结在除雾器表面上,如果得不到及时的冲洗,会迅速沉积下来,逐渐失去水分而成为石膏垢。由于除雾器材料多数为PP,强度一般较小,在粘结的石膏垢达到其承受极限的时候,就会造成除雾器坍塌事故。 沉积在除雾器表面的浆液中所含的物质是引起结垢的原因。如果这些污垢不能得到及时的冲洗,就会在除雾器叶片上沉积,进而造成除雾器堵塞。 结垢主要分为两种类型: (1)湿-干垢: 多数除雾器结垢都是这种类型。因烟气携带浆液的雾滴被除雾器折板捕捉后,在环境温度,粘性力和重力的作用下,固体物质与水分逐渐分离,堆积形成结垢。这类垢较为松软,通过简单的机械清理以及水冲洗方式即可得到清除。(2)结晶垢:

烟气脱硫技术

烟气脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。 湿法烟气脱硫技术最为成熟,已得到大规模工业化应用,但由于投资成本高还需对工艺和设备进行优化;干法烟气脱硫技术不存在腐蚀和结露等问题,但脱硫率远低于湿法脱硫技术,一般电厂都不会选用,须进一步开发基于新脱硫原理的干法脱硫工艺;半干法脱硫技术脱硫率高,但不适合大容量燃烧设备。 湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,技术成熟,适用面广。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重;洗涤后烟气需再热,能耗高;占地面积大,投资和运行费用高;系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法: 原理:利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝或稀硫酸吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法:

氧化镁法烟气脱硫工艺介绍

氧化镁法烟气脱硫工艺介绍 1. 前言 我国是世界上SO2排放量最大的国家之一,年排放量接近2000万吨。其主要原因是煤炭在能源消费结构中所占比例太大。烟气脱硫(FGD)是目前控制SO2污染的重要手段。 湿法脱硫是应用最广的烟气脱硫技术。其优点是设备简单,气液接触良好,脱硫效率高,吸收剂利用率高,处理能力大。根据吸收剂不同,湿法脱硫技术有石灰(石)—石膏法、氧化镁法、钠法、双碱法、氨法、海水法等。 氧化镁湿法烟气脱硫技术,以美国化学基础公司(Chemico-Basic)开发的氧化镁浆洗—再生法发展较快,在日本、台湾、东南亚得到了广泛应用。近年,随着烟气脱硫事业的发展,氧化镁湿法脱硫在我国的研究与应用发展很快。 2. 基本原理 氧化镁烟气脱硫的基本原理是用MgO的浆液吸收烟气中的SO2,生成含水亚硫酸镁和硫酸镁。化学原理表述如下: 2.1氧化镁浆液的制备 MgO(固)+H2O=Mg(HO)2(固) Mg(HO)2(固)+H2O=Mg(HO)2(浆液)+H2O Mg(HO)2(浆液)=Mg2++2HO- 2.2 SO2的吸收 SO2(气)+H2O=H2SO3 H2SO3→H++HSO3- HSO3-→H++SO32- Mg2++SO32-+3H2O→MgSO3?3H2O Mg2++SO32-+6H2O→MgSO3?6H2O Mg2++SO32-+7H2O→MgSO3?7H2O SO2+MgSO3?6H2O→Mg(HSO3)2+5H2O Mg(OH)2+SO2→MgSO3+H2O MgSO3+H2O+SO2→Mg(HSO3)2 Mg(HSO3)2+Mg(OH)2+10H2O→2MgSO3?6H2O 2.3 脱硫产物氧化 MgSO3+1/2O2+7H2O→MgSO4?7H2O MgSO3+1/2O2→MgSO4 3. 工艺流程 整个脱硫工艺系统主要可分为三大部分:脱硫剂制备系统、脱硫吸收系统、脱硫副产物处理系统。图1为氧化镁湿法脱硫的工艺流程图。

干法烟气脱硫技术应用及其进展

干法烟气脱硫技术应用及其进展 摘要本文主要论述了干法脱除烟气中SO2的各种技术应用及其进展情况,对烟气脱硫技术的发展进行展望,即研究开发出优质高效、经济配套、性能可靠、不造成二次污染、适合国情的全新的烟气污染控制技术势在必行。 关键词烟气脱硫二氧化硫干法 前言:我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SOx可导致酸雨形成,NOX也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO 2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大[1]。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的低费用、低耗本的脱硫技术。 烟气脱硫技术是控制SO2和酸雨危害最有效的手段之一,按工艺特点主要分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。

