碳球_有序介孔碳复合涂层的制备及其防护性能

碳球_有序介孔碳复合涂层的制备及其防护性能
碳球_有序介孔碳复合涂层的制备及其防护性能

碳球/有序介孔碳复合涂层的制备及其防护性能*

马一鸥,崔 龙,何建平,狄志勇,王 涛,赵建庆

(南京航空航天大学材料科学与技术学院,江苏南京210016)

摘 要: 以可溶性酚醛树脂为碳前驱体,三嵌段共聚物F127为模板剂,碳球为填充相,经旋涂及溶剂蒸发诱导自组装,在不锈钢基体上构筑了具有高疏水性的碳球/有序介孔碳微纳米复合涂层。进一步利用PT-FE进行表面氟化修饰,获得了超疏水性能,润湿角达142°。扫描电子显微镜显示该复合涂层具有微米级褶皱/纳米级介孔孔道的复合结构。在模拟的海洋环境下,经过复合涂层改性的金属基体腐蚀电位正移了0.73V,腐蚀电流下降了4个数量级,防腐蚀效率高达99.9%以上,说明该涂层具有十分优良的防腐蚀性能。关键词: 有序介孔碳膜;碳球掺杂;疏水涂层;防腐蚀中图分类号: O643文献标识码:A文章编号:1001-9731(2011)06-1086-04

1 引 言

超疏水技术作为一种新兴的表面处理方法,在建筑、服装纺织、液体输送、生物医学、交通运输工具等领域具有广泛的应用前景。超疏水表面具有其独特的自清洁性、防污特性和低摩擦系数等特性,其有关的制备研究取得了快速发展。目前已报道了许多制备超疏水性材料的方法,主要有:溶胶-凝胶法[1-3]、化学气相沉积(CVD)[4,5]、激光刻蚀法[6]、模板法[7]等。相比于普通涂层,超疏水涂层具有更强的疏水性能,更强的抗水分子渗透作用,因而具有更佳的防腐蚀性能,将其用于金属材料上,可以起到自清洁[8-10]、抑制表面腐蚀[11-13]和表面氧化以及降低摩擦系数等效果。金属是现代工业最常用的材料,涂料涂层防腐蚀是一种经济有效和应用最普遍的方法,因此研究如何在碳素钢基体上制备超疏水表面有着重要的意义。Yin等[14]用肉豆蔻酸在铜表面制备了超疏水表面,显著提升了铜的耐蚀性能。He等[15]用肉豆蔻酸在铝表面制备了疏水角达154°的超疏水涂层,通过在无菌的海水中的电化学测试,结果显示其具有优良的防腐蚀性能。

本文以有序介孔碳凝胶为基体,葡萄糖聚合生成的碳球为填充相,利用溶胶-凝胶法在不锈钢基体上制备了具有微纳米二级结构的超疏水复合涂层。由于碳球与介孔碳基体均为同一碳材料,经高温碳化后,涂层显示均一的物理化学性质。模拟海洋运输的工作环境,通过动电位极化手段,表征了该涂层的防腐性能。2 实 验

先用苯酚和甲醛在碱性条件下聚合得到低分子量(<500)的可溶酚醛树脂,配成质量分数为20%的酚醛树脂乙醇溶液。将0.05mol葡萄糖溶于100mL去离子水中,转移至高压水热反应釜中,控制温度为160℃,冷却后离心分离,分别用去离子水与无水乙醇洗涤数次,60℃烘干,即得葡萄糖基碳球。将1.0g模板剂F127溶于16.0g无水乙醇中形成透明的溶液,缓慢滴加5.0g酚醛树脂的乙醇溶液,搅拌使其混合均匀,制备碳凝胶;通过继续添加一定比例的碳球,获得碳球/介孔碳混合凝胶。分别将碳凝胶和碳球/介孔碳混合凝胶均匀旋涂在不锈钢基片表面,在室温下溶剂蒸发5~8h,放入干燥箱中100℃热聚合24h,最后在氮气保护下,350℃保温3h,500℃保温2h,升温速率为1℃/min,得到目标涂层。在复合涂层上旋涂1层PT-FE-氨水混合乳液(质量比1∶9),室温干燥后,350℃保温2h,进行涂层的氟化修饰。

采用X射线衍射仪Bruker D8ADVANCE型表征涂层的结构特征。扫描电子显微镜(Scanning Elec-tron Microscopy)FEI Quanta 200观测涂层的表面形貌。透射电子显微镜FEI Tecnai G2型分析碳球的结构。以3.5%(质量分数)NaCl溶液为腐蚀溶液,采用电化学工作站CHI660C,在三电极体系中,以铂片为对电极、饱和甘汞电极为参比电极、涂覆碳膜后的试样为工作电极,对试样进行Tafel极化测试,扫描速率为10mV/s,扫描电位区间为-1.0~1.0V,工作面积为1cm2。

3 结果与分析

3.1 复合涂层结构分析

从图1可以清晰地看出水热制备的葡萄糖基碳球直径在1.0μm左右,葡萄糖碳球微米粒子均为接近球形的形貌,而且粒子的尺寸比较均匀尺寸均一,碳球分散性好,无团聚现象。图2(a)为一步模板/旋转涂膜方法制备有序介孔碳膜的小角XRD图。由图2中可见,所得的介孔碳膜出现(100)衍射峰,说明了该碳基涂层具有有序介孔结构;从图2(b)中可以看出,该复合涂层在(100)位置出现微弱的衍射峰,表明碳球的加

680

12011年第6期(42)卷

*基金项目:国家自然科学基金资助项目(50871053)

收到初稿日期:2010-10-08收到修改稿日期:2011-01-18通讯作者:何建平

作者简介:马一鸥 (1985-),女,河北保定人,助教,在读硕士,师承何建平教授,主要从事防腐材料的理论和工艺研究。

入会影响F127在乙醇溶液中形成有序胶束结构,由于葡萄糖基碳球表面的大量羟基易与三嵌段共聚物

F127表面的羟基官能团作用形成氢键,一定程度上对涂层的有序介孔碳基底的有序度有所破坏

图1 碳球的TEM图像Fig 

1TEM image of carbon sphere

s图2涂层的小角XRD图

图3 碳球/有序介孔碳膜复合涂层的SEM图像

Fig 3SEM images of carbon spheres/ordered meso-porous carbon comp

osite film 图4是复合涂层的场发射扫描电镜图

图4 碳球/有序介孔碳复合涂层的高倍场发射扫描

Fig 4High-resolution SEM images of carbon spheres/ordered mesoporous carbon comp

osite film 从图4中可以清晰地看出,

该复合涂层由于碳球的添加,在表面形成了微米级的褶皱,并且在这些微米级褶皱上,均匀分布着密集的介孔尺度的孔道结构。

这种微米级褶皱/纳米级介孔孔道的复合结构[15-

17],相

比普通的介孔碳膜,具有更强的俘获空气的能力,同时

801马一鸥等:碳球/有序介孔碳复合涂层的制备及其防护性能

这种微纳米二级结构的存在,使水更不易渗入涂层表

面,降低了水的接触面积,因而更加有利于形成Cassie

接触模型[

18]

