重磁勘探课程设计

重磁勘探课程设计
重磁勘探课程设计

《重磁勘探》课程设计报告

专业:勘查技术与工程

班级:物探1003班

姓名:李涛

学号:201011020309

指导教师:张春灌

二〇一三年元月六日

《重磁勘探》课程设计任务书

目录

第一章引言 (3)

第二章模型设计 (4)

第三章程序实现 (8)

第四章结果分析 (13)

第五章总结 (17)

参考文献 (17)

第一章引言

1.1 课程设计目的和意义

本次课程设计是《重磁勘探》学习的延续(独立设课),目的是巩固所学的重力和磁法勘探的理论知识,加深对基本原理的理解,会用所学程序设计语言(如Matlab,Surfer)等软件完成课程设计题目的程序编写、数据计算,利用现有绘图软件完成数据成图,对所得结果做分析研究,并且交一份报告。

1.2 课程设计内容

两个不同空间位置的球形矿体在地面引起的重力异常。

⑴、设计多个不同空间位置的球形矿体,并用Surfer等绘图软件绘制其平面和主剖面空间位置示意图(假设地面水平);

⑵、推导多个不同空间位置的球形矿体在地面引起重力异常的计算公式;

⑶、利用推导出的公式,用Matlab语言编程实现重力异常的计算。

1.3 课程设计要求

设计两个不同空间位置的球形矿体,并画出其平面和主剖面空间位置示意图(假设地面水平)。

推导两个不同空间位置的球形矿体在地面引起重力异常的计算公式,利用推导出的公式,用Matlab语言编程实现计算重力异常。

根据所提供的课程设计报告格式编写报告,报告中应附上课程设计任务书,报告内容应包括所推导的公式、所编写的程序、结果图件以及对所得结果做的分析研究等。

提交课程设计报告打印件一份和电子件一份。

第二章 模型设计

主要包括计算公式、模型参数、模型图件等。 2.1 主要公式及参数

两个球形地质体产生异常的公式:

2

32

22

22

2

23

22

3

2

12

12

11

3

12

32

22

22

2222

32

12

12

11

1)

(3

4)(3

4)

()

(h Y X

h R G h Y X h R G h Y X h GM h Y X h GM g +++

++=

+++++=

?σπσπ球

三个球形地质体产生异常的公式:

2

32

32

32

3

33

32

3

2

22

22

2

23

22

3

2

12

12

11

3

12

3

2

3232

33

32

32

22

22

2222

32

12

12

11

1)

(3

4)

(3

4)(3

4)

()

()

(h Y X

h R G h Y X

h R G h Y X h R G h Y X h GM h Y X h GM h Y X h GM g +++

+++

++=

+++

+++++=

?σπσπσπ球

若常数G 取6.67*10-3

,剩余密度σ的单位取g/cm 3

,半径R 的单位取m ,中心埋深h 的单位取m ,则重力异常Δg 的单位为mGal 。 2.2 模型图件及相对数值 ⑴.设计一

①.两个球形地质体的参数:

球1:半径:R1=50 埋藏深度:H1=100 球心坐标:(x,y)=(-150,-150) 建立坐标x,y 范围:x: -250 250

y: -250 250

球体密度:σ=0.5g/cm 3

球2:半径:R2= 100 埋藏深度:H2=150 球心坐标:(x,y)=(100,100) 建立坐标x,y 范围:x: -250 250

y: -250 250

球体密度:σ=0.5g/cm 3 ②.模型图件

图2——1

图2——2

⑵.设计二

①.三个球形地质体的参数:

球1:半径:R1=75 埋藏深度:H1=75 球心坐标:(x,y)=(-300,0)

建立坐标x,y范围:x: -400 400

y: -400 400

球体密度:σ=0.5g/cm3

球2:半径: R2=100 埋藏深度:H2=100 球心坐标:(x,y)=(0,200)

建立坐标x,y范围:x: -400 400

y: -400 400

球体密度:σ=0.6g/cm3

球3:半径:R3=150 埋藏深度:H3=150 球心坐标:(x,y)=(250,50)

建立坐标x,y范围:x: -400 400

y: -400 400

球体密度:σ=0.8g/cm3

②.模型图件

图2——3

图2——4

第三章程序实现

主要包括Matlab程序语句,结果图件等。

3.1运行程序语句及结果图件

⑴.两个球形地质体产生异常的运行程序

a=250;

b=250;

clf;

GA=6.67e-003;

DPI=3.1415926;

P=0.5;

R1=50.0;

R2=100.0;

H1=50.0;

H2=150.0;

M1=(4.0/3.0)*DPI*(R1^3)*P;

