表面改性剂

表面改性剂
表面改性剂

表面改性剂

1、偶联剂 (2)

2、表面活性剂 (6)

3、有机硅 (7)

4、不饱和有机酸及有机低聚物 (8)

5超分散剂 (9)

6水溶性高分子 (9)

7无机表面改性剂 (9)

1、偶联剂

偶联剂是具有两性结构的化学物质,按其化学结构和成分可分为硅烷类、钛酸酯类、铝酸酯类、锆铝酸盐及有机络合物等几种。其分子中的一部分基团可与粉体表面的各种官能团反应,形成强有力的化学键合,另一部分基团可与有机高聚物基料发生化学反应或物理缠绕,从而将两种性质差异很大的材料牢固的结合起来,使无机粉体和有机高聚物分子之间建立起具有特殊功能的“分子桥”。

1.1 钛酸酯偶联剂

结构式

其中:1≤m≤4,m+n≤6;R1为短碳链烷烃基;R2为长碳链烷烃基;X为C、N、P、S等元素;Y为羟基、氨基、双键等基团。

功能区1--(R1O)m为与无机填料,颜料起偶联作用的基团,根据此基团的不同,钛酸酯偶联剂分为三种类型:单烷氧基型、螯合型、配位型。其中单烷氧基型适用于干燥的仅含键合水的低含水量的无机颜料或填料;螯合型适用于高含水量的无机颜料或填料。

钛酸酯偶联剂的用量是要使钛酸酯偶联剂分子中的全部异丙氧基与无机粉体表面所提供的羟基或质子发生反应,过量是没有必要的。钛酸酯偶联剂的用量大致为填料或颜料用量的0.1-3%。被处理的填料或颜料的粒度越细,比表面积越大,钛酸酯偶联剂的用量就越大。

1、单烷氧基型钛酸酯的使用方法

单烷氧基型钛酸酯偶联剂,除含有三乙醇胺基(即属单烷氧基型,又属螯合型)、焦磷酸酯基两类外,大多数耐水性差,只能在溶剂中溶解和包覆粉体物料。

操作方法:先将单烷氧基型钛酸酯偶联剂溶解在少量异丙醇、甲苯、二甲苯等烃类溶液中,然后和粉体物料在温室下搅拌均匀,适当升温,在900C搅拌混合一定时间,

确保钛酸酯偶联剂与粉体表面的偶联作用。如果没有条件加温,偶联剂作用在室温下也能进行,只是比较缓慢,最好在室温下搅拌2h然后放置过夜后使用。一般讲,溶剂用量大,对粉体的包覆效果较好,但溶剂最终必须除去。溶剂用量少到和钛酸酯用量1:1时,也有极明显的分散效果。

2、螯合型钛酸酯的使用方法

螯合型钛酸酯偶联剂耐水性好,它可以溶解在有机溶剂中包覆粉体物料,也可以在水相中包覆粉体物料。但是螯合型钛酸酯大多不溶于水,可以采用高速分散、加入表面活性剂、季铵盐化后使其分散于水中。

螯合型钛酸酯的耐水性较好,适合高含水量的无机粉体的表面处理。

3、配位型钛酸酯的使用方法

配位型钛酸酯偶联剂耐水性好,既可溶于有机溶剂后再包覆粉体物料,也可以在水相中包覆粉体物料。配位型钛酸酯大多数不溶解于水,通常要使用表面活性剂、水性助溶剂使之溶解于水,或高速搅拌使其乳化分散在水中。

钛酸酯偶联剂使用过程中应特别注意的几个问题:1、严格控制温度,防止钛酸酯偶联剂分解;2、尽量避免与具有表面活性剂的助剂并用,因为它们会干扰钛酸酯偶联剂在界面上的偶联反应。如果必须使用这些助剂时,应在无机粉体、偶联剂和聚合物基料充分混合后再加入这些助剂;3、多数钛酸酯能不同程度地与酯类发生酯交换反应,因此,加药顺序硬注意避免首先与酯类增塑剂接触,以避免发生副反应而失效。

1.2 硅烷偶联剂

硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R 代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、疏基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、酰氧基等。

偶合时,首先X基水解成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合呈-SiO-M共价键(M表示无机粉体颗粒表面)。同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜,覆盖在粉体颗粒表面,使无机粉体表面有机化。

水解,通常HX为醇或者酸

缩合

3RSi(OH)3

HO-Si-O-Si-O-Si-OH OH R OH R OH R

氢键形成R Si O OH OH

H O H H +HOM R-Si-OM OH OH +2H 2O 共价键形成R

Si O OH OH

H

O H

H +HOM R-Si-OM OH OH +2H 2O 根据分子结构中R 基的不同,硅烷偶联剂可分为氨基硅烷、环氧基硅烷、硫基硅烷、甲基丙烯酰氧基硅烷、乙烯基硅烷、脲基硅烷、异氰酸酯基硅烷等。

聚合物基料与常用硅烷偶联剂的适用性

注:A1100即为KH550,A1120即为KH792,A187即为KH560,A174即为KH570. 硅烷偶联剂的使用方法

1、将硅烷配成水溶液,用它处理无机粉体后再与有机高聚物或树脂基料混合,即预处理方法;

2、将硅烷与无机粉体及有机高聚物基料混合,即迁移法;

方法1的表面改性处理效果好,是常用的表面改性方法。

多数硅烷偶联剂在使用之前要配成水溶液,即使其预先水解。水解时间依硅烷偶联剂的品种和溶液的PH 值不同而异,从几分钟到几十分钟不等。配置时水溶液的PH 值一般控制在3-5之间,PH 值高于5或者低于3将会促进聚合物的生成。因此配置好的、已水解的硅烷偶联剂不能放置太久,否则会自行缩聚而失效。