。3.2 复合涂层性能分析

为了表征所制备复合涂层的疏水性能,我们在涂层表面通过PTFE进行化学氟化修饰,构建疏水表面,并研究不同碳球掺杂量对涂层疏水性能的影响,碳球与碳基底的质量比分别为1∶2、1∶4、1∶10、1∶100。

由图5(a)可以看出涂层的静态接触角为133°

,尽管涂层表面修饰了自由能极低的C—F基团,无法实

现超疏水,形成Wenzel模型[19]

。从图5(b)~(

e)中可以明显地看出,在相同的化学修饰的情况下,表面的静

态接触角也随着碳球加入量的提高而变大,

表明涂层表面粗糙度随之增大。但是当填充相与基底的质量比达到1∶10时,

静态接触角增加很小或者不增加,进一步增加质量会导致碳球沉降,

影响其结构及疏水性能

。图5 介孔碳膜及不同碳球加入量的复合涂层的静态接触角

Fig 5Water contact angle of mesoporous carbon film and different adding 

amount of carbon spheres compositesurface

表1 不同碳球加入量对涂层疏水性能的影响Table 1Effect of different adding 

amount of glucosecarbon spheres on hydrop

hobic properties碳球加入量(mg)0 

10 

20 

40 

100

接触角CA(°

)133 131 137 137 1

42表面能(mN/m)

5.67 6.09 4.17 4.32 2.

63 为表征掺杂碳球对涂层防腐性能的影响,

我们分别对裸钢片,单组份碳膜,碳膜/PTFE涂层,碳球/碳膜/PTFE涂层进行了动电位极化测试,并计算了防腐蚀效率。图6为4种不同试样的Tafel图谱,对应的电化学数据列于表2中。

由表2数据中可以看出,经介孔碳膜涂覆后,试样的腐蚀电位Ecorr正移了近0.4V,腐蚀电流密度icorr下降了近2个数量级,说明介孔碳涂层的引入,由于本身能够形成一层致密的保护膜,同时介孔碳本身有着很高的化学稳定性,

不与酸碱反应,因而为金属基体提供了良好

的保护。而对介孔碳膜表面进行PTFE修饰后,腐蚀电流密度icorr进一步下降了近2个数量级,证明PTFE能有效地降低介孔碳表面的活化能,增强了其疏水性能,从而进一步提高了防腐蚀性能。而在介

孔碳凝胶体系中引入碳球作为填充相后,获得了微纳

米级粗糙结构,在修饰PTFE后,进一步提高了涂层的防腐蚀性能。金属基体在碳膜/碳球/PTFE涂层的保

护下,腐蚀电位正移了0.73V,腐蚀电流下降了4个数量级。

图6不同试样的动电位极化曲线

2011年第6期(42

)卷

匀致密的保护膜之外,还具有对水有极高的抗渗透能力,使腐蚀介质极难渗入金属基体表面,从而能获得高的腐蚀防护性能。

表2 不同试样的腐蚀电流密度与腐蚀电位Table 2The corrosion current and corrosion p

otentialof different samp

les试样

a 

b 

c 

腐蚀电位(V)-0.172 0.210 0.551 0.

565腐蚀电流密度(μ

A/cm2

)98.67 2.308 0.701 0.011*

防腐效率(%)-97.66 99.29 9

9.99 *防腐效率%=

ia-ix

ia

×100%,x=a,b,c,d4 结 论

采用溶胶-凝胶法,以介孔碳凝胶为基体,葡萄糖

聚合生成的碳球为填充相,制备具有微纳米二级结构的疏水涂层,并通过表面氟化修饰获得了疏水复合涂

层,接触角达到142°。碳球/有序介孔碳复合涂层具有微米级褶皱/纳米级介孔孔道的复合结构,且基底与填

充相具有良好的相容性。动电位极化(Tafel)曲线显示,由于加入碳球形成了微纳米并存的二级结构,涂层

获得了较高的疏水性能,使其腐蚀电流密度icorr相对于裸钢降低了4个数量级,通过计算防腐蚀效率,发现表面修饰PTFE的复合涂层,其防腐蚀效率高达99.99%,腐蚀防护性能最佳,具有广阔的工业应用前景。参考文献:

[1] Erbil Y H,Demirei A L,Avci Y,et 

al.[J].Science,2003,299:1377-1380.[2] Nakaj

ima A,Saiki C,Hashimoto K,et al.[J].J MaterSci Lett,2001,20:1975-

1977.[3] Nakaj

ima A,Abe K,Hashimoto K,et al.[J].Thin SolidFilins,2000,376:140-143.[4] Wu Y,Bekke M,Inoue Y,et al.[J].Thin Solid 

Films,2004,457(1):122-127.[5] Liu H,Feng 

L,Zhai J,et al.[J].Langmuir,2004,20(14):5659-5661.[6] Khorasani M T,Mirzadeh H,Kermani Z.[J].Appl SurfSci,2005,242:339-345.[7] Jung 

D H,Park I J,Choi Y K,et al.[J].Langmuir,2002,18(16):6133-6139.[8] Furstner R,Barthlott W,Neinhuis C,et al.[J].Lang-muir,2005,21(3):956-961.[9] Blossey 

R.[J].Nature Mater,2003,2:301-306.[10] Nakajima A,Hashimoto K,Watanabe T,et al.[J].Langmuir,2000,16:7044-7047.[11] Liu T,Yin Y S,Chen S G,et 

al.[J].ElectrochimicaActa,2007,52:3709-3713.[12] Liu T,Dong L H,Liu T,et al.[J].Electrochimica Ac-ta,2010,55:5281-5285.[13] Yin Y S,Liu T,Chen S G,et al.[J].App

lied SurfaceScience,2008,255:2978-2984.[14] Liu T,Chen S G,Cheng S,et al.[J].ElectrochimicaActa,2007,52:8003-8007.[15] He T,Wang Y C,Zhang Y J,et al.[J].Corrosion Sci-ence,2009,51:1757-1761.[16] Extrand C W.[J].Lang

muir,2002,18:7991-7999.[17] Onda T,Shibuchi S,Satoh N.[J].Langmuir,1996,12(9):2125-2127.[18] Drelich J,Miller J D.[J].Lang

muir,1993,9(9):619-621.