M2=(4.0/3.0)*DPI*(R2^3)*P;

x=-a:10:a;

y=-b:10:b;

for i=1:length(y)

for j=1:length(x)

z(i,j)=(GA*M1*H1)/(((x(j)+150)^2+(y(i)+150)^2+H1^2)^1.5)+(GA*M2*H2)/(((x(j)-1 00)^2+(y(i)-100)^2+H2^2)^1.5);

end

end

axis([-a,a,-b,b,min(min(z)),max(max(z))]);

colormap(flipud(winter));

surf(x,y,z);

save qiu1.dat z -ascii;

save qiu1 z;

⑵.两个球形地质体产生异常的结果图件

图3——1

图3——2

图3——3

3.2运行程序语句及结果图件

⑴.三个球形地质体产生异常的运行程序

a=400;

b=400;

clf;

GA=6.67e-003;

DPI=3.1415926;

P1=0.5;

P2=0.6;

P3=0.8;

R1=75.0;

R2=100.0;

R3=150.0;

H1=75.0;

H2=100.0;

H3=150.0

M1=(4.0/3.0)*DPI*(R1^3)*P1;

M2=(4.0/3.0)*DPI*(R2^3)*P2;

M3=(4.0/3.0)*DPI*(R3^3)*P3;

x=-a:10:a;

y=-b:10:b;

for i=1:length(y)

for j=1:length(x)

z(i,j)=(GA*M1*H1)/(((x(j)+300)^2+(y(i)-0)^2+H1^2)^1.5)+(GA*M2*H2)/(((x(j)-0)^ 2+(y(i)+200)^2+H2^2)^1.5)+(GA*M3*H3)/(((x(j)-250)^2+(y(i)-50)^2+H3^2)^1.5); end

end

axis([-a,a,-b,b,min(min(z)),max(max(z))]);

colormap(flipud(winter));

surf(x,y,z);

save qiu1.dat z -ascii;

save qiu1 z;

⑵.三个球形地质体产生异常的结果图件:

图3——4

图3——5

图3——6

第四章结果分析

主要包括制图流程、各种图件,并做简要分析。

4.1制图流程

⑴.先在Surfer软件上设计地下地质球体,绘制一幅图,给出球体的坐标,以及球体的半径,如图(2——1)和图(2——3);

⑵.在Surfer软件上设计地下地质球体,绘制一幅图,给出球形地质体的埋藏深度,如图(2——2)和图(2——4);

⑶.在Matlab软件上输入程序的语言,然后运行程序语言,得出球形地质体在地面产生异常的立体图,如图(3——1),图(3——2),图(3——4),图(3——5);

⑷.在Surfer软件上显示地质异常的渐变等值线图,如图(3——3),图(3——6)。

4.2结果图件

图4——1

图4——2

图4——3

图4——4

图4——5

4.3结果分析

⑴.以上图(4——1)到图(4——5),不同地下球形地质体在地面产生地质异常的情况,观察图(4——1)到图(4——4),可以看出不同的地下球形地质体在地面产生的异常不

同;

⑵.观察图(4——1)和图(4——3)对比两个球体或者三个球体产生的异常,可以发现,埋藏深度越浅的球形地质体,其在地面产生的异常越明显,而且半径越大的地质体其在地表产生的异常形状越大;

⑶.观察图(4——2)和图(4——4)可知,其半径越大的地下球形地质体产生异常的范围越大;

⑷.图(4——5)为地质体产生异常的等值线图,可以看出其产生异常曲线是围绕着球形地质体的半径不等的同心圆。

第五章总结

本次的《重磁勘探》课程设计给我们提供了一个很好的实践平台,让我们学到许多课本上没有的知识,而且让我们在学习使用软件操作的同时也对课本知识加以巩固。

本次的课程设计使我对Matlab软件和Surfer软件有了进一步的了解,了解了它的使用方法,以及它的功能,我们可以用Surfer软件绘制图样,以显示地质体的埋藏深度和它的地质坐标。而且可以用它来显示最后得出重力异常的渐变等值线图。我们学会了怎么使用Matlab软件来运行程序以及显示最后的成果图件,即重力异常立体图件。总之,这次课程设计使我们在学习到一些课外知识的同时巩固了课本知识。本次实验同学之间以及同学与老师之间也进行了大量的沟通,使我们出现的问题能够及时的解决,也加深了我们与老师和其他同学的感情,对以后的学习有很大的帮助。

总之,本次课程设计我是受益匪浅,我希望学校和院系以后能够为我们提供更多的像这样的实践平台,来提升我们的基础知识和实践能力。

参考文献

[1] 黄仲良. 石油重、磁、电法勘探[M]. 北京:中国石油大学出版社, 2008年.