常用的烟气脱硫技术

常用的烟气脱硫技术 一、湿法烟气脱硫技术(WFGD) 吸收剂在液态下与SO2反应,脱硫产物也为液态。该法脱硫效率高、运行稳定,但投资和运行维护费用高、系统复杂、脱硫后产物较难处理、易造成二次污染。 湿法烟气脱硫技术优点:湿法烟气脱硫技术为气液反应,反应速度快、脱硫效率高,一般均高于90%,技术成熟、适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80% 以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高、系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaO3S)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。这是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90% 以上。 2、间接石灰石-石膏法

常见的间接石灰石-石膏法有: 钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理: 钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H+发生反应生成H2SO3络合物,SO2吸收率在99% 以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 二、干法烟气脱硫技术(DFGD) 脱硫吸收和产物处理均在干状态下进行。该法系统简单、无污水和废酸排出、设备腐蚀小、运行费用低,但脱硫效率较低。 干法烟气脱硫技术优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,具有设备简单、占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等优点。

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

各种烟气脱硫、脱硝技术工艺与其优缺点

各种烟气脱硫、脱硝技术工艺与优缺点 2019.12.11 按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 、湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90 %,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80 %以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。

系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石- 石膏法、间接的石灰石- 石膏法、柠檬吸收法等。 A 、石灰石/石灰- 石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2 ,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3 )可以抛弃,也可以氧化为硫酸钙(CaSO4 ),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90 %以上。 石灰石/ 石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成

结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术 则克服了石灰石—石灰法容易结垢的缺点。 B 、间接石灰石- 石膏法: 常见的间接石灰石- 石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3 ·nH2O) 或稀硫酸( H2SO4 )吸收SO2 ,生成的吸收液与石灰石反应而得以再 生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法:

烟气脱硫基本原理及方法

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。

目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

脱硫工艺简介

. 1. 湿法烟气脱硫 石灰石(石灰)—石膏烟气脱硫 是以石灰石或石灰浆液与烟气中的SO2反应,脱硫产物是含水15-20%的石膏。 氧化镁烟气脱硫 是以氧化镁浆液与烟气中的SO2反应,脱硫产物是含结晶水的亚硫酸镁和硫酸镁的固体吸收产物。 氨法烟气脱硫 用亚硫酸铵(NH4)2SO3吸收SO2生成亚硫酸氢铵NH4HSO3,循环槽中用补充的氨使NH4HSO3亚硫酸氢铵再生为(NH4)2SO3亚硫酸铵循环使用。 双碱法烟气脱硫 是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用 海水法烟气脱硫 海水通常呈弱碱性具有天然的二氧化硫吸收能力,生成亚硫酸根离子和氢离子,洗涤后的海水呈酸性,经过处理合格后排入大海。 2.干法或半干法烟气脱硫 所谓干法烟气脱硫,是指脱硫的最终产物是干态的 喷雾法:利用高速旋转雾化器,将石灰浆液雾化成细小液滴与烟气进行传热和反应,吸收烟气中的SO2。 炉内喷钙尾部增湿活化法:将钙基吸收剂如石灰石、白云石等喷入到炉膛燃烧室上部温度低于1200℃的区域,石灰石煅烧成氧化钙,新生成的氧化钙CaO与SO2进行反应生成CaSO4硫酸钙,并随飞灰在除尘器中收集,并且在活化反应器内喷水增湿,促进脱硫反应。 循环流化床法:将干粉吸收剂粉喷入塔内,与烟气中的SO2反应,同时喷入一定量的雾化水,增湿颗粒表面,增进反应,控制塔出口烟气的温度,吸收剂和生成的产物一起经过除尘器的收集,再进行多次循环,延长吸收剂与烟气的接触时间,大大提高吸收剂的利用率和脱硫效率。 荷电干式喷射脱硫法:吸收剂干粉以高速通过高压静电电晕充电区,使干粉荷上相同的负电荷被喷射到烟气中荷电干粉同电荷相斥,在烟气中形成均匀的悬浊状态,离子表面充分暴露,增加了与SO2的反应机会。同时荷电粒子增强了活性,缩短了反应所需停留时间,提高了脱硫效率。 二、烧结机石灰—石膏湿法脱硫工艺概述 1、烧结机的烟气特点 烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中产生的含尘废气,烧结烟气的主要特点是: (1)烧结机年作业率较高,达90%以上,烟气排放量大; (2)烟气成分复杂,且根据配料的变化存在多改变性别; (3)烟气温度波动幅度较大,波动规模在90~170 ℃; (4)烟气湿度比较大一般在10%左右; (5)由于烧结原料含硫率关系,引起排放烟气SO2浓度随配料比的变化而发生较大的变化; (6)烧结烟气含氧量高,约占10%~15%左右; (7)含有腐蚀性气体。烧结机点火及混合料的烧结成型过程,均产生一定量的氯化氢(HCl)、硫氧化物(SOx)、氮氧化物(NOx)、氟化氢(HF)等。 2. 石灰-石膏湿法脱硫工艺原理 脱硫剂采用石灰粉(150目以上,含钙率≥80%,筛余量≤5%),脱硫浆液吸收烟气中的S02后,经氧化生成石膏,其反应方程式如下: (1)烟气中SO2及SO3的溶解; 烟气中所含的SO2与吸收剂浆液发生充分的气/液接触,在气—液界面上发生传质过程,烟气中气态的SO2及SO3溶解转变为相应的酸性化合物: SO2+H2O ←→H2SO3亚硫酸 SO3+H2O ←→HSO4硫酸氢根 烟气中的一些其他酸性化合物(如:HF(氟化氢)、HCl(氯化氢)等),在烟气与喷淋下来的浆液接触时也溶于浆液中形成氢氟酸、盐酸等。

