数字电路技术实验之计数器

数字电路技术实验之计数器
数字电路技术实验之计数器

实验七计数器

一、实验目的

1. 熟悉中规模集成计数器的逻辑功能及使用方法。

2. 掌握用中规模集成计数器构成任意进制计数器的方法。

3. 学习用集成触发器构成计数器的方法。

二、实验原理

计数器是一个用以实现计数功能的时序部件,它不仅可以用来对脉冲计数,还常用作数字系统的定时、分频和执行数字运算以及其他特定的逻辑功能。计数器是由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS触发器、T触发器、D触发器及JK触发器等。计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。

计数器种类很多,按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数进制的不同,分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器;如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等;按权码来分,则有“8421”码,“5421”码、余“3”码等计数器及可编程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1.十进制计数器74LS90(二、五分频)

74LS90是模二-五-十异步计数器。具有计数、清除、置9功能。74LS90包含M=2和M=5两个独立的下降沿触发计数器,清除端和置9端两计数器公用,没有预置端。模2计数器的时钟输入端为A(CP1),输出端为Q A;模5计数器的时钟输入端为B(CP2)。输出端由高位到低位为Q D、Q C、Q B;异步置9端为S91和S92,高电平有效。即只要S91·S92=1,则输出Q D Q C Q B Q A为1001;异步清除端为R01和R02,当R01·R02=1,且S91·S92=0时,输出Q D Q C Q B Q A=0000;只有R01·R02=0,S91·S92=0,即两者全无效时,74LS90才能执行计数操作。图7-1是异步十进制计数器74LS90的逻辑电路图。

根据功能表(表7-1)可将74LS90接成模2、模5和模10计数器。模10计数器有两种接法,如图7-2所示。图(a)输出为8421BCD码,高低位顺序是:Q D Q C Q B Q A;图(b)输出为5421BCD码,高低位顺序是Q A Q D Q C Q B最高位Q A的输出是对称方波。

从逻辑图看出,计数器具有如下功能:

R91R92=0,R01R02=1时,计数器置全0。

R01R02=0,R91R92=1时,计数器置为9,即Q D Q C Q B Q A=1001。

CP2=0,CP1输入时钟,Q A输出,实现模2计数器。

CP1=0,CP2输入时钟,Q D Q C Q B输出,实现模5计数器。

CP1输入时钟,Q A输出接CP2,实现8421码十进制计数器。

CP2输入时钟,Q D输出接CP1,实现5421码十进制计数器,即当模5计数器由100→000时,Q D产生一个时钟,使Q A改变状态。

R92

R91R02

R01

CP1CP2

图7-1 74LS90的逻辑电路图

表7-1 74LS90异步计数器功能表

2.同步十进制双时钟可逆计数器74LS192

同步加法计数器和减法计数器是数字电路中常用的时序逻辑电路,74LS192同步十进制可逆计数器可在不同的输入控制信号作用下,实现加法和减法计数。

同步4位十进制加/减计数器74LS192,是双时钟方式的十进制可逆计数器,它可对8421BCD码进行加法、减法计数,它有计数使能控制输入,有级联脉冲时钟输出,有预置数及清零等功能。

图7-3为74LS192的引脚排列图。74LS192具有如下功能:

A、B、C、D:为预置数数据输入端。

Q A、Q B、Q C、Q D:为输出端,Q D为最高位。

CR :清除端,此端为高电平时,内部的四个触发器被清零,即Q A 、Q B 、Q C 、Q D =0。

最高位

(a )8421BCD 码 (b )5421BCD 码

图7-2 74LS90构成十进制计数器的两种接法

LD :置入输入端,LD =0,并在数据输入端输入数据时,则Q A =A ;Q B =B ;Q C =C ;

Q D =D ,输出端就可预置为所需的电平,即输出与输入数据一致,而与时钟输入的电平无关。LD =1,执行计数功能。此端的作用是用来预置输入端的数据来修改计数长度。

CP U :加计数端,即“加”控制信号端,用来控制计数器的计数方向。当在此端输入CP 脉冲,且“减计数端”为高电平时,在计数脉冲上升沿到来时,计数器进行十进制加法计数。

CP D :减计数端,即“减”控制信号端,用来控制计数器的计数方向。当在此端输入CP 脉冲,且“加计数端”为高电平时,在计数脉冲上升沿的作用下,计数器进行减计数。

BO :借位输出端,在计数器做减计数时用于计数器之间的级

联。当计数器发生下溢时,借位输出端将产生一个宽度等于减计数输入的脉冲;即在减计数过程中,当低位计数器的输出端由0000变为1001时,此端输出一个上升沿,送至高一位计数器的减计数端CP D ,使其减1。

CO :进位输出端,在计数器做加计数时用于计数器之

间的级联。当计数器发生上溢时,进位输出端将产生一个 图7-3 74LS192的引脚排列图 宽度等于加计数输入的脉冲;即在加计数过程中,当低位计数器的输出端由1001变为0000时,此端输出一个上升沿,送至高一位计数器的加计数端CP U ,使其加1。

表7-2为74LS192功能表。 3.任意进制的计数器

同步计数器芯片基本上分为二进制和十进制两种。而在实际的数字系统中,经常需要其它任意进制的计数器,如一百进制,六十进制,十二进制,七进制等。我们可以采用计数器级联的方法来设计任意进制的计数器。

CP U LD A CLR CP D Q A Q B Q C Q D

14

1011

4

5

1537

2619B C D

1213

CO BO

表7-2 同步十进制双时钟可逆计数器74LS192功能表

将两片或两片以上计数器按照一定方法前后串联起来就可以构成远大于单一芯片进

制的其它进制。如用两片74LS160(十进制计数器)级联就可以构成一百进制计数器,

能够实现N进制计数功能的计数器称为任意进制的计数器。级联法用于大的进位计数制,对于小于单个芯片允许的计数制,我们可采用置数法构成任意进制计数器,该方法需要

计数器具有置数功能。

级联方法:(1)若使用并行时钟脉冲,则把脉冲时钟输出送到下一级计数器的使能输入。(2)若使用并行使能,则把脉冲时钟输出送到下一级计数器的时钟输入。(3)高速

应用时,可用最大/最小计数输出进行超前进位。

假定已有的是N 进制计数器,而需要得到的是M 进制计数器。这时有M<N和M>N 两种可能的情况。

(1)M<N 的情况

在N 进制计数器的顺序计数过程中,若设法使之跳越N-M 个状态,就可以得到M 进制计数器了。实现跳跃的方法有置零法(或称复位法)和置数法(或称置位法)两种。

置零法适用于有异步置零输入端的计数器。置数法适用于有预置数功能的计数器电路。它与置零法不同,它是通过给计数器重复置入某个数值的方法跳越N-M 个状态,从而获得M 进制计数器的,置数操作可以在电路的任何一个状态下进行。

使用置数法要求:

(1)满足公式M>N,其中M是集成计数器能够达到的最大进制值,N是要实现的进制值。

(2)设定编码:一个M进制集成计数器有其固定的二进制数的编码顺序。如十进制计数器74LS160的编码是:0000,0001,0010,0011,0100,0101,0110,0111,1000,1001。如果用74LS160 构成一个六进制现计数器,我们可以选择0000到0101这六个状态进行编码,也可以用0001到0110这六个状态进行编码,即M进制计数器有M个状态S0,S1,S2-S N-2,S N-1,设计者应需要从若干个编码方案中进行选择。