实验一:二度直立柱体正演程序设计实验报告

《重磁资料处理与解释》实验一 二度直立柱体正演程序设计 专业名称:地球物理学 学生姓名: 学生学号: 指导老师:王万银、纪新林、纪晓琳、邱世灿提交日期:2016-11-29

目录 1 基本原理 (1) 2 输入/输出数据格式设计 (1) 2.1 场源参数数据格式设计 (1) 2.2 计算点坐标数据格式设计 (1) 2.3 计算结果输出数据格式设计 (2) 2.4 参数文件数据格式设计 (2) 3总体设计 (2) 4测试结果 (3) 4.1 测试参数 (3) 4.2 测试结果 (4) 5结论及建议 (4) 附录:源程序代码 (5)

1 基本原理 在空间直角坐标系o-xyz 中,形体(二度体)模型如图1所示。设该直立六面体x 方向的坐标范围为21~ξξ,z 方向(铅垂向下为正)坐标为21~ζζ;又设该直立六面体剩余密度为σ, 根据正演理论得知,其在空间任意一点 ),,(z y x 处产生的重力异常为 ()()()()22 22ln 2arctan 11z x g G V G x x z z z ξζξσσξξζζξζζ????-???==--+-+-?? ???-???? (1-1) 式中,G 为万有引力常数,在国际单位制中其值为() 2311-m 10676s kg ??/.。 2 输入/输出数据格式设计 2.1 场源参数数据格式设计 场源参数按照一个二度体为一个记录进行设计,在数据文件中占一行。第一列为剩余密度density(g/cm 3);第二列~第三列为x 坐标的起点1ξ和终点2ξ(m);第四列~第五列为z 坐标的起点ζ1和终点2ζ(m ,向下为正)。以上各量均为实型变量,各量的意义见图1所示。 2.2 计算点坐标数据格式设计 计算点坐标数据格式设计为非规则网,采用一个计算点为一个记录的方式设计。第1列保存计算点x 坐标x_coordinate(m),第2列保存计算点z 坐标z_coordinate(m)。以上各量均为实型变量。 图1 直立二度体模型示意图

核磁共振实验

核磁共振实验 发现的背景 所谓核磁共振,是指具有磁矩的原子核在恒定磁场中由电磁波引起的共振跃迁现象。核磁共振的发现,跟核磁矩的研究紧密相关。 1911年,卢瑟福根据a 粒子散射实验提出核原子模型后,直到原子光谱的超精细结构发现以后,1924年泡利才正式提出,原子光谱的超精细结构是核自旋与外电子轨道运动相互作用的结果;原子核应具有自旋角动量和磁矩。 斯特恩创造了分子束方法,对核磁矩作过重要研究。1933年他和弗利胥(O.Frisch )、爱斯特曼(I.Estermann )等人用分子束实验装置测量氢分子中质子和氘核的磁矩。所得结果表明质子磁矩比狄拉克电子理论预言的大2.5倍而氘核磁矩则在0.5到1个核磁子之间。氘核是由质子和中子组成的,由此即可推测中子也有磁矩。这说明尽管中子整体不带电,其内部却有电荷分布和电流效应。这些实验事实,激励了其他人对核的电磁特性的探索。 拉比的分子束磁共振方法对斯特恩实验作了重大改进。改进的关键在于利用了共振现象。二十年代末,拉比访问欧洲时,就在斯特恩的实验室里工作了一年,研究原子磁矩的测量。1929年,他回到哥伦比亚大学开展原子束分子束的研究。后来他受到荷兰物理学家哥特(C.J.Gorter )的启发,并于1938年把哥特射频共振法应用于分子束技术,创立了分子束共振法。 拉比对分子束磁共振方法的研究和布洛赫对核磁共振的研究都是受到了斯特恩的启发。 分子束磁共振方法在1945-1946年间又取得了突破性的进展,这就是通过磁共振的精密测量,发现了核磁共振。 人物介绍 图11.1 布洛 赫 图11.2 珀塞尔 布洛赫 Felix Bloch 珀塞尔 Edward Purcell

微波段电子自旋共振实验报告

微波段电子自旋共振实验 电子自旋共振(ESR )谱仪是根据电子自旋磁矩在磁场中的运动与外部高频电磁场相互作用,对电磁波共振吸收的原理而设计的。因为电子本身运动受物质微观结构的影响,所以电子自旋共振成为观察物质结构及其运动状态的一种手段。又因为电子自旋共振谱仪具有极高的灵敏度,并且观测时对样品没有破坏作用,所以电子自旋共振谱仪被广泛应用于物理、化学、生物和医学生命领域。 一. 实验目的 1. 本实验的目的是在了解电子自旋共振原理的基础上,学习用微波频段检测电子自旋共振信号的方法。 2. 通过有机自由基DPPH 的g 值和EPR 谱线共振线宽并测出DPPH 的共振频率,算出共振磁场,与特斯拉计测量的磁场对比。 3. 了解、掌握微波仪器和器件的应用。 4. 学习利用锁相放大器进行小信号测量的方法。 二. 实验原理 具有未成对电子的物质置于静磁场B 中,由于电子的自旋磁矩与外部磁场相互作用,导致电子的基态发生塞曼能级分裂,当在垂直于静磁场方向上所加横向电磁波的量子能量等于塞曼分裂所需要的能量,即满足共振条件B ?=γω,此时未成对电子发生能级跃迁。 Bloch 根据经典理论力学和部分量子力学的概念推导出Bloch 方程。Feynman 、Vernon 、Hellwarth 在推导二能级原子系统与电磁场作用时,从基本的薛定谔方程出发得到与Bloch 方程完全相同的结果,从而得出Bloch 方程适用于一切能级跃迁的理论,这种理论被称之为FVH 表象。 原子核具有磁矩: L ?=γμ; (1) γ称为回旋比,是一个参数;L 表示自旋的角动量; 原子核在磁场中受到力矩: B M ?=μ; (2)