大多数硅烷偶联剂既可以干法表面改性,也可以湿法表面改性。

1.3 铝酸酯偶联剂

化学通式

其中,Dn代表配位基团,如N、O等;R1O为与无机粉体表面活泼质子或官能团作用的基团,COR2为与高聚物基料作用的基团。

铝酸酯偶联剂的使用方法

1、预处理法

先将填料预热至1100C左右,然后加入捏碎后的铝酸酯偶联剂,用高速加热混合机或其他表面改性设备进行表面化学包覆改性。

经铝酸酯偶联剂表面处理过的填料和普通填料一样,可以直接用于聚氯乙烯和橡胶制品。但用于与聚乙烯、聚丙烯、ABS和PS等粒状树脂原料复合时,最好预先制成母料。

2、直接加入法

若物料总含水量低于0.5%,可直接在告诉捏合时加入铝酸酯偶联剂,加入方法同上,但加料顺序以填料、偶联剂和少量增塑剂先加为好,热拌3min后再加入其它组分,然后再进行捏合。

此法适于各种聚氯乙烯软硬塑料制品。

1.4 其他偶联剂

1、锆铝酸盐偶联剂:分子结构中含有两个无机部分(锆和铝)和一个有机功能配位体,因此,与硅烷偶联剂相比,其显著特点是,分子中的无机特性部分比重大,一般介于57.5%-75.4%,而硅烷偶联剂除A1100外,其余均小于40%。因此,锆铝酸盐偶联剂分子具有更多的无机反应点,可增强与无机粉体表面的作用。

2、有机铬偶联剂:即络合物偶联剂,系由不饱和有机酸与铬原子形成的配位金属络合物组成。有机铬偶联剂在玻璃纤维增强塑料中偶联效果较好,且成本低。但其品种单调,使用范围及偶联效果均不及硅烷及钛酸酯偶联剂。其主要品种是甲基丙烯酸氯络

合物和反丁烯二酸硝酸铬络合物,它们一端含有活泼的不饱和基团,可与高聚物基料反应,另一端依靠配价的铬原子与玻璃纤维表面的硅氧键结合。

2、表面活性剂

从本质和作用上看,表活剂与偶联剂并无太大区别,一些表活剂也起到了类似交联剂的作用,但经偶联剂表面处理过的填料,具有更高的活性。

表面活性剂是一种能显著降低水溶液的表面张力或溶液界面张力,改变体系的表面状态从而产生润湿和反润湿、乳化和破乳、分散和凝聚、气泡和消泡以及增溶等一系列作用的化学药品。

表面活性剂分子由性质截然不同的两部分组成,一部分是与油或有机物有亲和性的亲油基,另一部分是与水或无机物有亲和性的亲水基。

表面活性剂分子的这种结构特点使它能够用于粉体的表面改性,即亲水基可与无机粉体表面发生物理、化学作用,吸附于颗粒表面,亲油基朝外,无机粉体表面由亲水性变为疏水性,从而改善无机粉体材料与有机物的亲和性,提高其在塑料、橡胶、胶黏剂等高聚物基复合材料填充时的相容性和在涂料中的分散性。

表面活性剂的亲水基主要有羧基、磺酸基、硫酸酯基、磷酸基等;亲油基多来自天然动植物油脂和合成化工原料。

表面活性剂根据在水中是否电离可分为:离子型表面活性剂、非离子型表面活性剂;离子型表面活性剂按产生电荷的性质分为阴离子性、阳离子性、两性表面活性剂。

2.1 非离子型表面活性剂

非离子型表面活性剂在溶液中不是离子状态,所以稳定性高,不易受强电解质无机盐类的影响,也不易受酸、碱的影响;它与其他类型表面活性剂的相容性好,在水及有机溶剂中皆有较好的溶解性能。

这类表活剂虽然在水中不电离,但有亲水基(如羟基、酰胺基、醚基、氧乙烯基,也有亲油基(如烃基-R)。

非离子型表活剂,主要包括两大类:聚乙二醇型、多元醇型。常见的有:脂肪族聚氧乙烯醚类(俗称平平加)、烷基苯酚聚氧乙烯醚(俗称OP型)、聚醚型表活剂、脂肪酸-聚氧乙烯型表活剂。

多元醇型表活剂,亲水基主要是羟基。它们主要是脂肪酸与多羟基醇作用而生成的酯。因为在多元醇分子上附有高级脂肪酸的亲油基,故水溶性较差。常见的为:Span 型和Tween型。司潘型是山梨醇酐和各种脂肪酸形成的酯。Span型表活剂不溶于水,如欲使其水溶,可在未酯化的羟基上接聚氧乙烯,即成为相应的吐温型。

2.2 阴离子型表面活性剂

主要有以下几类:

1、高级脂肪酸及其盐,如硬脂酸、硬脂酸钠、硬脂酸钙、硬脂酸锌、硬脂酸铝、松香酸钠。

2、磺酸盐及其酯类,如磺化蓖麻油、烷基苯磺酸钠。

3、高级磷酸酯盐,单酯型磷酸酯用于滑石的表面包覆处理,可改进滑石粉填料与高聚物的界面亲和性,改善其在有机高聚物基料中的分散状态,并提高高聚物基料对填料的润湿能力。聚磷酸酯表面活性剂(ADDP)用于超细轻质碳酸钙的表面改性,可使超细轻质碳酸钙的吸油率显著降低,在非极性介质中的分散性及PVC树脂中的相容性得到明显改善。

2.3 阳离子型表面活性剂

粉体表面改性中应用的阳离子型表活剂一般为高级铵盐,包括伯胺、肿铵、叔胺和季胺盐等,其中,至少有1-2个长链烃基。与高级脂肪酸一样,高级铵盐的烷烃基与聚合物的分子结构相似,因此与高聚物基料有一定的相容性,分子另一端的氨基与无机填料或颜料等粉体发生表面吸附作用。