[19] Cassie A,Baxter S.[J].Trans Faraday 

Soc,1944,40:546-

551.[20] Wenzel R N.[J].Ind Eng 

Chem,1936,28(8):988-994.Fabrication of carbon spheres/mesoporous carbon composite coating

sand its anticorrosion prop

ertiesMA Yi-ou,CUI Long,HE Jian-ping,DI Zhi-yong,WANG Tao,ZHAO Jian-qing

(College of Material Science and Technology,Nanjing University 

of Aeronauticsand Astronautics,Nanjing 

210016,China)Abstract:Micro-nano carbon spheres/ordered mesoporous carbon composite coatings were prepared on the stain-less steel substrate through the spinning technique and evaporation induced self-assembly using 

soluble phenolicresins as carbon precursor,F127as template-directing agent and carbon spheres as filler.The high rhydropho-bic surface was obtained by 

the fluoridation modification and the contact angle could be arrived at 142°.Scanningelectron microscope(SEM)indicated that the prepared composite coatings possessed the novel structure consis-ted of micro drape full of visible mesopores.Under the simulated marine environment,the corrosion potential ofmodified composite coatings was increased by 0.73V,and the corrosion current was decreased by 3-4orders ofmagnitude.The anti-corrosion efficiency was calculated as high as 99.9%,indicating the excellent protectivep

erformance.Key 

words:ordered mesoporous carbon film;carbon spheres doping;hydrophobic surface;anti-corrosion9

801马一鸥等:碳球/有序介孔碳复合涂层的制备及其防护性能

介孔碳材料的合成及应用分析研究

介孔碳材料的合成及应用研究 李璐 (哈尔滨师范大学> =摘要> 综述了介孔碳材料的合成及应用.关键词: 介孔碳。合成。应用 0 引言 介孔碳是近年来发现的一类新型非硅介孔材料, 它是由有序介孔材料为模板制备的结构复制品. 由于其具有大的比表面( 可高达2500m2# g- 1 >和孔容(可达到2. 25 cm3 # g- 1 >,良好的导电性、对绝大多数化学反应的惰性等优越的性能, 且易通过煅烧除去, 与氧化物材料在很多方面具有互补性, 使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视. 1 介孔碳材料的合成 介孔碳的制备通常采用硬模板法, 选择适当的碳源前驱物如葡萄糖、蔗糖乙炔、中间相沥青、呋喃甲醇[ 1]、苯酚/甲醛树脂[ 2]等, 通过浸渍或气相沉积等方法, 将其引入介孔氧化硅的孔道中, 在酸催化下使前驱物热分解碳化, 并沉积在模板介孔材料的孔道内, 用NaOH或HF溶掉SiO2 模板,即可得到介孔碳. 以下介绍几种介孔碳材料的合成方法及性质.

1. 1 CMK- 1 Ryoo首次用MCM- 48为模板 合成了介孔碳材料(CMK- 1>. 由于MCM- 48具有两套不相连通的 孔道组成, 这些孔道将变成碳材料的固体部分, 而MCM- 48中氧 化硅部分则会变成碳材料的孔道. 因此CMK- 1 并不是MCM- 48 真 正的复制品, 而是其反转品. 在脱除MCM- 48 的氧化硅过程中, 其结晶学对称性下降[ 3] , 后 续的研究表明与所用的碳前驱物有关, 其中一个具有I41 /a对称性[ 4] .1. 2 CMK- 3 使用SBA- 15 合成六方的介 孔碳( CMK 3>, 由于二维孔道的SBA- 15孔壁上有微孔, 因 图1 孔道不相连的的模板(MCM- 41或1234K 下 焙烧的SBA - 15> 制备的无序碳材料( A>。孔道相 连的模板( 1173K温度以下焙烧的SBA - 15> 制备 的有序介孔碳材料CMK- 3( B>

关于有序介孔炭CMK

关于有序介孔炭CMK-3从水溶液中吸附铀的研究 摘要: 有序介孔碳CMK-3在水溶液中铀的去除和获取方面的能力已经进行了探索。CMK-3的制构特性是以使用小角X射线衍射和N2吸附脱附,BET比表面积,孔体积和孔径是1143.7平方米/克,1.10立方厘米/克和3.4 nm为特征的。了对不同的实验参数,例如溶液的pH值,初始浓度,接触时间,离子强度和温度对吸附的影响进行研究。CMK-3显露出铀在最初pH=6,接触时间为35分钟时吸附能力最高。吸附动力学也通过伪二阶模型很好地描述了。吸附过程可用朗格缪尔和Freundlich等温线很好地定义。热力学参数,ΔG°(298K),ΔH°,ΔS°分别定为-7.7, 21.5 k J mol -1和98.2 J mol-1 K-1,这表明CMK-3在自然界朝向铀吸附进程是可行的,自发的和吸热的。吸附的CMK-3可以有效地为U(VI)的去除和获取,通过0.05 mol/L的HCL再生。从1000ml包含铀离子的工业废水的u(VI)的完全去除可能带有2g CMK-3。 关键词:有序介孔碳CMK-3 吸附铀 前言:处理放射性物质产生低中高水平的放射性废物的许多活动要求用先进的技术处理[1,2]。在过去的几十年,考虑到潜在的环境健康威胁和不可再生的核能源资源的双重意义,各种各样的技术,例如溶剂萃取[3,4],离子交换[5],和吸附已经从放射性废物的铀的去除和获取得到了发展[6]。最近,吸附由于其效率高、易于处理,基于碳质材料例如活性炭[7-8],碳纤维[11],因为他们比有机换热器树脂有更高热量和辐射电阻,与熟悉的无极吸附剂相比有更好的酸碱稳定性,因此逐渐应用于这一领域[8]。 另外,作为碳质材料家族的新成员,有序介孔碳CMK-3是通过纳米铸造技术合成的[12],因为它独特的特征如高表面积,规整的介孔结构,窄的孔径分布,大孔隙体积,以及优异的化学和物理稳定性,已经引起了广泛关注[13,14]。这些特征使CMK-3在生物医药,电化学,能量储存和环境领域变得更加有吸引力[15–17]。CMK-3及其复合材料已经用于去除VE [18], VB12 [19],苯酚[20],溶菌酶[21],铅[22]和汞[23]。然而,据我们所知,到目前为止,还没有报道CMK-3用于水系统吸附铀酰离子。因而,这将是有趣的事,去探讨以上所提到的CMK-3用于环境的可能性。 本次调查的目的是研究通过硬模板法制备的有序介孔炭CMK-3的从水溶液除铀的效率。各种技术被用来描述CMK-3的结构和构造特性,包括小角X射线衍射(SAXRD)和N2 吸附解吸。各种实验参数包括溶液的pH值,离子强度,接触时间,最初的浓度,温度,以及对吸附动力学,等温吸附模型,热力学进行了研究。另外,CMK-3再生的方法,和工业废水除铀的努力也进行了研究。 实验 材料 从南京科技Co., Ltd获得有序介孔硅。U(VI)储备液的制备,1.1792 g U3O8加入到一个100ml的烧杯,10ml的盐酸(q=1.18 g/mL),2 mL 30 %的过氧化氢也加入到此烧杯。溶液被加热直到它几乎是干的,然后10毫升盐酸(q= 1.18克/毫升)被添加。溶液被转入到一个1000ml的容量瓶,用蒸馏水稀释到刻度来产生1 mg/mL 的铀原液。铀溶液通过稀释原液到根据实验要求的适当的量来制备。所有的其他试剂都是AR级。 有序介孔碳CMK-3的制备