(3)要求电路在设定的N个状态中间循环:若用M进制计数器实现从某状态开始计数到另一状态结束的N进制计数功能,就应该设法使计数器计到预定状态之后,产生一个置数信号并在下一个时钟到来时,将计数器置成初态,然后从初态再重新开始计数。

三、实验仪器及器件

1. EL-ELL-VI型数字电路实验系统

2. 集成电路芯片74LS90 74LS192 74LS08等

四、实验内容及步骤

1. 同步十进制双时钟可逆计数器74LS192的应用

(1)用同步加减计数器74LS192构成8秒倒计时计数器,完成8-0减法计数(截图状态为8)。

仿真图:

(2)用同步加减计数器74LS192构成与学号后两位(比如学号是10,完成1-10计数,截图状态为最后一个10)进制的加法计数器。

用Multisim仿真,并打印电路图及输出波形图。在实验仪上连接电路完成测试,自拟表格记录实验结果。

(仿真图)

学号为13尾号的13进制加法器仿真图:

波形图如下:(ABCD顺序排列)

(ABCD顺序排列)

U1(片1)

U2(片

2)

五、预习报告要求

1. 复习教材中有关异步和同步计数器的工作原理。

2. 查阅有关资料,熟悉所用集成电路芯片的逻辑功能及引脚图,画出电路接线图。

3. 画出实验数据记录表格。

六、实验报告要求

1. 说明时序逻辑电路的特点,与组合逻辑电路的区别。

(1)特点:在任何时刻的输出不仅和输入有关,而且还决定于电路原来的状态。为了记忆电路的状态,时序电路必须以触发器为基本单元电路构成的存储电路。

(2)区别:组合逻辑电路,在任何时刻的输出仅仅取决于当时的输入,与电路过去的工作状态无关;时序逻辑电路,在任何时刻的输出不仅与当时的输入有关,还跟电路原来的状态有关。

2. 说明同步时序电路和异步时序电路的区别。

答:同步时序电路的所有触发器受同一时钟脉冲控制;异步时序电路的各触发器则受不同的脉冲源控制。

3. 用中规模集成计数器芯片构成任意进制计数器常用的方法有几种?它们各有什么特点?

答:种类:级连法、复位法、置位法。

特点:

(1)级连法

将若干片计数器串联连接,若各个计数器的计数容量分别为N1、N2、.......,则总的计数容量N=N1×N2×..........。

(2)复位法

当计数器完成所需的计数时,产生复位控制信号控制计数器的异步复位端,使计数器复0。

(3)置位法

利用计数器的预置数功能,使N进制的计数器在循环计数过程中,跳过(N-M)个状态,实现所需要的M 进制计数功能。

4. 如何判断计数器能否自启动?

(1)从电路的任意状态开始,经过有限次状态变换,电路能够进入有效状态循环,则说明此电路能够自启;

(2)用触发器和门电路实现同步加法计数器,输入检验值,观察2113是否能清零;

(3)用触发器和门电路实现异步加法计数器,输入检验值,观察是否能清零;

(4)用中规模集成电路74HLS160清零法,它是实5261现十进制计数,异步清零,同步置数。

5. 简述设计时序电路的一般过程。

步骤:

(1)分析设计要求,进行逻辑抽象,建立原始状态转换图(表)并化简

(2)求出驱动方程

(3)画出逻辑电路图

(4)自启动检查

北京邮电大学数字电路实验报告

北京邮电大学 数字电路与逻辑设计实验 实验报告 实验名称:QuartusII原理图输入 法设计与实现 学院:北京邮电大学 班级: 姓名: 学号:

一.实验名称和实验任务要求 实验名称:QuartusII原理图输入法设计与实现 实验目的:⑴熟悉用QuartusII原理图输入法进行电路设计和仿真。 ⑵掌握QuartusII图形模块单元的生成与调用; ⑶熟悉实验板的使用。 实验任务要求:⑴掌握QuartusII的基础上,利用QuartusII用逻辑 门设计实现一个半加器,生成新的半加器图像模 块。 ⑵用实验内容(1)中生成的半加器模块以及逻辑门 实现一个全加器,仿真验证其功能,并能下载到实 验板上进行测试,要求用拨码开关设定输入信号, 发光二级管显示输出信号。 ⑶用3线—8线译码器(74L138)和逻辑门实现要求 的函数:CBA F+ C + =,仿真验证其 + B C B A A A B C 功能,,并能下载到实验板上进行测试,要求用拨 码开关设定输入信号,发光二级管显示输出信号。二.设计思路和过程 半加器的设计实现过程:⑴半加器的应有两个输入值,两个输出值。 a表示加数,b表示被加数,s表示半加和, co表示向高位的进位。

⑵由数字电路与逻辑设计理论知识可知 b a s ⊕=;b a co ?= 选择两个逻辑门:异或门和与门。a,b 为异 或门和与门的输入,S 为异或门的输出,C 为与门的输出。 (3)利用QuartusII 仿真实现其逻辑功能, 并生成新的半加器图形模块单元。 (4)下载到电路板,并检验是否正确。 全加器的设计实现过程:⑴全加器可以由两个半加器和一个或门构 成。全加器有三个输入值a,b,ci ,两个输 出值s,co :a 为被加数,b 为加数,ci 为低 位向高位的进位。 ⑵全加器的逻辑表达式为: c b a s ⊕⊕= b a ci b a co ?+?⊕=)( ⑶利用全加器的逻辑表达式和半加器的逻 辑功能,实现全加器。 用3线—8线译码器(74L138)和逻辑门设计实现函数 CBA A B C A B C A B C F +++= 设计实现过程:⑴利用QuartusII 选择译码器(74L138)的图形模块