3、有机硅

有机硅是以硅氧烷链为憎水基,聚氧乙烯链、羧基、酮基或其他极性基团作为亲水基的一类特殊类型的表活剂,俗称硅油或硅树脂。

主要有:聚二甲硅氧烷、有机硅改性聚硅氧烷、有机硅与有机化合物的共聚物。

用于处理无机填料或颜料的有机硅一般为带活性基的聚甲基硅氧烷,其硅原子上接有若干氢基或羟基封端。

4、不饱和有机酸及有机低聚物

4.1 不饱和有机酸

不饱和有机酸作为无机填料的表面改性剂一般带有一个或多个不饱和双键或多个羟基,碳原子数一般在10以下。

常见的不饱和有机酸是:丙烯酸、甲基丙烯酸、丁烯酸、肉桂酸、山梨酸、2-氯丙烯酸、马来酸、衣康酸、醋酸乙烯、醋酸丙烯等。

一般来说,酸性越强,越容易形成离子键,故多选用丙烯酸和甲基丙烯酸。

丙烯酸

无色液体,有刺激性气味;

熔点13.50C,沸点1410C,引燃温度4380C。

溶解性:与水混溶,可混溶于乙醇、乙醚;

化学性质:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。若遇高热,可发生聚合反应,放出大量热量而引起容器破裂和爆炸事故。

甲基丙烯酸

无色结晶或透明液体,有刺激性气味,中等毒性;

熔点:15℃,沸点:161℃;

溶解性:溶于水、乙醇、乙醚等多数有机溶剂;

化学特性:易聚合成水溶性聚合物。可燃,受热分解能产生有毒气体一能与空气形成爆炸混合物,爆炸极限2.1%~12.5%(体积)。

这类表面改性剂带有不饱和双键和羧基两种官能团。羧基可与含有活泼金属离子的无机填料(如长石、陶土、红泥、氢氧化铝等)很好地作用,而双键部分可参与接枝、交联及聚合反应。因此不饱和有机酸是一类性能较好,应用前景看好的表面改性剂。

4.2 有机低聚物

聚烯烃低聚物:主要是指无规聚丙烯和聚乙烯蜡。

其他低聚物:双酚A型环氧树脂。将分子量340-630的双酚A型环氧树脂和胺化酰亚胺交联剂溶解在乙醇中,然后对云母进行表面处理,可以得到环氧树脂与交联剂包

覆改性的活性云母填料。

5超分散剂

超分散剂克服了传统分散剂在非水分散体系中的局限性。与传统的分散剂相比,超分散剂主要有以下特点:

(1)在颗粒表面可形成多点锚固,提高了吸附牢度,不易解吸;

(2)溶剂化链比传统分散剂亲油基团长,可起到有效的空间稳定作用;

(3)形成极弱的胶囊,易于活动,能迅速移向颗粒表面,起到润湿保护作用;

(4)不会在颗粒表面导入亲油膜,从而不致影响最终产品的应用性能。

常见超分散剂

1、含取代氨端基的聚酯分散剂

2、用于分散颜料的接枝物分散剂

3、聚(羟基酸)酯类分散剂

4、低聚皂类分散剂、水溶性高分子分散剂、酞菁颜料的分散剂等

超分散剂,主要是ICI公司在进行研究推广,需要选择合适的溶剂。

6水溶性高分子

又称水溶性树脂、水溶性聚合物,是一种亲水性的高分子材料,在水中能溶解形成溶液或分散液。

水溶性高分子分为三大类:天然水溶性高分子、半合成水溶性高分子、合成水溶性高分子。

粉体表面改性用的主要是合成水溶性高分子,如聚丙烯酸及其盐(聚丙烯酸铵、聚丙烯酸钠)、聚丙烯酰胺、聚乙二醇、聚乙烯醇、聚马来酸酐等。

7无机表面改性剂

氧化钛、氧化铬、氧化铁、氧化锆、氧化硅、氧化铝等金属氧化物的盐类(能够在一定条件下水解)常用作沉淀包膜的表面改性剂,如四氯化钛、硫酸氧钛、硫酸亚铁和铬盐等用于制备云母珠光颜料和着色云母的表面改性剂;铝盐、硅酸盐用作钛白粉的表

面包膜改性,以提高颜料的保光性、耐候性,改善着色力和遮盖力等。

沉淀包膜改性常用于无机表面改性剂,其改性的基质一般也是无机物。

金属氧化物、碱或碱土金属、稀土氧化物、无机酸及其盐以及Cu、Ag、Au、Mo、Co、Pt、Pd、Ni等金属或贵金属常用作吸附或催化粉体材料,如氧化铝、硅藻土、分子筛、沸石、二氧化硅、海泡石、膨润土等的表面处理剂。

偶联剂表面改性Sb_2O_3的研究

Sb 2O 3表面含有一定数量的羟基,因而具有亲 水性,与有机高聚物相容性差,不仅影响其阻燃效果,而且导致高聚物制品的机械性能和加工性能下降。因此,对其进行表面改性,使Sb 2O 3表面连接一层有机长链分子,便可以使Sb 2O 3粉末具有亲油性,提高与单体及高聚物树脂的相容性,另一方面还可提高Sb 2O 3的添加量,降低生产成本。 本文研究了不同偶联剂对Sb 2O 3的改性效果,考察了反应时间和反应温度对表面改性效果的影响,通过实验和理论计算确定了偶联剂的最佳用量,并阐述了偶联剂的作用机理。 1 实验部分 1.1 原料 Sb 2O 3,平均粒径895nm ,广东东莞市达利锑 品冶炼有限公司;硅烷偶联剂,A-151,A-172和 KH-570,南京康普顿曙光有机硅化工有限公司;钛酸酯偶联剂,NDZ-101,NDZ-201和NDZ-311, 南京康普顿曙光有机硅化工有限公司;正庚烷,分析纯,江苏宜兴市第二化学试剂厂;去离子水,自制。 1.2实验设备 500mL 玻璃夹套釜;数控恒温水槽,THD-06Q ,宁波天恒仪器厂;激光粒径分析仪,LS-230, 美国Coulter 公司,测量范围在0.04~2000μm ,以重均粒径作为比较的标准;视频光源接触角测试仪,OCA20,德国Data-physics 公司。 1.3试验方法 称取适量的硅烷偶联剂和钛酸酯偶联剂,溶 于正庚烷中,加入经干燥的Sb 2O 3粉末,在一定反应温度下搅拌若干时间,然后烘干。用液压机压制成片后用去离子水进行接触角测试。 2 结果与讨论 2.1 不同偶联剂对改性效果的影响 偶联剂表面改性Sb 2O 3的研究 何 松 (福建省建筑科学研究院,福州,350025) 摘要研究了不同偶联剂表面改性Sb 2O 3的改性效果和条件,结果发现钛酸酯偶联剂NDZ-101的 改性效果最佳,其最佳用量为1.0%与理论计算值相当;当改性时间大于30min ,改性温度大于60℃,改性效果趋于稳定。 关键词 三氧化二锑 偶联剂 表面改性 Study on Surface Modification for Sb 2O 3with Coupling Agent He Song (Fujian Academy of Building Research,Fuzhou,350025) Abstract:The effects and conditions of surface modification for antimonous oxide (Sb 2O 3)with different coupling agents were studied,the conclusions were obtained as follows:titanate coupling agent NDZ-101has the best modifying effect and the optimum loading of the coupling agent is 1.0wt%;the modifying effect stabilizes when modificntion time is longer than 30min and modification temperature is higher than 60℃. Keywords:antimonous oxide;coupling agent;surface modification 收稿日期:2008-07-14 塑料助剂2008年第5期(总第71期) 46