有序介孔炭的制备与表征_王小宪

有序介孔炭的制备与表征① 王小宪1,李铁虎1,冀勇斌1,金 伟1,林起浪2 (1.西北工业大学材料学院,陕西西安 710072; 2.福州大学材料学院,福建福州 350002) 摘 要:采用溶胶-凝胶技术,用蒸发诱导自组装(EISA)工艺制备了表面活性剂/氧化硅复合体。通过原位氧化炭化法直接制备了介孔炭材料,讨论了炭化温度对炭/氧化硅及介孔炭孔隙结构的影响。利用透射电镜(TEM)、氮物理吸附-脱附、扫描电镜(FESEM)及热重分析(TGA)对材料的形貌结构性能进行了分析。结果表明,复合体具有高度有序的六方相结构孔道,随着炭化温度的提高,复合体的孔径分布呈现先增大后减小的变化过程,而介孔炭孔径分布逐渐减小。介孔炭颗粒由类纳米碳管团簇组成,孔隙有序程度高,内部无缺陷。 关 键 词:介孔炭,纳米复合体,炭化,纳米碳管 中图分类号:TB383 文献标识码:A 文章编号:1000-2758(2008)06-0787-05 介孔炭具有大比表面积、大孔容和均一孔径分布的特点,因此在选择性催化、储能材料及光电磁等方面都有着广泛的应用。通常制备介孔炭方法有物理化学活化法[1]、有机聚合物炭化法[2]、共混聚合物炭化法[3]、铸型炭化法[4]等,其中物理化学活化法是制备活性炭的常用方法,该方法制备的介孔炭孔径小且分布范围大。有机聚合物炭化法和共混聚合物炭化法虽可制备出分布范围小的介孔炭,但无法实现有序性的要求。近年来,铸型炭化法是能控制介孔炭孔径的有效方法,即选用具有一定结构的模板材料,通过反相复制获得介孔炭产品。从微观角度来说,介孔炭是模板的负副本,即模板的孔壁转化为介孔炭的孔隙,因此对模板孔壁的有效控制就是对介孔炭的孔径控制,而模板的形成受到多方面的影响。在水热合成体系中,改变制备模板的陈化温度[5]可以使介孔炭在3.0~ 5.2nm之间变化,混合表面活性剂法[6]可使介孔炭在2.2~ 3.3nm之间变化。但是利用水热合成体系制备模板本身就需要1~3天时间,然后经过液相浸渍、炭化、酸洗等步骤才能获得介孔炭产品,这个过程费时、费力,不利于介孔炭的发展与应用。 本文在非水体系条件下,结合蒸发诱导自组装工艺和溶胶-凝胶技术,以占据氧化硅介孔体的表面活性剂为碳源前驱体。通过原位氧化炭化法直接制备出了具有六方结构的介孔炭材料,研究发现,模板与有机物的炭化过程中的相互作用和炭化温度是影响介孔炭孔径的重要因素。该方法缩短了制备周期,节约了制备成本,同时还可以对介孔炭的孔径进行有效的控制。 1 实验部分 1.1 复合体的制备 复合体的制备过程如下:将1g P123(聚乙烯醚-聚丙烯醚-聚乙烯醚,EO30PO70EO30,南京威尔化工公司)完全溶解于10g无水乙醇中;在搅拌的条件下加入2g的正硅酸已酯(AR,北京化学试剂有限公司,简称TEO S),0.9g H2O,0.1g HCl(2M),室温下继续搅拌2h,获得溶胶;将所得溶胶置于25℃,湿度为30~60%的环境中自然蒸发,待完全蒸发后获得表面活性剂/氧化硅的复合体。 1.2 介孔炭的制备 在1g上述复合体中加入4g去离子水和1g浓硫酸,混合均匀;将混合物置于热处理炉中在100℃和160℃分别处理3~6h以充分氧化,所得样 2008年12月第26卷第6期 西北工业大学学报 Jour na l o f No r th wester n Poly technical U niv ersity Dec.2008 V o l.26No.6 ①收稿日期:2007-10-11基金项目:国家自然科学基金(50472081)与高等学校博士点基金(20060699028)资助 作者简介:王小宪(1980-),西北工业大学博士生,主要从事新型炭材料的研究。

材料物理性能思考题

材料物理性能思考题 第一章:材料电学性能 1如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 2 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 3 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 4 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、 简并度、能态密度、k空间、等幅平面波和能级密度函数。 5 自由电子近似下的等能面为什么是球面?倒易空间的倒易节点数与不含自旋 的能态数是何关系?为什么自由电子的波矢量是一个倒易矢量? 6 自由电子在允许能级的分布遵循何种分布规律?何为费米面和费米能级?何 为有效电子?价电子与有效电子有何关系?如何根据价电子浓度确定原子的费米半径? 7 自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由 电子近似下的量子导电理论,试分析温度如何影响材料的导电性。 8 自由电子近似下的量子导电理论与经典导电理论在欧姆定律的微观解释方面 有何异同点?