模拟数字电路基础知识

第九章 数字电路基础知识 一、 填空题 1、 模拟信号是在时间上和数值上都是 变化 的信号。 2、 脉冲信号则是指极短时间内的 电信号。 3、 广义地凡是 规律变化的,带有突变特点的电信号均称脉冲。 4、 数字信号是指在时间和数值上都是 的信号,是脉冲信号的一种。 5、 常见的脉冲波形有,矩形波、 、三角波、 、阶梯波。 6、 一个脉冲的参数主要有 Vm 、tr 、 Tf 、T P 、T 等。 7、 数字电路研究的对象是电路的输出与输入之间的逻辑关系。 8、 电容器两端的电压不能突变,即外加电压突变瞬间,电容器相当于 。 9、 电容充放电结束时,流过电容的电流为0,电容相当于 。 10、 通常规定,RC 充放电,当t = 时,即认为充放电过程结束。 11、 RC 充放电过程的快慢取决于电路本身的 ,与其它因素无关。 12、 RC 充放电过程中,电压,电流均按 规律变化。 13、 理想二极管正向导通时,其端电压为0,相当于开关的 。 14、 在脉冲与数字电路中,三极管主要工作在 和 。 15、 三极管输出响应输入的变化需要一定的时间,时间越短,开关特性 。 16、 选择题 2 若一个逻辑函数由三个变量组成,则最小项共有( )个。 A 、3 B 、4 C 、8 4 下列各式中哪个是三变量A 、B 、C 的最小项( ) A 、A B C ++ B 、A BC + C 、ABC 5、模拟电路与脉冲电路的不同在于( )。 A 、模拟电路的晶体管多工作在开关状态,脉冲电路的晶体管多工作在放大状态。 B 、模拟电路的晶体管多工作在放大状态,脉冲电路的晶体管多工作在开关状态。 C 、模拟电路的晶体管多工作在截止状态,脉冲电路的晶体管多工作在饱和状态。 D 、模拟电路的晶体管多工作在饱和状态,脉冲电路的晶体管多工作在截止状态。 6、己知一实际矩形脉冲,则其脉冲上升时间( )。 A 、.从0到Vm 所需时间 B 、从0到2 2Vm 所需时间 C 、从0.1Vm 到0.9Vm 所需时间 D 、从0.1Vm 到 22Vm 所需时间 7、硅二极管钳位电压为( ) A 、0.5V B 、0.2V C 、0.7V D 、0.3V 8、二极管限幅电路的限幅电压取决于( )。 A 、二极管的接法 B 、输入的直流电源的电压 C 、负载电阻的大小 D 、上述三项 9、在二极管限幅电路中,决定是上限幅还是下限幅的是( ) A 、二极管的正、反接法 B 、输入的直流电源极性 C 、负载电阻的大小 D 、上述三项 10、下列逻辑代数定律中,和普通代数相似是( ) A 、否定律 B 、反定律 C 、重迭律 D 、分配律

数字电路实验

实验2 组合逻辑电路(半加器全加器及逻辑运算) 一、实验目的 1.掌握组合逻辑电路的功能测试。 2.验证半加器和全加器的逻辑功能。 3.学会二进制数的运算规律。 二、实验仪器及材料 1.Dais或XK实验仪一台 2.万用表一台 3.器件:74LS00 三输入端四与非门3片 74LS86 三输入端四与或门1片 74LS55 四输入端双与或门1片 三、预习要求 1.预习组合逻辑电路的分析方法。 2.预习用与非门和异或门构成的半加器、全加器的工作原理。 3.学习二进制数的运算。 四、实验内容 1.组合逻辑电路功能测试。 图2-1 ⑴用2片74LS00组成图2-1所示逻辑电路。为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。 ⑵图中A、B、C接电平开关,Y1、Y2接发光管显示。 ⑶按表2-1要求,改变A、B、C的状态填表并写出Y1、Y2逻辑表达式。 ⑷将运算结果与实验比较。

2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。 根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图2-2。 图2-2 ⑴在实验仪上用异或门和与门接成以上电路。A、B接电平开关S,Y、Z接电平显示。 ⑵按表2-2要求改变A、B状态,填表。 3.测试全加器的逻辑功能。 ⑴写出图2-3电路的逻辑表达式。 ⑵根据逻辑表达式列真值表。 ⑶根据真值表画逻辑函数SiCi的卡诺图。 图2-3 ⑷填写表2-3各点状态。

⑸按原理图选择与非门并接线进行测试,将测试结果记入表2-4,并与上表进行比较看逻辑功能是否一致。 4.测试用异或、与或和非门组成的全加器的逻辑功能。 全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或门和一个非门实现。 ⑴画出用异或门、与或非门和与门实现全加器的逻辑电路图,写出逻辑表达式。 ⑵找出异或门、与或非门和与门器件,按自己画出的图接线。接线时注意与或非门中不用的与门输入端接地。 ⑶当输入端Ai、Bi、Ci-1为下列情况时,用万用表测量Si和Ci的电位并将其转为逻辑状态填入表2-5。 五、实验报告 1.整理实验数据、图表并对实验结果进行分析讨论。 2.总结组合逻辑电路的分析方法。 实验3 触发器 一、实验目的 1.熟悉并掌握R-S、D、J-K触发器的构成,工作原理和功能测试方法。 2.学会正确使用触发器集成芯片。 3.了解不同逻辑功能FF相互转换的方法。 二、实验仪器及材料 1.双踪示波器一台 2.Dais或XK实验仪一台 3.器件74LS00 二输入端四与非门1片 74LS74 双D触发器1片 74LS112 双J-K触发器1片 二、实验内容

数字电子技术实验指导书

数字电子技术实验指导书 (韶关学院自动化专业用) 自动化系 2014年1月10日 实验室:信工405

数字电子技术实验必读本实验指导书是根据本科教学大纲安排的,共计14学时。第一个实验为基础性实验,第二和第七个实验为设计性实验,其余为综合性实验。本实验采取一人一组,实验以班级为单位统一安排。 1.学生在每次实验前应认真预习,用自己的语言简要的写明实验目的、实验原理,编写预习报告,了解实验内容、仪器性能、使用方法以及注意事项等,同时画好必要的记录表格,以备实验时作原始记录。教师要检查学生的预习情况,未预习者不得进行实验。 2.学生上实验课不得迟到,对迟到者,教师可酌情停止其实验。 3.非本次实验用的仪器设备,未经老师许可不得任意动用。 4.实验时应听从教师指导。实验线路应简洁合理,线路接好后应反复检查,确认无误时才接通电源。 5.数据记录 记录实验的原始数据,实验期间当场提交。拒绝抄袭。 6.实验结束时,不要立即拆线,应先对实验记录进行仔细查阅,看看有无遗漏和错误,再提请指导教师查阅同意,然后才能拆线。 7.实验结束后,须将导线、仪器设备等整理好,恢复原位,并将原始数据填入正式表格中,经指导教师签名后,才能离开实验室。

目录实验1 TTL基本逻辑门功能测试 实验2 组合逻辑电路的设计 实验3 译码器及其应用 实验4 数码管显示电路及应用 实验5 数据选择器及其应用 实验6 同步时序逻辑电路分析 实验7 计数器及其应用

实验1 TTL基本逻辑门功能测试 一、实验目的 1、熟悉数字电路试验箱各部分电路的基本功能和使用方法 2、熟悉TTL集成逻辑门电路实验芯片的外形和引脚排列 3、掌握实验芯片门电路的逻辑功能 二、实验设备及材料 数字逻辑电路实验箱,集成芯片74LS00(四2输入与非门)、74LS04(六反相器)、74LS08(四2输入与门)、74LS10(三3输入与非门)、74LS20(二4输入与非门)和导线若干。 三、实验原理 1、数字电路基本逻辑单元的工作原理 数字电路工作过程是数字信号,而数字信号是一种在时间和数量上不连续的信号。 (1)反映事物逻辑关系的变量称为逻辑变量,通常用“0”和“1”两个基本符号表示两个对立的离散状态,反映电路上的高电平和低电平,称为二值信息。(2)数字电路中的二极管有导通和截止两种对立工作状态。三极管有饱和、截止两种对立的工作状态。它们都工作在开、关状态,分别用“1”和“0”来表示导通和断开的情况。 (3)在数字电路中,以逻辑代数作为数学工具,采用逻辑分析和设计的方法来研究电路输入状态和输出状态之间的逻辑关系,而不必关心具体的大小。 2、TTL集成与非门电路的逻辑功能的测试 TTL集成与非门是数字电路中广泛使用的一种逻辑门。实验采用二4输入与非门74LS20芯片,其内部有2个互相独立的与非门,每个与非门有4个输入端和1个输出端。74LS20芯片引脚排列和逻辑符号如图2-1所示。