《地震勘探原理》课设报告

目录 一、工区概况 (2) 二、完成工作量 (2) 三、成果(资料)解释 (3) 四、成果分析 (5) 五、收获与建议 (5)

一、本次设计的目的及意义 地震勘探的生产工作主要有三个基本环节即野外工作采集、室内资料处理和地震资料解释。野外工作主要是通过布置测线、人工激发地震波来记录地面震动情况。室内资料处理就是对原始资料进行各种去粗取精、去伪存真的加工工作灯,以获取各种资料。地震资料解释的任务就是经计算机处理得到地震剖面。地震剖面上的许多现象可以反映地下的真实情况,而地震资料的解释是三者里面最重要的环节,通过工作站实际操作,训练我们对地震资料进行构造解释的操作能力,最终使我们达到:学会利用先进的地震资料解释工作站和地震解释软件Landmark来进行地震书籍的加载,地震层位的标定,地震层位的追踪对比,在地震资料上分析和解释各种断层,以及地震构造图的编制方法。同时,还要学会综合地震地质资料对构造解释结果进行分析,对地层在地质历史时期的沉积情况和构造运动作出必要的分析,进而对含油气有利地带进行评价和预测,最终编制报告。本次课程设计是理论联系实际的具体表现,是培养我们分析问题、解决问题

能力的一个必不可少的环节,通过对地震资料解释软件Landmark的使用,让学生对工作站和地震解释软件有一个初步的认识,能为毕业后从事地震勘探工作奠定良好的基础。 一、工区概况 1、工区位置 本区位于黑龙江省松辽盆地北部龙南油田(大庆市泰康县境内),地震测线南起93.3,北至99.9,西起439.5,东至443.3,工区南北长6.6Km,东西宽3.9Km,面积约23.5平方公里。 地球坐标:东经124°18'—124°24' 北纬46°09'—46°14' 原点位置:439.5/99.3 原点坐标:x=5115246,y=21602618 主测线方位角90°,联络线与之正交,测网密度为0.3×00.3Km。 区域构造位置:本区位于齐家—古龙凹陷和龙虎泡大安阶地两个构造的交汇处,在龙虎泡构造向南延伸倾伏的鼻状构造上。 2、勘探概况及石油地质特征 本工区勘探程度较高,从“五一”型地震仪到模拟磁带仪、直到数字地震仪勘探都在这里进行过。1986—1987年在工区内完成了2×4Km测网的数字地震详查工作,1991—1992年在此地区进行了1×2Km测网的高分辨率地震勘探工作,工区内现有四口深井。我们小组将研究其中G13与G36两口深井。 龙南油田主要储层为葡萄花油层和黑帝庙油层。沉积相研究表明葡萄花油层属三角洲前缘水下分流河道砂,是层状岩性—构造油藏。 T06层位地震地质层位特征: 龙南油田T06层位反射:相当于嫩二段顶面反射,T06反射波为3个同相轴组成,南部反射能量相对弱,北部反射能量相对较强,但其连续性都较好,全区可容易连续追踪对比,采用第一相位成图。 钻井深度及地震层位的相应关系: 本工区内共有四口井:G13井、G36井、G38井和G40井,各井在地震剖面上位为:G13井,在97.5测线的195 CDP点 G36井,在98.7测线的167 CDP点 G38井,在441.0测线的175 CDP点 G40井,在440.4测线的345 CDP点 地震剖面资料描述:

磁共振图像后处理算法设计

地理与生物信息学院 2012/ 2013 学年第二学期 实验报告 课程名称:医学成像技术 实验名称:磁共振图像后处理算法设计 班级学号: B10090405 学生姓名: 陈洁 指导教师: 戴修斌 日期:2013 年 5 月