9 何为能带理论?它与近自由电子近似和紧束缚近似下的量子导电理论有何关 系? 10 孤立原子相互靠近时,为什么会发生能级分裂和形成能带?禁带的形成规律 是什么?何为材料的能带结构? 11 在布里渊区的界面附近,费米面和能级密度函数有何变化规律?哪些条件下 会发生禁带重叠或禁带消失现象?试分析禁带的产生原因。 12 在能带理论中,自由电子的能量和运动行为与自由电子近似下有何不同? 13 自由电子的能态或能量与其运动速度和加速度有何关系?何为电子的有效质 量?其物理本质是什么? 14 试分析、阐述导体、半导体(本征、掺杂)和绝缘体的能带结构特点。 15 能带论对欧姆定律的微观解释与自由电子近似下的量子导电理论有何异同 点? 16 解释原胞、基矢、基元和布里渊区的含义

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

简易模板法制备有序介孔碳_邱会华

收稿日期:2009-07-27。收修改稿日期:2009-09-16。国家-广东联合基金资助项目(No.U0734005)。 * 通讯联系人。E -mail :tliuyl@https://www.360docs.net/doc/ec3793155.html, ;会员登记号:S060017521P 。第一作者:邱会华,女,24岁,硕士研究生;研究方向:纳米碳材料。 简易模板法制备有序介孔碳 邱会华 刘应亮* 曾江华 左诗笛 郑明涛 (暨南大学化学系,广州 510632) 摘要:通过一种简易的模板法制备了有序介孔碳,即硅/P123三嵌段共聚物复合物经硫酸处理后,再加入蔗糖碳源经碳化和除硅处理合成出有序介孔碳。该方法与传统硬模板相比,其合成工序简单,成本更低;与其他简化合成方法相比,避免了由碳源不足而造成的介孔碳有序性低的缺点。通过小角XRD 、N 2吸脱附和HRTEM 对样品及其中间过程进行了表征。结果表明,自晶化过程后,样品在合成的各个时期均保持着有序的介孔结构,当蔗糖添加量为1.5g 时合成出的介孔碳材料有序性最高,比表面积和孔容也最高,分别为1261m 2·g -1,1.03cm 3·g -1。关键词:模板法;有序介孔碳;蔗糖中图分类号:O613.71 文献标识码:A 文章编号:1001-4861(2010)01-0101-05 Simple Template Method for Synthesis of Ordered Mesoporous Carbon QIU Hui -Hua LIU Ying -Liang *ZENG Jiang -Hua ZUO Shi -Di ZHENG Ming -Tao (Department of Chemistry,Jinan University,Guangzhou 510632) Abstract:Ordered mesoporous carbon materials were synthesized via a simple template method by adding sucrose to the sulfuric -acid -treated silica/P123triblock copolymer composite and followed by carbonization and removal of the silica.This technique is simpler and the cost is lower than the conventional hard template method.Besides,compared to other simple way,this technique avoids the disadvantage of low ordered structure of the mesoporous carbon caused by deficiency of carbon source.The samples were investigated by X -ray diffraction (XRD),high -resolution transmission electron microscopy (HRTEM)and nitrogen adsorption -desorption.The results show that the samples after crystallization maintain ordered mesoporous structure at various periods during the course of the synthesis.When the addition of sucrose is 1.5g,the highest ordered mesoporous carbon is obtained with highest surface area of 1261m 2·g -1and pore volume of 1.03cm 3·g -1. Key words:template method;ordered mesoporous carbon;sucrose 引言 有序介孔碳材料由于其具有高的比表面积、大的孔容和均一的孔径分布等特点,使其在催化、吸附、电化学等领域有着广泛的应用价值[1-3]。自1999 年Ryoo 等[4]以有序介孔硅MCM -48为模板,蔗糖为碳源合成出有序介孔碳CMK -1以来,介孔碳材料 的发展进入了一个新的时期。随后很多科学家通过不同的方法合成了一系列的有序介孔碳材料,如 CMK -3[5]、CMK -5[6]、COU -1[7]、FDU -15[8]等,其方法可分 为硬模板法和软模板法[9]。硬模板法所得到的介孔碳材料为无机模板的反相复制,软模板法所得的介孔碳材料为正相结构,在应用方面各有其优势。但硬模板法合成过程耗时长,步骤繁多,其首先需要 第26卷第1期2010年1月 Vol .26No .1101-105 无机化学学报 CHINESE JOURNAL OF INORGANIC CHEMISTRY

材料物理性能及材料测试方法大纲、重难点

《材料物理性能》教学大纲 教学内容: 绪论(1 学时) 《材料物理性能》课程的性质,任务和内容,以及在材料科学与工程技术中的作用. 基本要求: 了解本课程的学习内容,性质和作用. 第一章无机材料的受力形变(3 学时) 1. 应力,应变的基本概念 2. 塑性变形塑性变形的基本理论滑移 3. 高温蠕变高温蠕变的基本概念高温蠕 变的三种理论 第二章基本要求: 了解:应力,应变的基本概念,塑性变形的基本概念,高温蠕变的基本概念. 熟悉:掌握广义的虎克定律,塑性变形的微观机理,滑移的基本形态及与能量的关系.高温蠕变的原因及其基本理论. 重点: 滑移的基本形态,滑移面与材料性能的关系,高温蠕变的基本理论. 难点: 广义的虎克定律,塑性变形的基本理论. 第二章无机材料的脆性断裂与强度(6 学时) 1.理论结合强度理论结合强度的基本概念及其计算 2.实际结合强度实际结合强度的基本概念 3. 理论结合强度与实际结合强度的差别及产生的原因位错的基本概念,位错的运动裂纹的扩展及扩展的基本理论 4.Griffith 微裂纹理论 Griffith 微裂纹理论的基本概 念及基本理论,裂纹扩展的条件 基本要求: 了解:理论结合强度的基本概念及其计算;实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件熟悉:理论结合强度和实际结合强度的基本概念;位错的基本概念,位错的运动;裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件. 重点: 裂纹的扩展及扩展的基本理论;Griffith 微裂纹理论的基本概念及基本理论,裂纹扩展的条件难点: Griffith 微裂纹理论的 基本概念及基本理论 第三章无机材料的热学性能(7 学时) 1. 晶体的点阵振动一维单原子及双原子的振动的基本理论 2. 热容热容的基本概念热容的经验定律和经典理论热容的爱因斯坦模型热容的德拜模型 3.热膨胀热膨胀的基本概念热膨胀的基