各种脱硫技术简介

脱硫技术及其发展 一. 湿法脱硫技术 1. 石灰石-石膏湿法 该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉状,制成吸收浆液。在吸收塔内,烟气中的SO2与浆液中的CaCO3以及鼓入的氧化空气进行化学反应,生成二水石膏,SO2被脱除。吸收塔排出的石膏浆液经脱水装置脱水后回收。脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。 石灰石-石膏湿法烟气脱硫的主要优点是:技术成熟,运行可靠,系统可用率高(≥95% );已大型化。目前国内烟气脱硫的80%以上采用此法,设备和技术很容易取得;吸收剂利用率很高(90%以上)。 2. 氨法 湿式氨法是目前较成熟的、已工业化的氨法脱硫工艺,并且能同时脱氮。 湿式氨法脱硫技术的原理是采用氨水作为脱硫吸收剂,氨水溶液中的NH3和烟气中的SO2反应,得到亚硫酸铵,其化学反应式为: SO2+H2O+xNH3=(NH4)X H2-x SO3(x=1. 2~1. 4) 亚硫酸铵通过用空气氧化,得到硫酸铵溶液,其化学反应式为: (NH4)X H2 -x SO3+1/2O2+(2-x)NH3=(NH4)2SO4 硫酸铵溶液经蒸发结晶,离心机分离脱水,干燥器干燥后可制得硫酸铵产品。 湿式氨法脱硫的优点在于:1.脱硫效率高,可达到95% ~ 99%;2.可将回收的SO2和氨全部转化为硫酸铵作为化肥;3.工艺流程短,占地面积小;运行成本低,尤其适合中高硫煤;4.无废渣废液排放,不产生二次污染;5.脱硫过程中形成的亚硫铵对NO X具有还原作用,可同时脱除20%左右的氮氧化物。 但湿式氨法脱硫技术也存在着一些问题,如吸收剂氨水价格高;脱硫系统设

14种燃煤电厂烟气脱硫技术

14种燃煤电厂烟气脱硫技术 国内外已经建成的烟气脱硫设施以燃煤电厂居多,脱硫技术的研究也以电厂为主,石油炼化企业脱硫技术研究可在一定程度上借鉴电厂烟气脱硫已有的成熟技术。目前,按副产物的形态,烟气脱硫技术可分为湿法、干法、半干法三种。 湿法烟气脱硫技术(WFGD) 吸收剂在液态下与SO2反应,脱硫产物也为液态。该法脱硫效率高、运行稳定,但投资和运行维护费用高、系统复杂、脱硫后产物较难处理、易造成二次污染。 湿法烟气脱硫技术优点:湿法烟气脱硫技术为气液反应,反应速度快、脱硫效率高,一般均高于90%,技术成熟、适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的 80% 以上。缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高、系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 石灰石/石灰-石膏法 是利用石灰石或石灰浆液吸收烟气中的 SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaO3S)可以抛弃,也可以氧化为硫酸钙( CaSO4),以石膏形式回收。这是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到 90% 以上。 间接石灰石-石膏法 常见的间接石灰石-石膏法有: 钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理: 钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收 SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 柠檬吸收法