一、实验题目:磁共振图像后处理算法设计 二、实验内容: 1.对图像进行去除噪声操作 ; 2.对图像进行灰度变换操作 ; 三、实验目的: 1.加强下同学们实际的动手编程能力 ; 2.重在体验和过程 ; 四、 实验过程: 实验1:对图像进行去除噪声操作: 1.操作步骤: 1) 对图像加入高斯噪声 2) 使用中值滤波对图像进行去噪处理 3) 模板尺寸设为5×5,也可自己设定 4) 图像边缘缺失部分使用对称方法补足 51141671 81 91 71819151141611 21 31 1121311121511471 81 71 51113121161481 311691 91 1471 81 51718171 51711481 91 1691811691 91

2. 算法实现流程: 1) 读入图像函数:imread(),中值滤波函数:medfilt2(); 实验2:对图像进行灰度变换操作 1.操作步骤: 1) 原图像灰度范围[50 150]内的像素灰度值转成[10 250]范围; 2) 原图像灰度范围[50 150]内的像素灰度值转成[20 200]范围; 2.算法实现流程: 源代码: clear;clc; iptsetpref('ImshowBorder','tight'); I = imread('C:\Documents and Settings\nupt\桌面\4.bmp'); J = imnoise(I,'gaussian',0.02,0.02); K = medfilt2(J,[5,5]); figure,imshow(I),title('原图'); figure,imshow(J),title('高斯噪声'); figure,imshow(K),title('中值滤波'); f (x , y ) a m b n g (x , y ) ?? ?? ???>≤≤+---<=b y x f n b y x f a m a y x f a b m n a y x f m y x g ),( ),( ]),([),( ),(

电子自旋共振实验报告

微波电子自旋共振 【摘要】本文通过电子自旋共振实验,解释恒定磁场中的电子自旋磁矩在射频电磁场 的作用下会发生磁能级间的共振跃迁现象。 一、引言 电子自旋的概念首先由Pauli于1924年提出。而电子自旋共振实验则是从1945年开始才发展起来的一项新技术。 电子自旋共振研究的对象是具有未偶电子的物质,如具有奇数个电子的原子、分子、内电子壳层未被充满的离子、受辐射作用产生的自由基及半导体、金属等。通过共振谱线的研究,可以获得有关分子、原子及离子中未偶电子的状态及其周围环境方面的信息,从而得到有关物质结构和化学键的信息,故电子自旋共振是一种重要的近代物理实验技术,在物理、化学、生物、医学等领域有广泛用途。 “自旋”概念的明确提出:1925年,两位年轻的荷兰学生乌伦贝克和哥德斯密特,“为了解释反常塞曼效应”,受泡利不相容原理的启发,明确提出了电子具有自旋的概念,并证明了“自旋”就是泡利提出的“新自由度”。1926年,海森伯和约旦引进自旋S,用量子力学理论对反常塞曼效应作出了正确的计算。1927年,泡利引入了泡利矩阵作为自旋操作符号的基础,引发了保罗-狄拉克发现描述相对论电子的狄拉克方程式。 电子自旋共振(ESR,Electron Spin Resonance)是一种奇妙的实验现象,也被称为电子顺磁共振(EPR,Electron Paramagnetic Resonance)。它利用具有未偶电子的物质在外加恒定磁场作用下对电磁波的共振吸收特性,来探测物质中的未偶电子,研究其与周围环境的相互作用,从而获得有关物质微观结构的信息。电子自旋共振现象直到1944年才由苏联喀山大学的扎沃伊斯基(E.K.Зabouchuǔ)在实验中观察到。 二、实验原理 1、量子力学解释 μ的关系为: 电子具有自旋,其自旋角动量Pe和自旋磁矩e 图1 自旋能级在磁场中的取向 g为朗德因子,Bμ为玻耳磁子,其值为5.7883785×1O-11MevT-1。若电子处于外磁场 μ在空间的取向是量子化的,Pe在Z方向的B(沿Z方向)中,据量子力学可知Pe和e

-地震勘探实验报告

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连 接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

地震课设报告-长江大学

地震课设报告-长江大学

前言 石油天然气勘探就是为了寻找和查明油气资源而利用各种勘探手段了解地质状况,认识油气的生成、运移、聚集、保存等条件,综合评价油气远景,确定油气聚集的有利地区,找到储油气的圈闭,探明油气田面积,摸清油气藏情况和产出能力。地震勘探原理在油气田勘探起着不可或缺的作用。地震勘探原理是资源勘查工程的一门专业基础课程,在资源勘查工程专业中占据着不可或缺的重要地位。掌握好地震勘探原理,将对我们在实际工作中能运用地震勘探方法进行矿产资源勘查、工程地质勘查、地质灾害调查等方面的工作,也为我们进一步深造及研究工作奠定坚实的基础。通过学习地震勘探原理和此次来之不易的实习机会, 有利于我们初步学运用所学的基础理论知识解决专业中的问题, 提高分析问题, 解决实际问题的能力, 训练逻辑思维能力和科学思维方法, 渗透学科前沿问题,懂得所学的基本理论的意义及价值。地震勘探原理课程设计将理论知识运用于实际,通过此次的地震课设学习,我们将掌握以下内容: 1、地震剖面的对比解释;