数字电路实验指导书

数字电路实验指导书 上海大学精密机械工程系2010年10月

目录 一、概述 二、实验一基本电路逻辑功能实验 三、实验二编码器实验 四、实验三寄存器实验 五、实验四译码器实验 六、实验五比较器实验 七、实验六加法器实验 八、实验七计数器实验 九、附录一数字电路实验基本知识 十、附录二常用实验器件引脚图 十一、附录三实验参考电路 十二、附录四信号定义方法与规则十三、附录五 DS2018实验平台介绍

前言 《数字电路A》课程是机电工程及自动化学院机械工程自动化专业和测控技术与仪器专业的学科基础必修课。课程介绍数字电路及控制系统的基本概念、基本原理和应用技术,使学生在数字电路方面具有一定的理论知识和实践应用能力。该课程是上海大学和上海市教委的重点课程建设项目和上海大学精品课程,课程教学内容和方式主要考虑了机械类专业对电类知识的需求特点,改变了电子专业类(如信息通信、电气自动化专业)这门课比较注重教授理论性和内部电路构成知识的方式,加强应用设计性实验,主要目的是让学生能在理论教学和实验中学会解决简单工程控制问题的基本方法和技巧,能够设计基本的实用逻辑电路。 本书是《数字电路A》的配套实验指导书,使用自行开发的控制系统设计实验箱,所有实验与课堂理论教学相结合,各实验之间相互关联,通过在实验箱上设计构建不同的数字电路功能模块,以验证理论教学中学到的各模块作用以及模块的实际设计方法。在所有功能模块设计结束后,可以将各模块连接在一起,配上输入输出装置,构成一个完整的工程控制系统。 为本课程配套的输入输出装置是颗粒糖果自动灌装控制和一维直线运动控制,颗粒糖果自动灌装系统的框图如下图所示: 颗粒糖果灌装系统框图 本套实验需要设计的功能模块包括:编码器、寄存器、译码器、比较器、加法器、计数器、光电编码器辩向处理电路、步进电机旋转控制环形分配电路等。

数字电路实验计数器的设计

数字电路与逻辑设计实验报告实验七计数器的设计 :黄文轩 学号:17310031 班级:光电一班

一、实验目的 熟悉J-K触发器的逻辑功能,掌握J-K触发器构成异步计数器和同步计数器。 二、实验器件 1.数字电路实验箱、数字万用表、示波器。 2.虚拟器件: 74LS73,74LS00, 74LS08, 74LS20 三、实验预习 1. 复习时序逻辑电路设计方法 ①根据设计要求获得真值表 ②画出卡诺图或使用其他方式确定状态转换的规律 ③求出各触发器的驱动方程 ④根据已有方程画出电路图。 2. 按实验内容设计逻辑电路画出逻辑图 Ⅰ、16进制异步计数器的设计 异步计数器的设计思路是将上一级触发器的Q输出作为下一级触发器的时钟信号,置所有触发器的J-K为1,这样每次到达时钟下降沿都发生一次计数,每次前一级 触发器从1变化到0都使得后一级触发器反转,即引发进位操作。 画出由J-K触发器组成的异步计数器电路如下图所示:

使用Multisim仿真验证电路正确性,仿真图中波形从上到下依次是从低位到高位 触发器的输出,以及时钟信号。: 可以看出电路正常执行16进制计数器的功能。 Ⅱ、16进制同步计数器的设计 较异步计数器而言,同步计数器要求电路的每一位信号的变化都发生在相同的时间点。

因此同步计数器各触发器的时钟脉冲必须是同一个时钟信号,这样进位信息就要放置在J-K 输入端,我们可以把J-K端口接在一起,当时钟下降沿到来时,如果满足进位条件(前几位触发器输出都为1)则使JK为1,发生反转实现进位。 画出由J-K触发器和门电路组成的同步计数器电路如下图所示 使用Multisim仿真验证电路正确性,仿真图中波形从上到下依次是从低位到高位触发器的输出,计数器进位输出,以及时钟信号。:

数字电路实验报告——译码器

第五次试验报告 实验五 译码器 一、实验目的要求 1、熟悉中规模集成电路T4138译码器的工作原理与逻辑功能 2、掌握译码器的应用 二、实验仪器、设备 直流稳压电源、电子电路调试器、万用表、两个T4138、74LS20 三、实验线路、原理框图 1、T4138的逻辑符号 T4138是一个3线—8线译码器,它是一种通用译码器,其逻辑符号如图1所示。 图1 其中,A 2、A 1、A 0是地址输入端,Y 0、Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7是译码输出端,S 1、 S 2、S 3是使能端,当S 1=1, S 2+S 3=0时,器件使能。 2、T4138的管脚排列 T4138的管脚排列如图2所示: 图2 3、T4138的逻辑功能 T4138的功能表如下表所示: Y Y Y Y Y Y Y 32 (a )原SJ 符号 (b )GB 符号

3线—8线译码器实际上是一个负脉冲输出的脉冲分配器。若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器。 4、用T4138实现一个逻辑函数 译码器的每一路输出,实际上是地址码的一个最小项的反变量,利用其中一部分输出端输出的与非关系,也就是它们相应最小项的或逻辑表达式,能方便地实现逻辑函数。 本试验要求实现以下逻辑函数: Y=AB C +A B C+A BC+ABC=ABC BC A C B A C AB ???=7356Y Y Y Y 用T4138和74LS20实现以上逻辑函数,实验线路见下图(图3): 图3 5,用两个3线—8线译码器组成一个4线—16线的译码器 4线—16线的真值表为: “0Y

数字逻辑实验、知识点总结(精编文档).doc

【最新整理,下载后即可编辑】 数字逻辑实验报告、总结 专业班级:计算机科学与技术3班 学号:41112115 姓名:华葱 一、 实验目的 1. 熟悉电子集成实验箱的基本结构和基本操作 2. 通过实验进一步熟悉各种常用SSI 块和MSI 块的结构、 各管脚功能、工作原理连接方法 3. 通过实验进一步理解MSI 块的各输入使能、输出使能的 作用(存在的必要性) 4. 通过实验明确数字逻辑这门课程在计算机专业众多课 程中所处的位置,进一步明确学习计算机软硬件学习的 主线思路以及它们之间的关系学会正确学习硬件知识 的方法。 二、 实验器材 1. 集成电路实验箱 2. 导线若干 3. 14插脚、16插脚拓展板 4. 各种必要的SSI 块和MSI 块 三、 各次实验过程、内容简述 (一) 第一次实验:利用SSI 块中的门电路设计一个二进制一 位半加器 1. 实验原理:根据两个一位二进制数x 、y 相加的和与 进位的真值表,可得:和sum=x 异或y ,进位C out =x ×y 。相应电路: 2. 实验内容: a) 按电路图连接事物,检查连接无误后开启电源 b) 进行测试,令

y>={<0,0>,<0,1>,<1,0>,<1,1>},看输出位sum 和C out 的变化情况。 c) 如果输出位的变化情况与真值表所述的真值相 应,则达到实验目的。 (二) 第二次实验:全加器、74LS138译码器、74LS148编码器、 74LS85比较器的测试、使用,思考各个输入、输出使能 端的作用 1. 实验原理: a) 全加器 i. 实验原理: 在半加器的基础上除了要考虑当前两个二进制为相 加结果,还要考虑低位(前一位)对这一位的进位 问题。由于进位与当前位的运算关系仍然是和的关 系,所以新引入的低位进位端C in 应当与当前和sum 再取异或,而得到真正的和Sum ;而进位位C out 的 产生有三种情况:={<1,1,0>,<1,0,1>,<0,1,1>},也就是说当x 、y 、 C in 中当且仅当其中的两个数为1,另一个数为0的 时候C out =1,因此:C out =xy+xC in +yC in 得电路图(也 可以列出关于C in 的真值表,利用卡诺图求解C in 的 函数表达式): ii. >的8中 指,y ,C in x y C in Sum C out