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

表面改性剂总结

表面改性剂:涂料油墨的点睛之笔 简介 为什么改变涂料表面特性 改变表面能 优化表面 消光蜡 蜡在涂料油墨中起什么作用 蜡的消光性能 回到改变表面能 怎样加入添加剂 实际应用 结论 简介 涂料和油墨的表面暴露在“外面的世界”里,必须经受一些严峻的环境考验,很可能导致体系本身的快速老化。除了这一点,表面还是形成涂料外观的主要原因,比如光泽和“质感”,这些都来自于表面。 绝大多数情况下,不加入改变涂料表面性能的特定添加剂――也就是表面改性剂,就无法得到优越的表面性能。加入不同种类的添加剂,现在我们可以改变以下性能: ?斥水性 ?耐刮擦、片落、损伤性能 ?耐磨性能 ?提高,或降低光泽 ?流动和流平性 ?柔和,平滑的质感 ?抗粘联性能 ?表面纹理 为什么要改变涂料的表面性能?

改变涂料的表面基本上有两个原因。第一个是需要降低表面张力/表面能,以便获得与此相关的特定性能。第二个原因,是获得不同的光学效果,比如消光,或者表面纹理。后一种添加剂不一定需要影响体系的表面能――不过这要根据化学结构来看――也有很多种类的添加剂,同时改变了这项特性。 改变表面能 设计涂料油墨配方时,必须明白表面张力和表面能的规律和关系,因为这个现象控制着很多我们需要的涂膜特性,比如流平性、润湿性、耐刮擦和损伤能力、斥水性以及表面“质感”等等。所有这些特性,都严重依赖涂膜的表面张力。 涂料和油墨中使用的大多数介质表现出高表面能。最常用的介质――比如以环氧为例――表面能是47达因/厘米(参见图表)。涂料油墨中使用的大多数其他介质――除了硅树脂以外――数值都在差不多的水平。由于一般涂膜具有这个相对较高的表面能数值,所以很难得到优越的流平性、质感和耐刮擦、损伤性能。硅树脂、各种蜡产品以及特定的表面活性剂,都是专门设计,用来提高这些性能的。我们将进一步讨论这些产品的优劣。尽管它们都能用来改变表面能,但它们的化学性质差别却很大。 优化表面 很多情况下,必须改变涂料或者油墨的表面光学效果,比如降低光泽或者特定纹理。要降低体系的光泽,可以通过引进一种“微观粗糙”的表面,来“破坏”高光涂膜的光滑表面,这样入射光线就会被反射到各个不同的方向(如图)

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,

高分子表面材料改性论文

(2014-2015学年第一学期) 《高分子材料改性》 课程论文 题目:纳米粒子增韧聚氯乙烯研究新进展 姓名:周凯 学院:材料与纺织工程学院 专业:高分子材料与工程 班级:高材121 班 学号: 201254575128 任课教师:兰平 教务处制 2014年12月30日

纳米粒子增韧聚氯乙烯研究新进展 摘要 通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。 关键词: 聚氯乙烯纳米材料增韧 一.研究背景 随着科学技术的发展, 人们对材料性能的要求越来越高。聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状 和发展趋势[1]。 二.纳米CaCO3 增韧PVC 碳酸钙是高分子复合材料中广泛使用的无机填料。在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。 2.1 纳米CaCO3 增韧对PVC 力学性能的影响 魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。 熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。 对CPE/ACR共混增韧PVC力学性能的影响 2.2 纳米CaCO 3 如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC

硅烷偶联剂

Unitive@ silane coupling agents MP-320 2,3-环氧丙基丙基三甲氧基硅烷 2,3-epoxypropyl trimethoxy silane ·环氧官能团偶联剂,提供可稳定储存且不泛黄1的粘接促进效果,适宜作为聚硫、聚氨酯、环氧、丙烯酸类密封剂和胶黏剂的粘合促进剂 ·可显著提高涂料、油墨对玻璃、金属、陶瓷等无机材料的附着力和耐水性。 ·改善环氧树脂电子材料、灌封料、印刷电路板的电气性能,尤其是湿态电气性能。 ·作为无机填料的表面处理剂,适用于硅微粉、玻璃微珠、氢氧化铝、陶土、滑石粉、硅灰石、白炭黑、石英粉、金属粉末等。