2、绘制等t0构造图,包括断点组合,等值线的勾绘等; 3、绘制真深度构造图的一种方法,即将等t0构造图转换为真深度构造图; 4、地震成果的地质分析; 5、编写解释文字报告。 在这短短的几天时间里,通过此次的课程设计,我们不仅加深掌握了理论课程的学习内容,更提高了以后实际工作能力。 一、工区概况 1.1工区位置 本区位于黑龙江省松辽盆地北部龙南油田(大庆市泰康县境内),地震测线南起93.3,北至99.9,西起439.5,东至443.3,工区南北长6.6Km,东西宽3.9Km,面积约23.5平方公里。 地球坐标为东经124?18'—124?24' 北纬46?09'—46?14' 原点位置:439.5/99.3 原点坐标:x=5115246,y=21602618 主测线方位角90?,联络线与之正交,测网密度为0.3*00.3Km。

重磁数据处理大报告-陈亮

中国地质大学(武汉)地空学院 姓名:陈亮 班级: 061132 学号: 480 指导老师:杨宇山

目录 一、地质任务3 二、工区概况3 三、数据整理4 一、重力资料数据整理4 二、磁场资料数据整理6 四、材料图4 五、研究区重磁异常分析10 六、重磁资料数据处理13 1、重力场延拓13 2、磁场化极处理 16 3、重力场的分离 17 4、磁场的分离18 5、重磁资料导数换算处理20 七、局部重磁异常分析25 八、学习总结25

一、地质任务 (1)将布格重力异常Δg和磁异常ΔT整理出来,计算布格重力异常和磁异常的总精度。 (2)利用surfer绘制测点点位图(即实际材料图),布格重力异常平面图,磁异常ΔT平面图。 (3)根据密度统计表分析研究区的物性特征。 (4)分析研究区重磁异常特征。 (5)对重磁资料进行处理(化极、延拓、导数换算等并绘制结果图件),并进行断裂构造分析。 (6)提取与矿有关的局部重磁异常(绘制结果图件),并进行对应分析,区分矿与非矿异常、磁铁矿与磁铁矿的可能分布范围。 (7)撰写报告。 二、工区概况 研究区位于我国中东部地区,地理坐标为东经°—°,北纬°—°,处在我国非常重要的铁多金属矿成矿带西段。在以往地质、物探工作基础上,2015年3月人们在研究区中部完成了面积为5km2(×2km,线距50m,点距20m,测向方位角0度)的1:5000地面重磁扫面工作。 此次重力施工设计精度为50μGal,磁测施工设计精度为5nT,共完成了3116个测点,检查点159个,重力观测误差为μGal,磁测观测误差为;重力近区地改范围0~20m,在野外完成,采用差分GPS(RTK)进行8方位方形域测量,检查点59个,误差为μGal。点位测量采用RTK差分GPS进行测量,检查313个点,高程测量误差为,平面位置测量误差为。 研究区铁矿赋存于燕山期早的中酸性岩与三叠系地层的接触部位,研究区经历了后期的构造变动,断裂构造发育,浅表磁铁矿经历了风化和淋滤作用后,形

核磁共振成像实验报告

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名 同组者: 教师: 核磁共振实验 【实验目的】 1、理解核磁共振的基本原理; 2、理解磁体的中心频率和拉莫尔频率的关系,并掌握拉莫尔频率的测量方法; 3、掌握梯度回波序列成像原理及其成像过程; 4、掌握弛豫时间的计算方法,并反演 T1和T2谱。 【实验原理】 一.核磁共振现象 原子核具有磁矩,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B 0作圆周运动,将质子磁矩的这种运动称之为进动,如图1所示。 图1 质子磁矩的进动 在主磁场中,宏观磁矩像单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor )方程:. 0/2f B γπ= 二、施加射频脉冲后(氢)质子状态 当生物组织被置于一个大的静磁场中后,其生物组织内的氢质子顺主磁场方向的处于低能态而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态。施加的射频脉冲越强,

持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。 如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图2所示。这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图3所示。 图2 90°脉冲后横向磁化矢量达到最大 图3 180°脉冲后的横向磁化分量为0 三、射频脉冲停止后(氢)质子状态 脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90°脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图4所示。 图4 90度脉冲停止后宏观磁化矢量的变化 1. 纵向弛豫时间(T1) 90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

课程设计报告(模板)

《地震勘探课程设计》 报告 院系 班级 学生 学号 指导教师 完成日期2014年3月12日 长江大学工程技术学院

目录 一、课程设计目的 (3) 二、课程设计的容 (3) 三、课程设计原理 (3) 四、工区数据 (4) 五、课程设计步骤 (5) 1、建立工区 (5) 2、资料加载 (8) 3、层位标定和层位追踪 (10) 4、断层解释 (13) 5、构造图绘制 (14) 六、心得体会 (15)