计数器在数字电路中的应用

计数器在数字电路中的应用 摘要随着我国通信、电子信息与计算机应用等技术的不断发展,电子电路也获得了很大发展,计数器作为时序逻辑电路,在数字电路系统中的应用较多,为更好理解计数器件的用途与性能,本文就计数器在数字电路中的应用进行了分析。 关键词计数器;数字电路;应用 计数器作为时序的逻辑电路,能够对输入脉冲个数进行累计与记忆,在数字系统当中,计数是基本的重要操作,而集成计数器是应用最为广泛的一种逻辑部件,种类比较多,按照计数值不同,能分成二进制、十进制与任意进制的计数器,依据时钟脉冲源划分,具有同步与异步计数器之分,而按技术增减的趋势,能划分成可逆、减法与加法等计数器,这些计数器在电路中各有其不同应用功能,本文就以74LS192中规模的集成计数器为例,对时序脉冲与数字系统定时等方面的应用进行了分析。 1计数器在时序脉冲方面的应用 在数字电路中,时钟电路是重要构成部分,数字电路在时钟电路驱动下,方能开展正常的工作,依据应用场合不同,数字电路所选择的的时钟发生器种类是不同的,以十进制74LS193可逆同步计数器与3-8线译码器所构成的脉冲发生器为例,因计数器输出的Q2、Q1、Q0状态,是按照000-111之间的顺序循环变化的,可当作CT74LS138译码器3位2进制的代码进行输入,并与A2、A1、A0的顺序相对应连接,在输入计数脉冲作用下,电路中的译码器Y0-Y7按照低电平进行脉冲输出,时序脉冲发生器的工作结构如图1所示。计数脉冲通过非门反相之后当作选通脉冲,与74LS138计数器使能端相连接,对译码器工作进行控制,避免出现竞争冒险状况。计数脉冲CP输入并上升到来时,数字电路中的计数器可计数,而非门所输出的计数脉冲,可让使能端处于低电平0,而译码器封锁之后,停止工作,Y0-Y7可输出高电平。一旦计数脉冲下降至来后,选通脉冲作为高电平1,使能端也处于1状态,且译码器处于工作状态,对应的输出端会输出低电平,通过分析可得知,时序脉冲电路中的选通脉冲可让译码器的工作时间,以及计数器当中的触发器翻转时间想错开,避免出现竞争冒险问题的出现。 2计数器在数字系统定时方面的应用 2.1数字系统优点 与传统模拟系统比较,数字系统具有较多优点,系统定时相对宽松,数字的切换器含有自动定时的功能,能够补偿相关的定时误差,范围是30s-150s,其具体值和设备性能密切相关,不过对数字系统中的场定时是需要注意的,因一些数字视频的设备存在处理时延问题。在数字系统定时中,其定时包含信号定时、场定时、行定时与音频定时等,其中,数字信号定时是个比较简单的过程,使用数

数字电路设计--------二十四进制计数器

数字电路设计 姓名:*** 学号:****************** 班级:电信111 专业:电子信息科学与技术 一.设计题目 二十四进制计数器的设计 二.设计要求 (1)要求学生掌握74系列的芯片和LED的原理和使用方法。 (2)熟悉集成电路的使用方法,能够运用所学的知识设计一规定的电路。三.设计任务 (1)完成一个二十四进制的计数器。 (2)LED显示从00开始,各位计数从0—9,逢10 进1,是为计数0—5。23显示后,又从00重新开始计数。 四.设计思路与原理 (一)设计思路框图 →→→ → (二)LED简介 LED是一种显示字段的显示器件,7个发光二极管构成七笔字形“8”,一个发光二极管构成小数点。七段发光管分别称为a、b、c、d、e、f,g,构成字型“8”,如图(a)

所示,当在某段发光二极管上施加一定的电压时,某些段被点亮发光。不加电压则变暗,为了保护各段LED不被损坏,需外加限流电阻。 其真值表如下:

(三)原件总汇表:计数器74LS00D(U7A,U7B),74HC390N-6V(U3A,U6A),74LS47N(U1,U5);与门:时钟脉冲:显示器:发光二极管:电感:电容:电源 五.电路图仿真 二十四进制计数器电路仿真

六.心得体会 通过这一次的数字电路设计,是我更深的了解到了数字电路的基础知识,电路分析与计算的方法。利用仿真软件对电路进行一系列的分析仿真,更加抽象的将理论知识与实际电路结合在一起,加深了对数电一些基本定理的理解与运用。虽然在这学期中,数字电子技术基础学的不是很好,但是在这次的课程设计中通过同学的帮组还是完成了。虽然做的不是很好,但是从中也让我明白了:要想做好这个课程设计,就必须认认真真地去做,不要怕麻烦,遇到不懂的问题就要主动去问同学或者老师。和查阅材料,保持着一个积极向上的心态,发挥我们自己的主观能动性和创造了才能让我们做的更好。在这次课程设计中让我学到了很多东西,在经过我们一个学期的数字电子技术基础课后,我们已经对数字电子技术有一定的了解,让我们有了一定的基础可以独立完成数字电子技术基础课程设计了,不过当中还是遇到许多不懂的问题。

数字电路实验大纲

数字电路实验课程教学大纲 一、课程的基本信息 适应对象:电子科学与技术电子信息工程通信工程 课程代码:AAD00813 学时分配:16 赋予学分:1 先修课程:电路分析低频电子线路 后续课程:信号系统单片机原理与接口技术 二、课程性质与任务 数字电路实验为专业基础实验,面向电子信息工程、电子科学与技术、通信工程专业开设的独立设置的实验课程及课内实验。通过本课程的学习使学生进一步掌握常用仪器的使用,并掌握数字电路基本知识、常用芯片的功能及参数以及中、大规模器件的应用,掌握组合逻辑电路和时序逻辑电路的设计方法。同时通过学习,可以培养学生独立思考、独立解决问题的能力,加强动手能力的培养,使学生掌握数字电路的设计方法。 三、教学目的与要求 本课程是一门集理论与实践与一体的课程。学生通过本课程的学习,能够掌握各种基本逻辑门电路的结构和功能;掌握各种组合逻辑电路的分析和设计方法;熟悉常用的触发器,并会对常用的时序电路进行分析;对较复杂的数字系统的分析方法能有所了解;掌握各种电子电路和系统的测试方法和技能。 四、教学内容与安排 实验项目设置与内容提要