MP-321 氨基官能团三甲氧基硅烷 Aminofunctional trimethoxysilane · 是一款强附着性多功能Adherant 附着力促进剂, 为一种含有氨基官能团硅烷偶合物。 · 针对特定的镁、铝、铁、锌等复合金属材料、氧 化涂层的涂覆和黏合的要求而设计。 · 更适用于接着剂、弹性体、填缝剂,油墨等,以 提高长时间的优良附着性涂膜耐水性、防蚀性与抗盐雾性。 · 对环氧树脂、酚醛、三聚氰胺、丙烯酸、聚氨酯、 有机硅等有优异的相容性,高温烘烤260℃不影响光泽度及色彩的鲜艳性。 MP-383 巯基官能团硅烷偶联剂 (3-Mercaptopropyl)trimethoxy silane · 随着巯基官能团的引入使得其具有碳碳双键的光聚合反应,与树脂体系产生双重交联固化。巯基官能团还可与聚 氨酯树脂发生亲核加成反应,在光固化和双组份交联固化体系作为金属表面保护剂具有特殊功效。 · 用其处理金、银、铜等金属表面,可增强其表面的耐腐性、抗氧化性以及耐水性和耐老化性、增加其与树脂等高 分子的粘接性。 · 用于处理白炭黑,炭黑,玻璃纤维、云母等无机填料,能有效提高橡胶的力学性能和耐磨性能等。 MP-397 异氰酸酯基硅烷偶联剂 3-Isocyanatopropyltrimethoxysilane · 在涂料、油墨、粘合剂中作为交联剂和助粘剂使用。出众的湿性粘附性能在玻璃、金属和其他无机基底上广泛应 用;还可以较好的附着于难以粘附的有机材料,如尼龙和其他塑料产品。 · 在大气湿度存在下可以快速水解,不黄变且具有非常好的热稳定性、化学稳定性和UV 稳定性。 · 适合的聚合物:丙烯酸类、硅树脂类(Si)、PU-预聚物等。 MP-328 乙烯基三(2-甲氧基乙氧基)硅烷 Vinyl tris(2-methoxyethoxy) silane · 特殊的乙烯基硅烷偶合物,对各类塑 胶、金属、玻璃及其他无机材料具有持久的湿膜和干膜附着力。 · 可明显增强涂膜的耐湿热、水煮和盐 雾性能,在气干性塑胶涂料及UV 光固化体系同样有效。 · 优异的储存稳定性在各类涂料,油 墨,胶黏剂中有广泛的应用。

复合偶联剂改性和KH

复合偶联剂改性和KH-560改性硅微粉的性能对比 【摘要】本文着重介绍了通过复合硅烷偶联剂和KH-560硅烷偶联剂进行表面处理后的硅微粉,在与环氧树脂混合后,通过多种性能的试验、分析、对比,结果表明,复合硅烷偶联剂改性的硅微粉性能优于KH-560单一改性的硅微粉。 【关键词】复合改性KH-560 硅微粉性能 目前,国内生产偶联化活性硅微粉的企业,主要以传统的生产工艺和KH-560单一硅烷偶联剂进行硅微粉表面处理改性,其质量难以控制,活性硅微粉作为环氧树脂配方设计中的功能性填料,其质量好坏将直接影响到环氧树脂固化物的机械性能、物理性能、电气绝缘性能填料加入量,而填料加入量的多少又直接影响到环氧树脂固化物的收缩率、内应力和生产成本。 本公司在以KH-560硅烷偶联剂生产偶联化活性硅微粉的基础上,又研究、开发设计了复合硅烷偶联剂以单分子的形态,进行硅微粉表面处理改性,从而彻底改变了传动比诉活性硅微粉简单包覆生产工艺。复合硅烷偶联剂扆性硅微粉颗粒,除保留了单一KH-560改性硅微粉的一切特性外,在活性度、抗沉降性、低吸水率、久置不易水解、填充量增大等方面,都得到不同程度的提高。复合硅烷偶联剂改性硅微粉能与多种环氧树脂有较好的相容、亲和、浸润性,在进行环氧树脂配方配制工艺过程中,受温度、时间影响较小,能保持硅微粉颗粒在环氧树脂配方体系混合物中分布均匀,无分层现象;同时,既不促进也不阻滞醉体系的反应,仍保持原有的环氧树脂配方体系的生产工艺,从而充分展现了复合改性硅微粉的活性度和应用效果。 一、复合改性粉与KH-560单一改性粉性能评价 用同一颗粒组合的硅微粉,分别用复合硅烷偶联剂及KH-560硅烷偶联剂进行表面处理改性,对改性后的活性硅微粉进行憎水性、沉降率、吸水率、粘度、浸润性、吸油率及机械强度等性能的测试,性能评价如下: 1.憎水性:活性硅微粉憎水时间的长短是检验硅烷偶联剂与硅微粉颗粒包覆牢固及紧密程度的标志,憎水时间长,活性度好,能使硅微粉在环氧树脂混合料中保持颗粒分布均匀不分层;反之,会引起颗粒在环氧树脂混合料中上下分布不均,从而影响制品机械强度。 两种活性硅微粉憎水性的检测方法相同:用1000ml的烧杯装800ml水,取5g粉,60目样筛过筛,憎水性见表1。 表1 两种活性硅微粉憎水性 填料复合改性硅微粉单一改性硅微粉备注 时间>8h ≥40min 单一改性硅微粉开始有细粒下降至40min沉完