硫/有序介孔碳复合材料的制备及其电化学性能

硅酸盐学报 · 572 ·2011年 硫/有序介孔碳复合材料的制备及其电化学性能 李永,董晓雯,赵宏滨,徐甲强 (上海大学理学院化学系,上海200444 ) 摘要:用模板法合成有序介孔碳材料(ordered mesoporous carbon,OMC),以该材料作为硫的载体,用低温熔融的方法制备了硫/有序介孔碳(S/OMC)复合材料。通过透射电子显微镜、比表面分析和X射线粉末衍射仪对材料进行表征。结果表明:OMC孔道有序,比表面积高达1600m2/g,硫在OMC 内分散性良好。对S/OMC又进行了恒流充放电、循环伏安和交流阻抗等电化学性能测试,显示S/OMC电化学可逆性较好,首次放电容量达1430 mA?h/g,60次循环时仍稳定在500mA?h/g。OMC内部有序的孔道和较大的表面微孔对电池性能的提高起到了重要的作用。 关键词:硫电极;软模板法;有序介孔碳;复合材料;阴极材料 中图分类号:TQ152 文献标志码:A 文章编号:0454–5648(2011)04–0572–05 Preparation and Electrochemical Properties of Sulfur/Ordered Mesoporous Carbon Composite LI Yong,DONG Xiaowen,ZHAO Hongbin,XU Jiaqiang (School of Science, Shanghai University, Shanghai 200444, China) Abstract: An ordered mesoporous carbon (OMC) material was synthesized via a template synthesis method. The composites of S/OMC with OMC as a matrix of sulfur were prepared by means of low temperature melting. The composites were investigated by transmission electron microscopy, Brunauer–Emmett–Teller method and X-ray powder diffraction. The results show that the channels of OMC is in an order, and the specific surface area of OMC is >1600m2/g. The sulfur could be efficiently dispersed in OMC. The composites of S/OMC were determined by galvanostatic charge/discharge, cyclic voltammograms and electrochemical impedance spectroscopy. It is indicated that the S/OMC has preferable electrochemical reversible, and the first discharge capacity reaches 1430 mA·h/g and stabilizes at 500mA·h/g after 60 cycles. It is essential for the improvement of the battery performance to possess the mas-sive micropores with the greater surface area existed in the OMC. Key words: sulfur electrode; soft-template method; ordered mesoporous carbon; composite material 随着石油危机的出现,全世界对能源消费需求的日益增加,以及便携式电子设备和电动汽车的快速发展及应用,对于高比能量、长循环寿命的锂离子电池的需求十分迫切。目前在已知的锂离子电池正极材料中,硫电极具有最高的理论比容量(1675 mA?h/g)。其与金属锂电极组成锂–硫电池的理论比能量高达2600W?h/kg。硫电极具有环境友好、价格低廉、资源丰富等优点,是一种很有应用前景的高比能量的正极材料[1]。然而,单质硫在常温下的电子导电率仅为5×10–30 S/cm[2]。如此低的电子导电率使锂–硫电池中阴极活性材料的利用率很低。此外,锂–硫电池在充放电过程中会形成多硫化锂,该化合物会溶于有机电解液,并会在阴阳电极之间穿梭,其中一部分穿梭的多硫化锂能转变成硫化锂并沉积在阳极上[3],造成电池内部阻抗增加、电池容量减小以及循环性能的急剧下降。 针对硫电极以上的缺点,许多研究者开发研究溶胶电解液[4]、固体电解质[5]和常温的离子液体[6],尽管这些研究在一定程度上达到了缓解多硫化合物穿梭反应的目的,但是同时又由于离子的缓慢移动造成了电池能量密度的降低。为了减轻由于多硫化物的穿梭对阳极的影响,还有许多研究集中在保护 收稿日期:2011–01–07。修改稿收到日期:2011–01–27。 基金项目:上海大学研究生创新基金(SHUCX 102021)、上海博士后基金(10R21412900)、中国博士后基金(20100470677)资助项目。第一作者:李永(1982—),男,硕士研究生。 通信作者:徐甲强(1963—),男,教授。Received date:2011–01–07. Approved date: 2011–01–27. First author: LI Yong (1982–), male, graduate student for master degree. E-mail: 08720101@https://www.360docs.net/doc/ec3793155.html, Correspondent author: XU Jiangqiang (1963–), male, professor. E-mail: xujiaqiang@https://www.360docs.net/doc/ec3793155.html, 第39卷第4期2011年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 4 April,2011

介孔碳材料

介孔碳材料:合成及修饰 关键词:嵌段共聚物,介孔碳材料,自组装,模板合成 许多应用领域对多孔材料的兴趣是由于他们的高比表面积和理化性质。传统的合成只能随机产生多孔材料,对超过孔径分布几乎是无法控制的,更不用说细观结构了。最新的突破是其它多孔材料的制备工艺,这将导致具有极高比表面积和有序介孔结构的介孔材料制备方法的发展。随着催化剂的发展,分离介质和先进的电子材料被用在许多科学学科。目前合成方法可归类为硬模板法和软模板法。这两种方法都是用来审查碳材料表面功能化取得的进展。 1.简介 多孔碳材料是无处不在和不可或缺的,应用于许多的现在科学领域。多孔碳材料被广泛用作制备电池电极、燃料电池、超级电容。作为分离过程和储气的吸附剂,应用于许多重要的催化过程。介孔碳材料的用途在不同的应用中有着直接的联系,不仅仅关系到其优良的物理和化学性能,如导电、热导率、化学稳定性和低密度,而且关系到其广泛的可用性。近年来碳技术已经取得了很大进展,同时也通过开发和引进新的合成技术改变现有的制备方法。多孔碳材料根据其孔径可分为微孔(孔径<2nm);中孔(2nm<孔径<50nm);大孔(孔径>50nm)。传统的多孔碳材料,例如活性炭和碳分子筛,被热解和物理或是被有机体化学活化合成的。有机体包括在高温下的煤、风、果壳、聚合物[1-3]。这些碳材料通常在中孔和微孔范围内有广泛的孔径分布。活性碳和碳分子筛已大批量生产并被广泛用于吸附、分离和催化方面。 微孔碳材料综述的主要进展包括(a)合成碳材料(表面积高达3000m2g-1)[4,5]使用的氢氧化钾,(b)带有卤素气体的碳选择性反应可控制碳材料产生的微孔大小[6]。后一种方法使用碳化物为碳源,并且卤素气体选择性的除去金属离子。这种化学蚀刻法产生一个具有很窄的粒度分布的微孔。这些碳材料产生的微孔能提供高比表面积、大孔容、吸附气体和液体。尽管微孔材料被广泛应用在吸附分离和催化上,生产使用的方法遭到限制。活性炭微孔材料的缺点(a)由于空间限制规定小孔径使分子运输速度缓慢,(b)低电导率的产生是由于表面官能团的缺陷产生的,(c)多孔结构被高温或石墨化破坏。 为了克服上述这些限制努力寻求其他的合成方法,方法如下:(a)通过物理或组合物理/化学方法的高度活化,[1,7-9](b)碳前躯体碳化是热固性组成成分之一,也是热不稳定性成分,[10,11](c)催化剂辅助活化碳前驱体与金属(氧化物)或有机金属化合物,[9,12-14](d)碳化气凝胶或冷冻,[15,16](e)通过浸渍硬模板复制合成介孔碳,碳化和模板拆除。[17,18](f)自组装通过缩合和碳化使用软模板[19-21]。方法a之d只会导致介孔碳材料有广泛孔径分布(PSD)和可观微孔[9,22]。因此,这些方法都缺乏吸引力。 值得重新审查的是方法e和方法f,这两种方法与有良好控制孔径的介孔碳材料的合成有关联。方法e涉及预合成的有机或无机模板的使用,也被称为硬模板合成方法。这些模板主要是作为介孔碳的模具材料,并且没有明显的化学作用采取前体之间发生模板和碳化[23]。相应的多孔结构是由有明确定义的纳米结构模板预定的。反过来,方法f涉及软模板,通过生成有机分子自组装纳米结构。相应的孔径结构确定合成条件,如混合比、溶剂和温度。虽然该术语"软模板"尚未正式确定,软模板法在本次审查是指自组装模板。软模板法不同于有机自组装硬模板法,分子或基团被操纵在分子能级和被组织成纳米空间氢键或疏水/亲