虚拟实验项目设置与内容提要 五、教学设备和设施 DZX-1 电子学综合实验装置示波器数字电路虚拟实验系统 六、课程考核与评估 实验成绩由虚拟实验成绩、平时实验成绩和考核成绩组成,虚拟实验成绩占20%,平时实验成绩占50%,考核成绩占30%。平时实验成绩由实验操作成绩和实验报告成绩组成,实验操作成绩占平时实验成绩的70%;实验报告成绩占平时实验成绩的30%。实验操作主要考察学生对实验电路的设计难易程度、电路连接调试、问题解决的能力,是否能够达到设计要求;实验报告主要考察学生对实验涉及的理论知识的掌握,对实验得到的结论和现象是否能够正确理解和分析,并能够合理的解释实验中出现的问题,正确判断实验的成功、失败。

数字电路译码器实验报告

一、实验目的与要求 1.了解和正确使用MSI组合逻辑部件; 2.掌握一般组合逻辑电路的特点及分析、设计方法; 3. 学会对所设计的电路进行静态功能测试的方法; 4. 观察组合逻辑电路的竞争冒险现象。 预习要求: (1)复习组合逻辑电路的分析与设计方法; (2)根据任务要求设计电路,并拟定试验方法; (3)熟悉所用芯片的逻辑功能、引脚功能和参数; (4)了解组合逻辑电路中竞争冒险现象的原因及消除方法。 (5)二、实验说明 译码器是组合逻辑电路的一部分。所谓译码就是不代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。译码器分成三类: 1.二进制译码器:把二进制代码的各种状态,按照其原意翻译成对应输出信号的电路。如中规模2线—4线译码器74LS139,3线—8线译码器74LS138等。 2.二—十进制译码器:把输入BCC码的十个代码译成十个高、低电平信号。 3.字符显示译码器:把数字、文字和符号的二进制编码翻译成人们习惯的形式并直观地显示出来的电路,如共阴极数码管译码驱动的74LS48(74LS248),共阳极数码管译码驱动的74LS49(74LS249)等。 三、实验设备 1.RXB-1B数字电路实验箱 2.器件 74LS00 四2输入与非门 74LS20 双4输入与非门 74LS138 3线—8线译码器 四、任务与步骤 任务一:测试3线—8线译码器74LS138逻辑功能 将一片3线—8线译码器74LS138插入RXB-1B数字电路实验箱的IC空插座中,按图3-15接线。A0、A1、A2、STA、STB、STC端是输入端,分别接至数字电路实验箱的任意6个电平开关。Y7、Y6、Y5、Y4、Y3、Y2、Y1、Y0输出端,分别接至数字电路实验箱的电平显示器的任意8个发光二极管的插孔8号引脚地接至RXB—IB型数字电路实验箱的电源“ ”,16号引脚+5V接至RXB-1B数字电路实验箱的电源“+5V”。按表3-2中输入值设置电平开关状态,观察发光二极管(简称LED)的状态,并将结果填入表中。 根据实验数据归纳出74LS138芯片的功能。 表3-2 3线-8线译码器74LS138功能表

数字电子时钟逻辑电路设计

《数字逻辑》 课程设计报告 设计题目:数字电子钟 组员:黄土标黄维超蔡荣达孙清玉 指导老师:麦山 日期:2013/12/27 摘要数字电子钟是一种用数字显示秒、分、时的计时装置,本次数字时钟电路设计采用GAL系列芯片来分别实现时、分、秒的24进制和60进制的循环电路,并支 持手动清零和校正的功能。 关键词数字电子钟;计数器;GAL 4040芯片;M74LS125AF三态门 1设计任务及其工作原理 1.1设计任务 设计一台能显示时,分,秒的数字电子钟。 技术要求: (1)秒、分为00?59六十进制计数器

⑵时为00?23二十四进制计数器 (3)可手动校正:能分别进行秒、分、时的校正。只要将开关置于手动位置,可分别对秒、分、时进行手动脉冲输入调整或连续脉冲输入校正。并且可以手动按下脉冲进行清零。 1.2 工作原理 本数字电子钟的设计是根据时、分、秒各个部分的的功能的不同,分别用 GAL16V8D设计成六十进制计数器和用GAL22V10秒的个位,设计成十进制计数器,十位设计成六进制进制计数器(计数从00到59时清零并向前进位)。分部分的设计与秒部分的设计完全相同;时的个位,设计成二进制计数器,十位设计为四进制计数器,当时钟计数到23时59分59秒时,使计数器的小时部分清零,进而实现整体循环计时的功能。 2 电路的组成 2.1计数器部分:利用GAL16V8[和GAL22V1(芯片分别组成二十四进制计数器和六 十进制计数器,它们采用同步连接,利用外接标准脉冲信号进行计数。 2.2显示部分:将三片GAL芯片对应的引脚分别接到实验箱上的七段共阴数码显示管上,根据脉冲的个数显示时间。 3.3 分频器:由于实验箱上提供的时钟脉冲的时间间隔太小,所以使用GAL16V8D 和GAL16V8D 4040芯片和M74LS125AF三态门芯片设计一个分频器,使连续输出脉 冲信号时间间隔为0.5s

数电实验--译码显示电路

译码显示电路 二、实验仪器及器件: 1、数字电路实验箱、数字万用表、示波器。 2、器件:74LS48X1, 74LS194X1, 74LS73X1, 74LS00X2 三、实验预习: 1、复习有关译码显示原理。 2、根据实验任务,画出所需的实验线路及记录表格。 四、实验原理: 1、数码显示译码器: (1)七段发光二极管(LED)数码管 LED数码管是目前最常用的数字显示器,图(一)(a)、(b)为共阴管和共阳管的电路,(C)为两种不同出线形式的引出脚功能图。 一个LED数码管可用来显示一位0--9十进制数和一个小数点。小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~2.5V,每个发光二极管的点亮电流在5~10mA。LED数码管要显示BCD码所表示的十进制数字就需要有一个专门的译码器,该译码器不但要完成译码功能,还要有相当的驱动能力。

(2)BCD码七段译码驱动器 此类译码器型号有74LS47(共阳),74LS48(共阴), 段译码/驱动器。驱动共阴极LED数码管。 图(二)为74LS48引脚排列。其中A、B、C、D - BCD 码输入端,a、b、c、d、e、f、g——译码输出端,输出 “1"有效,用来驱动共阴极LED数码管。 - 灯测试输入端,=“0”时,译码输出全为“1” - 灭零输入端,=“0”时,不显示多余的零。 作为输出端使用时,灭零输出端。 2、扫描式显示 对多位数字显示采用扫描式显示可以节电,这一点在某些场合很重要。对于某些系统输出