各种脱硫工艺及其原理

各种脱硫工艺及其原理 一般分为烟气脱硫和橡胶专业的脱硫烟气脱硫——除去烟气中的硫及化合物的过程,主要指烟气中的SO、SO2。以达到环境要求。橡胶专业的脱硫——devulcanizing 指采用不同加热方式并应用相应设备使废胶粉在再生剂参与下与硫键断裂获得具有类似生胶性能的化学物理降解过程。它是制造再生胶过程的一道主要工序。分为:水油法、油法。 该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换烟气脱硫设备热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。 编辑本段燃烧前脱硫 燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。 燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。 编辑本段燃烧中脱硫,又称炉内脱硫 炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:CaCO3==高温==CaO+CO2↑ CaO+SO2====CaSO3 2CaSO3+O2====2CaSO4 (1)LIMB炉内喷钙技术 早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一

CFB干法烟气脱硫技术的应用

循环流化床干法烟气脱硫技术的应用 1. 概况 烟气脱硫技术按脱硫产物的干湿形态,可以分为湿法、半干法、干法工艺,循环流化床烟气脱硫属于干法脱硫工艺,较多运用于国内小机组的烟气脱硫改造项目中。 南昌发电厂装机容量2×125MW,配2台420t/h燃煤锅炉,采用循环流化床干法脱硫工艺、一炉一塔脱硫装置,烟气尾部安装布袋除尘器。该装置于2007年7月完成系统调试,8月进入试运行,脱硫效率达到85%以上,烟尘出口浓度小于50mg/Nm3,目前该脱硫装置运行稳定。 2. 工艺流程 循环流化床脱硫工艺采用干态的消石灰作为吸收剂,通过二氧化硫与粉状消石灰氢氧化钙在Turbosorp反应器内发生反应,去除烟气中的SO2,通过吸收剂的多次再循环,延长吸收剂与烟气的接触时间,提高烟气脱硫效率。 锅炉炉膛燃烧后的烟气通过空气预热器出口,进入静电除尘器ESP 预除尘。经过静电除尘预除尘之后,烟气从锅炉引风机后的主烟道上引出从底部进入Turbo反应器并从上部离开。烟气和氢氧化钙以及返回产品气流,在通过反应器下部文丘里管时, 受到气流的加速而悬浮起来,形成流化床,烟气和颗粒之间不断摩擦、碰撞,强化了气固之间的传热、传质反应。通过向反应器内喷水,使烟气温度冷却并控制在70 ℃左右,达到最佳的反应温度与脱硫效率。与烟气接触发生化学反应剩下的烟尘和烟气一起离开反应器并进入下游的布袋除尘器。经过布袋除尘器净化后的烟气经增压风机和出口挡板门后排入210m高度烟囱。工艺流程见图1 所示。 3. 设计参数 3.1 煤质分析 南昌电厂燃用煤种较多,矿点主要分布在萍乡、丰城、高安一带。表1为2×125MW 机组设计燃用煤种的煤质分析结果。 3.2 设计烟气参数 烟气主要参数见表2。

半干法脱硫技术介绍

半干法脱硫技术介绍 一、概述 循环流化床烟气脱硫工艺是八十年代末德国鲁奇(LURGI)公司开发的一种新的半干法脱硫工艺,这种工艺以循环流化床原理为基础以干态消石灰粉Ca(OH)2作为吸收剂,通过吸收剂的多次再循环,在脱硫塔内延长吸收剂与烟气的接触时间,以达到高效脱硫的目的,同时大大提高了吸收剂的利用率。通过化学反应,可有效除去烟气中的SO2、SO3、HF与HCL等酸性气体,脱硫终产物脱硫渣是一种自由流动的干粉混合物,无二次污染,同时还可以进一步综合利用。该工艺主要应用于电站锅炉烟气脱硫,单塔处理烟气量可适用于蒸发量75t/h~1025t/h之间的锅炉,SO2脱除率可达到90%~98%,是目前干法、半干法等类脱硫技术中单塔处理能力最大、脱硫综合效益最优越的一种方法。 二、CFB半干法脱硫系统工艺原理 Ca(OH)2+ SO2= CaSO3 + H2O Ca(OH)2+ 2HF= CaF2 +2H2O Ca(OH)2+ SO3= CaSO4 + H2O Ca(OH)2+ 2HCl= CaCl2 + 2H2O CaSO3+ 1/2O2= CaSO4 三、流程图 四、CFB半干法脱硫工艺系统组成 1. 脱硫剂制备系统 2. 脱硫塔系统 3. 除尘器系统 4. 工艺水系统 5. 烟气系统