一、课程设计目的 地震勘探解释课程设计是我们勘查技术与工程专业和资源勘查工程专业教学中的一个重要的实践性训练环节,通过上机实际操作,训练我们对地震资料进行常规构造解释的实际能力,最终使我们达到:学会利用地震解释软件来进行地震数据的加载,地震层位的标定,地震层位的追踪对比,在地震资料上分析和解释各种断层,以及地震构造图的编制方法。同时,还要学会综合地震地质资料对构造解释结果进行分析,进而对含油气有利地带进行评价和预测,最终编制成果报告。 二、课程设计的容 本次课程设计是理论联系实际的具体表现,是培养学生分析问题、解决问题能力的一个必不可少的环节,主要分为两部分:一、通过对地震资料解释软件Discovery的使用,追踪解释层位数据;二、通过surfer软件学习成图。使学生对地震常用的解释软件有一个初步的认识,能为毕业后从事地震勘探工作奠定良好的基础。地震解释课程设计是勘查技术与工程专业教学中的一个重要的实践性训练环节。通过实验主要训练学生对地震资料进行常规构造解释的实际能力,具体要使学生达到: 1.了解人机联作的基本知识; 2.初步学会地震解释软件的操作流程(工区建立、资料加载、合成记录制作、层位标定、层位追踪、断层解释、断点组合); 3. 进一步巩固和掌握地震资料解释的基本功; 4.初步学会地震成果的地质分析; 5.初步学会编写地震资料解释文字报告;

地磁作业(转换、延拓)

应用地磁学实验报告 实验2——磁异常转换计算 学号: 10105218 姓名:朱占升 一、实验目的 1、掌握水平圆柱体磁场异常分布; 2、用Matlab实现水平圆柱体的磁异常场正演计算; 3、利用正演结果进行磁异常分量之间的换算; 4、通过程序换算认知测点间距即采样点数对换算效果的影响; 5、加深对磁法勘探的理解认识; 二、程序代码 %磁法异常换算 %剖面为北向A’=0度,则有I=is。 %所测数据均在同一水平面,柱体深30m,半径8m,测点数为100, %测点间距依次选取2 4 6 8m clc clear fprintf('\n柱体深30m,半径8m,测点数为100,点距依次选取2 4 6 8m\n'); for b=2:2:8 fprintf('\n点距取%dm\n',b); figure('color','w','NumberTitle','off ','name','za-→ha'); x2=1:b:100*b; %点距为bm x1=x2-100*b/2; h=30; %柱深 R=8; %柱体半径 m s=pi*(R^2);%柱体截面积 k=0.2; %磁铁矿磁化率 u=4*pi*10^(-7); %磁导率 B=50000; %nT磁感应强度 H=B/u ; %磁化场强度 M=k*H; %磁化强度 m=M*s; %磁矩 a=0; %剖面为北向A’=0度. I=90/180*pi; %倾斜角 is=atan(tan(I)*csc(pi/2-a)); hold on za=u*m*((h.^2-x1.^2)*sin(is)-2*h*x1.* cos(is))./(2*pi*(x1.^2+h.^2).^2); hax=-1*u*m*((h.^2-x1.^2)*cos(is)+2*h* x1.*sin(is))./(2*pi*(x1.^2+h.^2).^2); plot(x2, za,'.-m'); plot(x2, hax,'.-g'); title('za转换为hax') xlabel(' X剖面走向/m'); ylabel('磁异常nT'); c=[0.4268 0.1749 0.1103 0.0813 0.0645 0.0536 0.0458 0.0400 0.0355 0.1759]; n=length(c); %转换系数个数 m=length(za); for i=(n+1):(m-n) haxz=0; for j=1:n haxz=haxz+c(j)*(za(i+j)-za(i-j)); end haxzh(i)=haxz; end for i=1:80 haxzh1(i)=haxzh(i+10); end x=((n+1)*b):b:(100*b-n*b); plot(x,haxzh1,'.-') legend('za','hax','za→hax'); end