硅烷偶联剂改性

改性剂用量对沉降体积的影响改性剂用量与沉降体积的关系曲线,见图1。从图1可看出,沉降体积随着改性剂用量的增加而增加,但是提高幅度不是很大。在实际应用中真正起到改性作用的是少量的改性剂所形成的单分子层,因此过多的增加改性剂的用量是不必要的,不仅会在粒子间搭桥导致絮凝,使稳定性变差,而且还增加不必要的经济付出。实验所选择的硅烷偶联剂的用量在1%~2%。 2.2 改性时间对沉降体积的影响实验结果见图2。从图2可看出,当改性时间为10min时,沉降体积达到极大值,然后随着改性时间的增加,沉降体积缓慢下降。在改性时间为30min 和60min时,均保持在一个相对稳定的水平。但是改性时间为40min时出现异常,沉降体积大幅度下降。硅烷偶联剂对高岭土进行表面改性,理论上以化学键合作用为主,改性效果不会出现较大的变化,出现异常的原因还有待进一步的研究。 2.3 改性温度对沉降体积的影响采用硅烷偶联剂作为改性剂时,为了保证较好的改性效果,需要确定适宜的表面改性温度。改性温度对沉降体积的影响,见图3。从图3可看出,沉降体积随改性温度的增加而增加。当温度升高至90℃时,沉降体积达到最大值14.4ml。继续提高温度,则沉降体积下降。因此,改性剂对高岭土的最佳改性温度为90℃。 沉降性能分析称取2g改性前后的纳米高岭土,置于50ml液体石蜡中,磁力搅拌10min,倒入刻度试管,静置观察沉降性能。纳米高岭土在液体石蜡中的沉降体积随时间的变化关系,见图4。从图4可看出,未经改性的纳米高岭土由于表面具有亲水性,在有机相中倾向于团聚,大粒子沉降较快,小粒子被沉降较快的大粒子所夹带,所以在开始的时间内沉降很快,沉降速度随时间增加逐渐减慢;而高岭土经过改性处理后,表面呈现亲有机性,在有机相中倾向于分散均匀,所以在开始的时间内沉降速度较未改性高岭土慢。 随着沉降时间的增加,沉降体积均达到平衡。未改性高岭土的平衡沉降体积为13.4ml,而经过硅烷偶联剂改性处理后,样品的平衡沉降体积为21.3ml。在相同的实验条件下,沉积物的体积变大,说明改性高岭土在液体石蜡中的分散性和稳定性提高。 2.5 FT-IR分析硅烷偶联剂改性前后的纳米高岭土的红外吸收光谱,见图5。从图5可看出,改性处理后,高岭土在2800cm-1~3000cm-1之间出现的微弱峰是-CH3 和-CH2 的伸缩振动吸收峰;在1120cm-1 ~1000cm-1之间的Si-O和Si-O-Si振动吸收区变宽,这是由于硅烷偶联剂与高岭土表面形成的R-Si-O-Si与高岭土的Si-O-Si振动吸收带重合所致;出现在1034cm-1处的Si-O的伸缩振动吸收峰移至1036cm-1处;在3670cm-1处的微弱的OH吸收峰消失,这是表面官能团化学键的振动模式受到影响的结果。上述吸收峰的变化均说明硅烷偶联剂与高岭土发生了化学键合作用。 从表1可看出,硅烷偶联剂改性后,高岭土表面O元素的含量下降15.92%,C元素的含量为17.03%,而Si和Al元素的含量变化不大。硅烷偶联剂改性前后纳米高岭土的C1s价带谱图,见图7。从图7可知C1s峰发生偏移,在287.5eV附近出现C-O峰,另外,硅烷偶联剂引入了Si元素,其特征峰发生偏移,从102.35eV移至102.85eV,上述现象均说明硅烷偶联剂对于纳米高岭土的改性不是一种物理吸附而是一种化学键合作用。

表面改性剂

一粉体表面改性概念 粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性的目的 (1)改善粉体颗粒的分散性、稳定性和相容性。 (2)提高粉体颗粒的化学稳定性,如耐药性、耐 光性、耐候性等。 (3)改变粉体的物理性质,如光学效应、机械强 度等。 (4)出于环保和安全生产目的。 三粉体表面改性技术的应用 ?(1)有机/无机复合材料(塑料、橡胶等) ?改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能 ?(2)油漆、涂料 ?提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等 ?(3)无机/无机复合材料 ?提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料 ?(4)吸附与催化材料 ?提高选择性、活性和机械强度 ?(5)健康与环境保护 ?(6)超细和纳米粉体制备中的抗团聚 ?(7) 其它(插层改性) 四粉体表面改性的主要研究内容 ?(1)粉体表面改性的原理和方法 ?表面或界面性质与其应用性能的关系 ?表面或界面与表面改性剂或处理剂的作用机理和作用模型 ?各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等 ?(2)表面改性剂及其配方 ?种类、结构、分子量、活性基团与其应用性能或功能的关系 ?与粉体表面及复合材料的作用机理和作用模型 ?用量和使用方法 ?新型和专用表面改性剂的制备或合成 ?(3)表面改性工艺与设备 ?不同种类和不同用途粉体表面改性的工艺流程和工艺条件

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

偶联剂的种类、特点及应用

偶联剂是一种重要地、应用领域日渐广泛地处理剂,主要用作高分子复合材料地助剂.偶联剂分子结构地最大特点是分子中含有化学性质不同地两个基团,一个是亲无机物地基团,易与无机物表面起化学反应;另一个是亲有机物地基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中.因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间地界面作用,从而大大提高复合材料地性能,如物理性能、电性能、热性能、光性能等.偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品地耐磨性和耐老化性能,并且能减小用量,从而降低成本.偶联剂地种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯地偶联剂等,目前应用范围最广地是硅烷偶联剂和钛酸酯偶联剂. 硅烷偶联剂 硅烷偶联剂是人们研究最早、应用最早地偶联剂.由于其独特地性能及新产品地不断问世,使其应用领域逐渐扩大,已成为有机硅工业地重要分支.它是近年来发展较快地一类有机硅产品,其品种繁多,结构新颖,仅已知结构地产品就有百余种.年前后由美国联碳()和道康宁( )等公司开发和公布了一系列具有典型结构地硅烷偶联剂年又由公司首次提出了含氨基地硅烷偶联剂;从年开始陆续出现了一系列改性氨基硅烷偶联剂世纪年代初期出现地含过氧基硅烷偶联剂和年代末期出现地具有重氮和叠氮结构地硅烷偶联剂,又大大丰富了硅烷偶联剂地品种.近几十年来,随着玻璃纤维增强塑料地发展,促进了各种偶联剂地研究与开发.改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂地合成与应用就是这一时期地主要成果.我国于世纪年代中期开始研制硅烷偶联剂.首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂. 结构和作用机理 硅烷偶联剂地通式为(),式中为非水解地、可与高分子聚合物结合地有机官能团.根据高分子聚合物地不同性质应与聚合物分子有较强地亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等.为可水解基团,遇水溶液、空气中地水分或无机物表面吸附地水分均可引起分解,与无机物表面有较好地反应性.典型地基团有烷氧基、芳氧基、酰基、氯基等;最常用地则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物.由于氯硅烷在偶联反应中生成有腐蚀性地副产物氯化氢,因此要酌情使用. 近年来,相对分子质量较大和具有特种官能团地硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等.等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中地甲基硅烷氧端基水解生成地硅羟基与碳纤维表面地羟基官能团进行键合,结果复合材料地拉伸强度和模量提高,空气孔隙率下降.早在年美国大学地等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面地研究中发现,用含有能与树脂反应地硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强度可提高倍以上.他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键.这是人们第一次从分子地角度解释表面处理剂在界面中地状态. 硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与无机物中地羟基反应,又能与有机物中地长分子链相互作用起到偶联地功效,其作用机理大致分以下步:()基水解为羟基;()羟基与无机物表面存在地羟基生成氢键或脱水成醚键;()基与有机物相结合.