6. 脱硫灰再循环系统 7. 脱硫灰外排系统 8. 电控系统 五、CFB半干法脱硫工艺技术特点 1. 脱硫塔内烟气和脱硫剂反应充分,停留时间长,脱硫剂循环利用率高; 2. 脱硫塔内无转动部件和易损件,整个装置免维护; 3. 脱硫剂和脱硫渣均为干态,系统设备不会产生粘结、堵塞和腐蚀等现象; 4. 燃烧煤种变化时,无需增加任何设备,仅增加脱硫剂就可满足脱硫效率; 5. 在保证SO2脱除率高的同时,脱硫后烟气露点低,设备和烟道无需做任何防腐措施; 6. 脱硫系统适应锅炉负荷变化范围广,可达锅炉负荷的30%~110%; 7. 脱硫系统简单,装置占地面积小; 8. 脱硫系统能耗低、无废水排放; 9. 投资、运行及维护成本低。

脱硫系统设备及常见问题

脱硫系统设备及常见问题 1、 烟气系统 (1)、增压风机和GGH换热装置 2006年以前设计一般装设有增压风机,主要作用是克服GGH(气——气换热器)装置的阻力,以及烟囱排烟温度降低造成的压力变化。 装设GGH装置的目的:原烟气经吸收塔脱硫后,净烟气温度降低至45—55℃,现象:一是,烟气低于酸露点温度引起吸收塔出口烟道及烟囱的结露腐蚀,二是,烟气自拔扩散能力下降引起酸性石膏雨。GGH既利用原烟气热量通过换热提高吸收塔出口的排烟温度(可达到80度左右)避免结露腐蚀,提高烟囱自拔扩散能力(其结构原理类似于锅炉空气预热器)。 但是在实际应用中,通过GGH换热后并不能完全避免结露现象,反而因运行温度升高造成烟道和烟囱腐蚀加剧,同时,GGH装置的直接投资大(占FGD系统总投资的15%左右),后期维护工作量大,堵塞、渗漏现象突出,系统阻力增大,需增设增压风机,运行能耗和维护成本升高,在2006年以后的湿法脱硫设计中普遍放弃GGH换热设计。 (2)、烟气挡板 烟气挡板常用形式:闸板式、单百叶窗式和双百叶窗式。每片挡板设有金属密封元件(不锈钢密封条),挡板与密封空气系统相接并联动。当挡板处于关闭位臵时,挡板翼由钢制衬垫密封,在挡板内形成一个气路空间,密封空气充入并形成正压室,在挡板密封面形成空气幕,起到密封作用。密封空气压力较挡板门外烟气压力高500Pa以上,有较好的密封效果。 挡板门的防腐措施:主要依靠正确选取金属材料来保证。 建议烟气挡板门材质表: 项目原烟气挡板净烟气挡板旁路挡板 叶片Q235-A 碳钢包DIN1.4529或相当净烟气侧碳钢包DIN1.4529或相当轴 #35钢#35钢包DIN1.4529或相当#35钢包DIN1.4529或相当 框架Q235-A Q235-A包DIN1.4529或相当碳钢包DIN1.4529或相当 密封材料DIN1.4529或相当 C276或相当 C276或相当 常见问题及维护: a.炉烟气挡板运行8个月出现挡板门密封衬层及固定螺栓腐蚀脱落现象,对密封性造成影响,严重时会引起原烟气经旁路挡板直接渗漏排放,出口硫份超标。经材质检验挡板密封衬层及固定螺栓材质不合格,引起密封件变形脱落。按照技术协议及工艺标准更换符合材质要求的部件。 b.日常维护应定期检查烟气挡板传动执行机构无卡涩、变形、松动现象,定期对传动蜗轮、蜗杆及摇臂进行检查,补充润滑脂防止缺油磨损和卡涩。 2、吸收塔系统主要设备 喷淋吸收塔系统是湿法烟气脱硫系统的核心部分,主要布置有吸收塔本体、吸收塔搅拌设备、氧化空气分配装置、浆液循环机喷淋装置、喷嘴、除雾器等。(1)、吸收塔本体 吸收塔的作用是对烟气中的SO2等有害气体进行洗涤、吸收、氧化和石膏结晶

相关文档
最新文档