的的数据,应用扫描式译码显示,可使电路大为简化。有些系统,比如计算机,某些A/D 转换器,是以这样的形式输出数据的:由选通信号控制多路开关,先后送出(由高位到低位或由低位到高位)一位十进制的BCD码,如图(三)所示。图中的Ds称为选通信号,并假定系统按先高位后低位的顺序送出数据,当Ds1高电平送出千位数,Ds2高电平送出百位数,……一般Ds的高电平相邻之间有一定的间隔,选通信号可用节拍发生器产生。 如图(四)所示,为这种系统的译码扫描显示的原理图。图中各片LED(共阴)的发光段并连接至译码器的相应端,把数据输入的相应权端与系统输出端相连,把各位选通端反相后接相应LED的公共端。f(A)使数据输入是伪码(8421BCD中的1010-1111)时使f(A)=0,伪码灭灯。接译码器的灭灯I B端,使不显示伪码。 3、四节拍发生器 扫描显示要求数码管按先后顺序显示。这就要求如图(三)所示的选通信号。通常该类型的信号称为节拍信号。如果使用的数码管是共阴极型,则选通信号是图(三)的反相。如图(五)所示就是这种节拍信号发生器。

数字电子技术基础知识总结

数字电子技术基础知识总结引导语:数字电子技术基础知识有哪些呢?接下来是小编为你带来收集整理的文章,欢迎阅读! 处理模拟信号的电子电路。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。 其主要特点是: 1、函数的取值为无限多个; 2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。 3.初级模拟电路主要解决两个大的方面:1放大、2信号源。 4、模拟信号具有连续性。 用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。 其主要特点是: 1、同时具有算术运算和逻辑运算功能 数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。

2、实现简单,系统可靠 以二进制作为基础的数字逻辑电路,可靠性较强。电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。 3、集成度高,功能实现容易 集成度高,体积小,功耗低是数字电路突出的优点之一。电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。电路的设计组成只需采用一些标准的集成电路块单元连接而成。对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。 模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。 模拟信号是关于时间的函数,是一个连续变化的量,数字信号则是离散的量。因为所有的电子系统都是要以具体的电子器件,电子线路为载体的,在一个信号处理中,信号的采集,信号的恢复都是模拟信号,只有中间部分信号的处理是数字处理。具体的说模拟电路主要处理模拟信号,不随时间变化,时间域和值域上均连续的信号,如语音信号。而数

数字电路设计--------二十四进制计数器

数字电路设计 姓名: *** 学号: ****************** 班级:电信 111 专业:电子信息科学与技术 一.设计题目 二十四进制计数器的设计 二.设计要求 (1)要求学生掌握74系列的芯片和LED的原理和使用方法。 (2)熟悉集成电路的使用方法,能够运用所学的知识设计一规定的电路。 三.设计任务 (1)完成一个二十四进制的计数器。 (2)LED显示从00开始,各位计数从0—9,逢10 进1,是为计数0—5。23显示 后,又从00重新开始计数。 四.设计思路与原理 (一)设计思路框图 →→→ → (二)LED简介 LED是一种显示字段的显示器件,7个发光二极管构成七笔字形“8”,一个发 光二极管构成小数点。七段发光管分别称为a、b、c、d、e、f,g,构成字型“8”,如图 (a)所示,当在某段发光二极管上施加一定的电压时,某些段被点亮发光。不加电压则变 暗,为了保护各段LED不被损坏,需外加限流电阻。

其真值表如下: (三)原件总汇表:计数器74LS00D(U7A,U7B),74HC390N-6V(U3A,U6A),74LS47N(U1,U5);与门:时钟脉冲:显示器:发光二极管:电感:电容:电源 五.电路图仿真 二十四进制计数器电路仿真

六.心得体会 通过这一次的数字电路设计,是我更深的了解到了数字电路的基础知识,电路分析与计算的方法。利用仿真软件对电路进行一系列的分析仿真,更加抽象的将理论知识与实际电路结合在一起,加深了对数电一些基本定理的理解与运用。虽然在这学期中,数字电子技术基础学的不是很好,但是在这次的课程设计中通过同学的帮组还是完成了。虽然做的不是很好,但是从中也让我明白了:要想做好这个课程设计,就必须认认真真地去做,不要怕麻烦,遇到不懂的问题就要主动去问同学或者老师。和查阅材料,保持着一个积极向上的心态,发挥我们自己的主观能动性和创造了才能让我们做的更好。在这次课程设计中让我学到了很多东西,在经过我们一个学期的数字电子技术基础课后,我们已经对数字电子技术有一定的了解,让我们有了一定的基础可以独立完成数字电子技术基础课程设计了,不过当中还是遇到许多不懂的问题。

实验2 译码器及其应用

实验2 译码器及其应用 10数计计科2班 丁琴(41)林晶(39) 一、实验目的 1、掌握中规模集成译码器的逻辑功能和使用方法 2、熟悉数码管的使用 二、实验原理 译码器是一个多输入、多输出的组合逻辑电路。它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。不同的功能可选用不同种类的译码器。 译码器可分为通用译码器和显示译码器两大类。前者又分为变量译码器和代码变换译码器。 1、变量译码器(又称二进制译码器),用以表示输入变量的状态,如2线-4线、3线-8线和4线-16线译码器。若有n个输入变量,则有2n个不同的组合状态,就有2n 个输出端供其使用。而每一个输出所代表的函数对应于n个输入变量的最小项。以3线-8线译码器74LS138为例进行分析,图5-6-1(a)、(b)分别为其 逻辑图及引脚排列,其中A2 、A1 、A0 为地址输入端,0Y~7Y为译码输出端,S1、2S、 S为使能端。其工作原理为: 3 Yi=S1 S2 S3 mi (1)当S2=S3=0,S1=data时 若m0=1,A2=A1=A0=0时则Y0 =S1= data 改变A2、A1、A0使得data出现在不同的输出端 (2)当S1=1, S2=0,S3=data时 若m0=1,则Y0=data; 改变A2A1A0使得data出现在不同的输出端 对照表5-6-1就可判断其功能是否正常。

(a) (b) 图5-6-1 3-8线译码器74LS138逻辑图及引脚排列 二进制译码器实际上也是负脉冲输出的脉冲分配器。若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称多路分配器),如图5-6-2所示。若在S1输入端输入数据信息,2S=3S=0,地址码所对应的输出是S1数据信息的反码;若从2S端输入数据信息,令S1=1、3S=0,地址码所对应的输出就是2S端数据信息的原码。若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。 根据输入地址的不同组合译出唯一地址,故可用作地址译码器。接成多路分配器,可将一个信号源的数据信息传输到不同的地点。 二进制译码器还能方便地实现逻辑函数,如图5-6-3所示,实现的逻辑函数是

数字电路实验(九个)

脉冲与数字电路实验

目录 实验一TTL数字集成电路使用、与非门参数测试实验二门电路 实验三组合逻辑电路 实验四译码器与编码器 实验五触发器 实验六计数器一 实验七计数器二 实验八多谐振荡电路 实验九综合实验 ·二十四进制计数电路 ·数字定时器 ·图形发生器 专题实习通用计时器安装于调试 附录1 常用数字集成电路外引线图 附录2 TTL集成电路分类、推荐工作条件