硅烷偶联剂对碳化硅粉体的表面改性

硅酸盐学报 · 409 ·2011年 硅烷偶联剂对碳化硅粉体的表面改性 铁生年,李星 (青海大学非金属材料研究所,西宁 810016) 摘要:采用KH-550硅烷偶联剂对SiC粉体表面进行改性,得到了改性最佳工艺参数,分析了表面改性对SiC浆料分散稳定性的影响。结果表明:SiC微粉经硅烷偶联剂处理后没有改变原始SiC微粉的物相结构,只改变了其在水中的胶体性质;减少了微粉团聚现象。与原始SiC微粉相比,改性SiC微粉表面特性发生了明显变化,Zeta电位绝对值提高,浆料的分散稳定性得到了明显改善。 关键词:碳化硅;表面改性;硅烷偶联剂;分散性 中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2011)03–0409–05 Surface Modification of SiC Powder with Silane Coupling Agent TIE Shengnian,LI Xing (Non-Metallic Materials Institute of Qinghai University, Xining 810016, China) Abstract: The surface characteristics of SiC powder were modified by a KH-550 silane coupling agent. The process parameters of the modification were optimized, and the effect of surface modification on the dispersion stability of SiC slurry was analyzed. The results show that the SiC powder modified by silane coupling agent can not change the original phase structure of SiC micro-powders but reduce the aggregation of SiC particles in the powders. Compared to the original SiC powder, the surface characteristics of the modi-fied SiC powder change significantly. Zeta potential of SiC increases, and the dispersion stability of SiC slurry is improved. Key words: silicon carbide; surface modification; silane coupling agent; dispersibility 在半导体制造和煤气化工程领域,许多工程都在使用SiC陶瓷[1–2]。然而经机械粉碎后的SiC粉体形状不规则,且由于粒径小,表面能高,很容易发生团聚,形成二次粒子,无法表现出表面积效应和体积效应,难以实现超细尺度范围内不同相颗粒之间的均匀分散以及烧结过程中与基体的相容性,进而影响陶瓷材料性能的提高[3]。加入表面改性剂,改善SiC粉体的分散性、流动性,消除团聚,是提高超细粉体成型性能以及制品最终性能的有效方法之一。 SiC微粉的表面改性方法主要有酸洗提纯法、无机改性法和有机改性法等。国外SiC表面改性主要采用无机包覆改性方法[4–6],在国内,SiC表面改性采用的方法主要为有机改性法[7],有机体系的包覆改性大多是在粉体表面直接包覆有机高聚物。一般情况下,有机高聚物与无机粉体表面之间只产生物理吸附而不是牢固的化学吸附,改性效果不明显,而硅烷偶联剂是具有两性结构的化学物质,其分子的一端基团可与粉体表面的官能团反应,形成强有力的化学键合,另一部分可与有机高聚物基料发生化学反应,在粉体表面形成牢固的包覆层。 在机械力粉碎的基础上,采用KH-550硅烷偶联剂对粉碎后的SiC粉体表面进行有机包覆,提出了表面包覆的最佳工艺参数,并对改性SiC粉体进行表征,分析了改性对SiC陶瓷浆料分散性和流动性的影响。 1 实验 1.1 原料 实验选用自行加工的SiC粉体,D50=0.897μm,SiC含量为98.98% (质量分数,下同);硅烷偶联剂(KH–550,化学纯,北京申达精细化工有限公司产); 收稿日期:2010–09–25。修改稿收到日期:2010–10–30。 基金项目:青海省外经贸区域协调发展促进资金项目(2009–2160604)资助。第一作者:铁生年(1966—),男,教授。Received date:2010–09–25. Approved date: 2010–10–30. First author: TIE Shengnian (1966–), male, professor. E-mail: Tieshengnian@https://www.360docs.net/doc/ec171577.html, 第39卷第3期2011年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 3 March,2011