涂层性能测试方法

涂层性能测试方法 1盐雾试验 盐雾试验是将试验样板(件)放置于盐雾箱中,在一定温度、湿度条件下,保持电解质溶液成雾状,进行循环腐蚀的实验室技术。 1.1盐雾试验注意事项 (1)供试验用样板底材,必须彻底清除锈迹和润滑油脂。无论是经喷砂、打磨还是磷化过的底材,谨防暴露于潮湿空气中,以防底材表面形成水膜造成再度生锈或因此而降低涂层与底材间的附着力。特别强调的是严禁用手指触摸底材有效部位,因为手指上的油脂、汗渍会沾污板面,造成涂层局部起泡和生锈。 (2)盐雾试验的关键是配制电解质溶液的浓度,多种组分的溶质要按比例严格称量,以确保pH值的准确性。不然会直接影响检测结果。 (3)制备涂层后的样板(件),需用涂料封边和覆盖底材裸露部位,否则,造成锈痕流挂、污染板面,给评定等级工作带来困难。 (4)定期查板(件)时,应保持板面呈湿润状态,尽量缩短板面暴露于空气中的时间。 (5)完成试验后,应立即对板面做出客观评价,包括:起泡、变色、生锈、脱落。也可按客户要求增加附着力、划痕单边锈蚀距离的检测评定。 (6)板面如需要划痕,则应一次性划透涂膜,并露出底材。不应重复施刀,以免造成划痕处涂层翻边和加宽单边锈蚀距离。根据经验,板面划痕通常为交叉状(X),而圆柱工件则可划成平行线(Ⅱ)。但划痕距板(件)缘应大于20mm,并依据GB/T9286—1998标准推荐的方法,使用单刃切割器。 值得注意的是划痕处单边锈蚀距离的测定方法。根据作者多年工作经验,在试验过程中,周期性查板(件)应保持原始锈蚀状态记录单项等级评定结果。当试验结束后进行综合等级评定时,首先选择划痕单边锈蚀最严重部位进行测量,然后用一工具小心剥离锈斑,尽量保持不要破坏涂层,用水冲净后再测量锈蚀距离,测量结果可能有3种情况:①因涂层沿 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

有序介孔碳材CMK-3多少钱一克 有序介孔碳材CMK-3一克多少钱

有序介孔碳材CMK-3多少钱一克 有序介孔碳材CMK-3多少钱一克?这个问题还是比较受大家关心的。介孔碳是一类 新型的非硅基介孔材料,具有巨大的比表面积和孔体积。具有石墨化程度高,杂质低,介 孔发达,强度好,导电性能好等特点,CMK-3 介孔碳,有能有效降低成本,实现工业化。那么,有序介孔碳材CMK-3多少钱一克?性能特点有哪些?下面有先丰纳米简单的介绍 一番。 有序介孔碳材价格在市场上从几百到上千元的价格都有,详情请立即咨询先丰纳米。 介孔碳是传统活性炭的一次革命性提升,其原料来自石墨,通过电化学反应制备而得。由于碳的高生物相容性,使得唯有介孔活性碳可以用在医药、农肥、美容日用领域。 具有极高的比表面积、规则有序的孔道结构、狭窄的孔径分布、孔径大小连续可调等 特点,使得它在吸附、分离,尤其是催化反应中发挥作用。 有序介孔碳材CMK-3参数: 比表面积:≥900 m2/g 、孔体积:1.2-1.5 cm3/g 、孔径:3.8-4 nm 、微孔体积:0.29 cm3/g 有序介孔碳材CMK-3应用: 催化剂载体;电容器电极;药物负载;纳米反应堆;大分子吸附;生物传感器;储能 和储氢的载体

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

有序介孔碳材CMK-3哪个厂家好 哪个有序介孔碳材CMK-3厂家好

有序介孔碳材CMK-3哪个厂家好 有序介孔碳材CMK-3哪个厂家好?这还是大家更加关心的问题。有序介孔碳作为一类新型材料,具有均一的孔径分布、大的比表面积和孔容、有序的孔道结构等独特的结构特点,同时还具有优良的机械和热稳定性,并且对绝大多数化学反应显出惰性,在催化、吸附、分离、储氢、电化学等方面具有很好的应用前景。那么,有序介孔碳材CMK-3哪个厂家好?这里推荐先丰纳米公司。下面就简单的介绍有序介孔碳材CMK-3制作方法。 一般来说,有序介孔碳材料的制备方法有两种。 一是硬模板法 1、合成有序的硬模板,如介孔氧化硅等 2、灌注碳源前驱体到硬模板的孔道中 3、碳化形成复合材料 4、去除硬模板得到有序介孔碳。 这种方法程序非常繁琐、成本非常高,很难用以实现介孔碳材料的规模化合成。 二是软模板法 即超分子自组装法。利用溶剂挥发诱导自组装(EISA)成功地合成了介孔碳材料。该过程简单、可重复性好;然而该方法需要大量的溶剂,既污染环境又浪费原料。此外该方法需要大面积的容器来挥发,占据大量的空间,也限制了该方法的规模化生产。