实验一TTL数字集成电路使用、与非门参数测试 一、实验目的 学习TTL数字集成电路使用方法,学会查阅引脚图。掌握参数测试方法 二、实验设备及器件 1.逻辑实验箱1台 2.万用表1只 3.四2输入与非门74LS00 1只 三、实验重点 54/74LS系列数字集成电路的认识及使用方法 四、数字集成电路概述 以晶体管的“导通”与“截止”表达的两种状态及高电平(H)低电平(L)并以“1” 或“0”表示二进制数。能对二进制数进行逻辑运算、转换、传输、存储的集成电路称为数字集成电路。按分类有TTL型、CMOS型。按功能分有逻辑门电路、组合集成电路、集成触发器、集成时序逻辑电路。 五、实验内容及步骤 1.74LS系列数字集成电路外引线图及使用方法(引线图以14脚集成电路为例) 1)外引线排列 双列直插式封装引脚识别。引脚对称排 列,正面朝上半圆凹槽向左,左下为第1脚, 按逆时针方向引脚序号依次递增。 2)电源供电 芯片以5V供电,电源正极连接标有Vcc 字符的引脚,负极连接标有GND字符的 引脚。电源额定值应准确。为了达到良好的 使用效果,电源范围应满足4.5V≤Vcc≤5.5V。TTL数字集成电路引脚识别 电源极性连接应正确。 3)重要使用规则 a.输出端不能直接连接电源正极或负极。 b.小规模(SSI)和中规模(MSI)芯片,在使用中发热严重应检查外围连线连接是否正确。 1A1B1Y2A2B2Y GND 4A 4B4Y 3A 3B3Y 1A 1B1Y 2A 2B2Y & A B Y & A B Y

数字电子线路实验报告_译码器及其应用

数电实验报告 实验三译码器及其应用 一、实验目的 1、掌握译码器的测试方法。 2、了解中规模集成译码器的功能,管脚分布,掌握其逻辑功能。 3、掌握用译码器构成组合电路的方法。 4、学习译码器的扩展。 二、实验仪器 1、数字逻辑电路实验板 1块 2、74HC138 3-8线译码器 2片 3、74HC20 双4输入与非门 1片 三、实验原理 1、中规模集成译码器74HC138 74HC138是集成3线-8线译码器,在数字系统中应用比较广泛。图3-1是其引脚排列。 其中 A2 、A1 、A0 为地址输入端, 0Y~ 7Y为译码输出端,S1、2S、3S为使能端。74HC138真值表如下: 74HC138引脚图为:

74HC138工作原理为:当S1=1,S2+S3=0时,电路完成译码功能,输出低电平有效。其中: 2、译码器应用 因为74HC138 三-八线译码器的输出包括了三变量数字信号的全部八种组合,每一个输 出端表示一个最小项,因此可以利用八条输出线组合构成三变量的任意组合电路。 四、实验内容 1、译码器74HC138 逻辑功能测试 (1)控制端功能测试 测试电路如图:

按上表所示条件输入开关状态。观察并记录译码器输出状态。 LED指示灯亮为0,灯不亮为1。 (2)逻辑功能测试 将译码器使能端S1、2S、3S及地址端A2、A1、A0 分别接至逻辑电平开关输出口,八个 输出端Y7 Y0依次连接在逻辑电平显示器的八个输入口上,拨动逻辑电平开关,按下表逐项测试74HC138的逻辑功能。 2、用74HC138实现逻辑函数 Y=AB+BC+CA 如果设A2=A,A1=B,A0=C,则函数Y的逻辑图如上所示。用74HC138和74HC20各一块在实验箱上连接下图线路。并将测试结果下面的记录表中。

数字电路实验

数字电路实验 实验要求: 1.遵守实验室规则,注意人身和仪器设备的安全。 2.预习并按规范写好预习报告,否则不能参加实验。 3.进入实验室后保持安静,对号入座, 4.将预习报告置于实验桌右上角,待指导教师检查。 5.完成实验任务后,保持实验现场,报请老师验收。验收时需清楚简练地 向老师介绍实验情况、证明自己已完成了实验任务。 6.实验成绩由预习报告、实验效果与实验纪律、独立动手能力、实验报告 等综合决定。 实验报告内容要求 1.实验名称、实验者姓名、实验时间地点和指导教师等。 2.实验目的与要求。 3.实验用仪器仪表的名称和型号。 4.实验电路和测试电路。包括实验所用的器件品种、数目和参数。 5.实验内容、步骤,在这部分内容中,应用简明的语言或提纲给出实验的具体内容,步骤、记录实验中的原始数据,绘制出根据观察到的波形整理出的图表、曲线,反映在实验中遇到的问题及处理的经过。如对原实验方案进行了调整,则应写出调整方案的理由和调整情况。 6.实验结果及分析。实验结果是对实验所得的原始数据进行分析计算后得 出的结论。可以用数值或曲线表达,实验结果应满足实验任务的要求。 7.实验小结。总结实验完成的情况,对实验方案和实验结果进行讨论,对 实验中遇到的问题进行分析,简单叙述实验的收获、体会等。 8.参考资料。记录实验进行前、后阅读的有关资料,为今后查阅提供方便。

实验一TTL 与非门参数测试及使用 一、实验目的 1、学习 TTL 和 CMOS 门电路的逻辑功能测试方法,加深认识TTL与CMOS门电路的电平 差异。 2、通过测试TTL 与非门的电压传输特性,进一步理解门电路的重要参数及其意义(包 括 U OL、 U OH、 U ON、 U OFF、 U TH、 U NL、 U NH)。 3、了解一般的集成门电路器件的常用封装形式和引脚排列规律,掌握使用方法。 4、熟悉数字实验箱的结构和使用方法。 二、预习要求 1、 TTL 与 CMOS 门电路的逻辑功能及闲置输入端的处置方法。 2、电压传输特性曲线及其所表征的主要参数的意义。 3、设计实验数据纪录表格 三、实验内容 1、测试 TTL 与非门 74LS00 和 CM0S 或非门 CC4001 逻辑功能。 (1)识别 72LS00 和 CC4001 的封装及引脚排列。 (2)正确连接测试电路,特别注意直流工作电压的大小和极性。 ( 3)测试它们的真值表,要求纪录输入高低电平(U IL、 U IH)和输出高低电平(U OL、 U OH ) 。 ( 4)实验TTL和CMOS门电路的输入端悬空对门电路输出的影响。 2、测试 TTL 与非门电压传输特性。 (1)正确连接测试电路,特别注意实心电位器的连接,连接错误易损坏电位器。 (2)注意在特性曲线的转折处应适当增加测量点。 (3)正确读取数据并纪录。 四、实验报告 1、书写格式要规范,书写认真、字迹清晰。 2、实验报告内容要齐全 3、测试的原始数据要真实,不能随意修改原始数据。 4、绘制 TTL 门的传输特性曲线,并根据曲线标出U ON、U OFF、 U TH及 U NL、 U NH。 5、实验结果分析与小结 实验二组合逻辑电路设计 一、实验目的 1、学习用小规模集成电路设计组合逻辑电路的方法,进一步掌握组合逻辑电路的 分析和设计方法。 2、学习用中规模集成电路实现组合逻辑函数的方法 3、学习数字电路实验中查找电路故障的一般方法。 二、预习要求 1、组合逻辑电路分析、设计的一般方法。 2、用译码器和数据选择器实现组合逻辑函数的方法。 3、画出用译码器74LS138 实现半加器的电路图。 三、实验内容 1、用与非门实现半加器。

相关文档
最新文档