表面改性剂

第五章表面改性剂 粉体的表面改性,主要是依靠表面改性剂(或处理剂)在粉体颗粒表面的吸附、反应、包覆或包膜来实现的。因此,表面改性剂是粉体表面改性技术的重要内容之一,对于粉体的表面改性或表面处理具有决定性作用。 粉体的表面改性一般都有其特定的应用背景或应用领域。因此,选用表面改性剂必须考虑被处理物料的应用对象。例如,用作塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料的表面改性所选用的表面改性剂既要能够与表面吸附或反应、覆盖于填料颗粒表面,又要与有机高聚物有较强的化学作用和亲和性,因此,从分子结构来说,用于无机填料表面改性的改性剂应是一类具有一个以上能与无机颗粒表面作用较强的官能团和一个以上能与有机高聚物基分子结合的基团并与高聚物基料相容性好的化学物质;而用作多相陶瓷、水性涂料体系的无机颜料的表面改性剂既要能与无机颜料有较强的作用,显著提高尤机颜料的分散性,还要与无机相或水相有良好的相容性或配伍性。 表面改性剂的种类很多,目前还没有一个权威的分类方法,常用的改性剂有偶联剂、表面活性剂、有机低聚物、不饱和有机酸、有机硅、水溶性高分子、超分散剂以及金属氧化物及其盐等,以下分别子以介绍。 5,1 偶联剂 偶联剂是具有两性结构的化学物质。按其化学结构和成分可分为硅烷类、钛酸酯类、铝酸酯类、锆铝酸盐及有机络合物等几种。其分子中的一部分基团可与粉体表面的各种官能团反应,形成强有力的化学键合,另一部分基团可与有机高聚物基料发生化学反应或物理缠绕,从而将两种性质差异很大的材料牢固的结合起来,使尤机粉体和有机高聚物分子之间建立起具有特殊功能的“分子桥”。 偶联剂适用于各种不同的有机高聚物和无机填料的复合材料体系。经偶联剂进行表面改性后的无料[填料,既抑制了填充体系“相”的分离,又使无机填料有机化,与有机基料的亲和性增强,即使增大填充量,仍可较好的均匀分散,从而改善制品的综合性能,特别是抗张强度、冲击强度、柔韧性和挠曲强度等。 5.1.1 钛酸酯偶联剂 钛酸酯偶联剂是美国KENRICH石油化学公司在20世纪70年代开发的一种新型偶联剂,至今已有几十个品种,是无机填料和颜料等广泛应用的表面改性剂。 第51页 (1)钛酸酯偶联剂分子结构及6个功能区的作用机理 钛酸酯偶联剂的分子结构可划分为6个功能区,每个功能区都有其特点,在偶联剂中发挥各自的作用。 钛酸酯偶联剂的通式和6个功能区: 功能区1,(RO)M为与无机填料、颜料偶联作用的基团。钛酸酯偶联剂通过该烷氧基团与无机颜料或填料表面的微量羟基或质子发生化学吸附或化学反应,偶联到无机颜、填料表面形成单分子层,同时释放出异丙醇。由功能区1发展成偶联剂的三种类型,每种类型由于偶联基团上的差异,对颜料或填料表面的含水量有选择性。一般单烷氧基型适用于干燥的仅含键合水的低含水量的无机颜料或填料;螯合型适用于高含水量的无机颜料或填料。 功能区2,Ti—O……酯基转移和交联基团。某些钛酸酯偶联剂能够和有机高分子中的酯基、羧基等进行酯基转移和交联,造成钛酸酯、填料或颜料及有机高分子之间的交联,促使体系粘度上升呈触变性。 功能区3,X-联结钛中心的基团。该基团包括长链烷氧基、酚基、羧基、磺酸基、磷酸基、焦磷酸基等。这些基团决定钛酸酯偶联剂的特性与功能,如磺酸基赋予一定的触变性,焦磷酸基具有阻燃、防锈、增加粘结性功能,亚磷酸配位基具有抗氧化功能等。通过这部分基团的选择,可以使钛酸酯偶联剂兼有多种功能。 功能区4,R`为长链的纠缠基团。长的脂肪族碳链比较柔软,能和有机基料进行弯曲缠绕,增强和基料的结合力,提高它们的相容性,改善无机填、颜料和基料体系的熔融流动性和加工性能,缩短混料时间,增加无机填料的填充量,并赋予柔韧性及应力转移功能,从而提高延伸、撕裂和冲

硅烷偶联剂改性纳米二氧化硅(1)

硅烷偶联剂改性纳米二氧化硅 概述 现代材料表面改性技术是一门由多种学科发展而来的技术组合,其发展经历了很长,很复杂的过程。表面改性技术通过对基体材料表面采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能。它包括化学热处理(渗氮、渗碳、渗金属等)、表面涂层(低压等离子喷涂、低压电弧喷涂)、激光重熔复合等薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性,使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 纳米粉体是能够通过表面处理的方法来获得或者保持其特有的纳米粒子的特性,这种表面处理方法工业上称为包膜处理或表面改性处理。由于对纳米粉体的制造要求不同于常规无机粉体的制造要求,因此表面改性处理主要针对防止纳米粉体团聚,并帮助纳米粒子在应用体系中也以纳米形态存在,这个处理过程通常称为粉体改性处理,使用的表面处理剂称为有机改性剂。 近年来,用无机纳米SiO2粒子增韧改性聚合物和杂化材料的研究取得了显著效果。由于纳米SiO2具有表面界面效应,量子尺寸效应,宏观量子隧道效应和特殊光、电特性,高磁阻现象以及其在高温下仍具有的高强、高韧、稳定性好等奇异特性,使纳米SiO2可广泛应用于各个领域,具有广阔的应用前景和巨大的商业价值。但同时由于纳米SiO2的粒径小、比表面积大、具有亲水基团(一OH),表面活性高,稳定性差,使得颗粒之间极易相互团聚在聚合物中不易分散,并且由纳米效应引起的一系列优异特性会被减弱或消失。同时由于SiO2表面亲水疏油在有机介质中难以浸润和分散,直接填充到材料中,很难发挥其作用,为了避免此现象发生就需要在其颗粒表面进行接枝改性。常用的改性剂有硅烷偶联剂、钛酸酯偶联剂、超分散剂等。 一、实验目的 1)了解表面改性的目的、方法和基本原理。 2)掌握KH-520改性纳米二氧化硅制备方法及操作。 3)掌握改性纳米二氧化硅的表征方法。 二、实验原理 硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物, 其通式为RSiX3,式 中R代表氨基、巯基、乙烯基、环氧基、氰基及甲基丙乙烯酰氧基等基团,这些基团和不同的基体树脂均具有较强的反应能力,X 代表能够水解的基团, 如卤素、烷氧基、酰氧基等。因此, 硅烷偶联剂既能与无机物中的羟基又能与有机聚合物中的长分子链相互作用, 使两种不同性质的材料偶联起来, 从而改善生物材料 的各种性能 硅烷偶联剂在两种不同性质材料之间的界面作用机理已有多种解释, 如化学键理论、可逆平衡理论和物理吸附理论等。但是, 界面现象非常复杂, 单一的理论往往难以充分说明。通常情况下,化学键合理论能够较好地解释硅烷偶联剂同无机材料之间地作用。根据这一理论,硅烷偶联剂在不同材料界面的偶联过程是一个复杂的液固表面物理化学过程。首先,硅烷偶联剂的粘度及表面张力低,

相关文档
最新文档