如果想要了解更多关于有序介孔碳材CMK-3的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

介孔碳材料及负载金属催化剂表征

介孔碳材料及负载金属催化剂表征 摘要:介孔材料作为纳米材料的一个重要发展,已成为国际科技界普遍关注的新的研究热点.本文综述了以氧化铝、活性炭为载体负载镍基催化剂的研究方法。 1.前言 近几年来,介孔材料作为一种新兴的材料在光化学、催化及分离等领域具有十分重要的应用,是当今研究的热点之一。 按照国际纯粹与应用化学协会(IUPAC)的定义,孔径在2-50nm范围的多孔材料称为介孔(中孔)材料。按照化学组成,介孔材料可分为硅基和非硅基组成两大类,后者主要包括碳、过渡金属氧化物、磷酸盐和硫化物等,由于它们一般存在着可变价态,有可能为介孔材料开辟新的应用领域,展示出硅基介孔材料所不能及的应用前景[1]。按照介孔是否有序,介孔材料可分为无定形(无序)介孔材料和有序介孔材料[2]。前者如普通的SiO2气凝胶、微晶玻璃等,孔径范围较大,孔道形状不规则;后者是以表面活性剂形成的超分结构为模板,利用溶胶-凝胶工艺,通过有机物和无机物之间的界面定向导引作用组装成一类孔径约在1.5-30nm,孔径分布窄且有规则孔道结构的无机多孔材料,如M41S等。 介孔材料的特点在于其结构和性能介于无定形无机多孔材料(如无定形硅铝酸盐)和具有晶体结构的无机多孔材料(如沸石分子筛)之间,其主要特征[3]为:具有规则的孔道结构;孔径分布窄,且在1.5-10 nm之间可以调节;经过优化合成条件或后处理,可具有很好的热稳定性和一定的水热稳定性;颗粒具有规则外形,且可在微米尺度内保持高度的孔道有序性。 现阶段有多种方法可对介孔材料进行表征。差热/热重(DTA/TG)分析可用于表征物质表面吸附、脱附机理及晶型转变温度,并可鉴别中间体。X射线衍射分析(XRD)法是利用衍射的位置决定晶胞的形状和大小,以及晶格常数。透射电镜(TEM)是在极高、极大倍数下直接观察样品的形貌、结构、粒径大小,并能进行纳米级的晶体表面及化学组成分析。而气体吸附测试(Adsorption measurement)法则是通过向介孔材料中通人氮气等气体来测试其孔径[4]。对介孔材料中装载纳米微粒的表征,同样可以借助许多经典及现代测试手段获得。如利用X射线衍射及广延X射线精细结构能得到孔穴中纳米微粒的元素组成、离子间距及尺寸形

有序介孔碳的制备

Surface and Pore Structures of CMK-5Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy Hans Darmstadt,*,?Christian Roy,?Serge Kaliaguine,?Tae-Wan Kim,?and Ryong Ryoo? De′partement de Ge′nie Chimique,Universite′Laval,Que′bec,Qc,G1K7P4,Canada,and National Creative Research Initiative Center for Functional Nanomaterials and Department of Chemistry(School of Molecular Science BK21),Korea Advanced Institute of Science and Technology,Daejeon,305-701,Korea Received June17,2002.Revised Manuscript Received May20,2003 Ordered mesoporous carbons(OMCs)were synthesized in the pore system of SBA-15 aluminosilicates with different Si/Al ratios ranging from5to80.Nitrogen adsorption was used to characterize the pore structure of the aluminosilicates and of the OMCs,whereas the OMC surface chemistry was studied by X-ray photoelectron spectroscopy and static secondary ion mass spectroscopy.The results indicate that the physicochemical properties of the OMCs depended significantly on the acid catalytic activity of the aluminosilicate frameworks,which comes along with the variation of Si/Al ratios.The OMC pore widths and order of the graphene layers followed the same trend as the catalytic activity of the aluminosilicates,whereas the concentration of extraframework species in the aluminosilicates indirectly influenced the mechanical properties of the OMCs.The reasons for this behavior are discussed. Introduction Porous carbons are widely used as absorbents and catalyst supports.In many applications,such as adsorp-tion of large hydrocarbons,carbons with mesopores of defined dimensions are desirable.Presently,most car-bon adsorbents are synthesized by carbonization of a carbon-containing feedstock material followed by partial oxidation(activation).Unfortunately,by this synthesis route carbons with narrow mesopore size distribution are difficult to produce.However,by a molding process in an appropriate matrix,ordered mesoporous carbons (OMCs)can be produced in a convenient way.1-4A suitable OMC precursor is furfuryl alcohol adsorbed in the pore system of mesostructured silica,where it can be easily polymerized.The polymerization product is carbonized at elevated temperatures.In the final step of the synthesis,the OMC is liberated by dissolution of the silica matrix with hydrofluoric acid or sodium hydroxide.If during the synthesis the entire pore system of the matrix is filled with the carbon product,the structure of the OMC can be described as a network of carbon rods.However,it is also possible to form the carbon product only on the pore walls of the matrix,without filling the entire pore.This procedure was applied in the present work.The produced OMCs consist of a network of nanopipes.These OMCs have three different kinds of pores:(i)mesopores inside the nano-pipes,(ii)mesopores between the nanopipes,and(iii) micropores,which correspond to defects in the walls of the nanopipes. In the present work,OMCs were synthesized by polymerization of furfuryl alcohol in SBA-15alumino-silicate templates with Si/Al ratios ranging from5to 80.The polymerization of furfuryl alcohol is normally acid catalyzed.The addition of an acid catalyst is re-quired for the successful synthesis of OMCs when the synthesis is performed in nonacidic silica.5However, this is unnecessary if the synthesis is performed in an acidic aluminosilicate matrix as in the present work. Hydroxyl groups adjacent to aluminum in the alumi-nosilicate framework can catalyze the polymerization reaction as Br?nsted acid sites.The strength and the concentration of these sites depend on the aluminum content of the framework.Furthermore,a significant portion of the aluminum can be present as extraframe-work species.The corresponding Lewis acid sites may also catalyze the furfuryl alcohol polymerization.This short discussion illustrates that the Si/Al ratio of the matrix may have an important influence on the proper-ties of the OMCs. The introduction of aluminum not only influences the acidity of the matrix,it may also affect its pore struc-ture.Therefore,in the present work,the matrixes used *To whom correspondence should be addressed.Telephone:+1(418) 6562131,Ext.6931.Fax:+1(418)6565993.E-mail:hans.darmstadt@ gch.ulaval.ca,or rryoo@webmail.kaist.ac.kr. ?Universite′Laval. ?Korea Advanced Institute of Science and Technology. (1)Ryoo,R.;Joo,S.H.;Jun,S.J.Phys.Chem.B1999,103,7743. (2)Joo,S.H.;Choi,S.J.;Oh,I.;Kwak,J.;Liu,Z.;Terasaki,O.; Ryoo,R.Nature2001,412,169. (3)Jun,S.;Joo,S.H.;Ryoo,R.;Kruk,M.;Jaroniec,M.;Liu,Z.; Ohsuna,T.;Terasaki,O.J.Am.Chem.Soc.2000,122,10712. (4)Ryoo,R.;Joo,S.H.;Kruk,M.;Jaroniec,M.Adv.Mater.2001, 13,677. (5)Kruk,M.;Jaroniec,M.;Ryoo,R.;Joo,S.H.J.Phys.Chem.B 2000,104,7960. 3300Chem.Mater.2003,15,3300-3307 10.1021/cm020673b CCC:$25.00?2003American Chemical Society Published on Web07/10/2003

相关文档
最新文档