核磁共振成像实验报告

核磁共振成像实验 【目的要求】 1.学习和了解核磁共振原理和核磁共振成像原理; 2.掌握MRIjx 核磁共振成像仪的结构、原理、调试和操作过程; 【仪器用具】 MRIjx 核磁共振成像仪、计算机、样品(油) 【原 理】 磁共振成像(MRI )是利用射频电磁波(脉冲序列)对置于静磁场B 0中的含有自旋不为零的原子核(1H )的物质进行激发,发生核磁共振,用感应线圈检测技术获得物质的组织驰豫信息和氢质子密度信息(采集共振信号),用梯度磁场进行空间定位、通过图像重建,形成磁共振图像的方法和技术。 具体的讲,核磁共振是利用核磁共振现象获取分子结构、样品内部结构信息的技术。当具有自旋的原子核的磁矩处于静止外磁场中时会产生进动和能级分裂。在交变磁场作用下,自旋的原子核会吸收特定频率的无线电射频电磁波,从较低的能级跃迁到较高能级。在停止射频脉冲后,原子核按特定频率发出射电信号,并将吸收的能量释放出来,被物体外的接受器收录,经电子计算机处理获得图像,这就是做核磁共振成像过程。 MRI 的特点: ● 具有较高的物质组织对比度和组织分辨力,对软组织分辨率极佳,能清晰地显示软组织、软骨结构,解剖结构和医学上的病变形态,显示清楚、逼真。 ● 多方位成像,能对被检查部位进行横断面、冠状面、矢状面以及任何斜面成像。 ● 多参数成像,获取T 1加权成像(T 1W1):T 2加权成像(T 2W2)、质子密度加权成像(PDW1),在影像上取得物质的组织之间、组织与变化之间T 1、T 2和PD 的信号对比,在医学上对显示解剖结构和病变敏感。 ● 能进行形态学、功能、组织化学和生物化学方面的研究。 ● 以射频脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创。 一、核磁共振原理 产生核磁共振信号必须满足三个基本条件:(1)能够产生共振跃迁的原子核;(2)恒定的静磁场(外磁场、主磁场)B 0;(3)产生一定频率电磁波的交变磁场,射频磁场(RF );即:“核”:共振跃迁的原子核;“磁”:主磁场B 0和射频磁场RF ;“共振”:当射频磁场的频率与原子核进动的频率一致时原子核吸收能量,发生能级间的共振跃迁。 1. 原子核的自旋和磁矩 原子核由质子和中子组成,原子核有自旋运动,可以粗略的理解为原子核绕自身的轴向高速旋转的运动,对应有确定的自旋角动量,反映了原子核的内禀特性。自旋的大小与原子核中的核子数及其分布有关,质子数和中子数均为偶数的原子核,自旋量子数I=0,质量数为奇数的原子核,自旋量子数为半整数,质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。原子核自旋角动量的具体数值由原子核的自旋量子数I 决定, )(1+=I I l I 。 原子核具有电荷分布,自旋时形成循环电流,产生磁场,形成磁矩,磁矩的方向与自旋角动量方向一致,大小I P γγμ==,P 是角动量,γ是磁旋比,等于

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

地震勘探实验报告记录

地震勘探实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB 口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

《信号分析与处理》课程设计-物探专业

《信号分析与处理》课程设计报告 专业:勘察技术与工程 班级:物探1003班 姓名:李涛 学号:201011020309 指导教师:宁忠华老师 二〇一三年元月六日

目录 一课程设计的目的和基本要求 (2) 二课程设计的主要内容 (2) 三实验结果与分析 (4) 四体会与建议 (16) 参考文献 (16)

一、课程设计的目的和基本要求 本课程设计是信号分析与处理教学环节的延续(独立设课),目的是巩固所学的信号分析与处理基本理论知识,掌握用计算机对信号进行采集、处理基本方法。 通过本课程的教学,学生应做到: (1)了解应用计算进行信号分析与处理的基本过程和基本方法。 (2)能正确应用Matlab实现基本的信号分析与处理。 (3)加深对信号分析与处理基本理论知识的理解。 二、课程设计的主要内容 1.了解Matlab软件特点,熟悉Matlab编程环境。 2.数字滤波器设计 调用Matlab信号处理工具箱函数,采用频率采样法设计数字滤波器。 3.给定一理论信号S(t),包含两个频率成分f1和f2或多个频率成分,观察其时域波形,对其进行快速傅里叶变换,观察其频谱。分析讨论结果。 提示:S(t)=cos 2πf1nΔt+cos2πf2nΔt 式中 n=1,2,3,…,256, Δt=0.001s,f 1=70Hz,f 2 =125Hz 4.数字滤波实现 给定一理论信号S(t),包含两个频率成分f1和f2,首先选择合适的采样率对其进行采样得到数字信号,观察其时域波形,对其进行快速傅里叶变换,观察其频谱。 提示:S(nΔt)=sin2πf1nΔt+sin2πf2nΔt 式中 n=1,2,3,…,256, Δt=0.002s,f 1=20Hz,f 2 =75Hz 将上述信号分别经过低通和高通两种数字滤波器,分别滤除f1频率成分和f2频率成分,观察输出时域波形及频谱。分析比较处理前后的结果。 5.设计一带通滤波器BP(12,80),对一给定的地震数据进行带通滤波;用给定的显示程序(shot.exe)显示滤波前后的地震数据;滤波效果。 地震数据如下图

重磁实验报告(地大)

重磁资料采集与处理实习 一、实习目的 (1)通过本次实习,加深对理论知识的认识和理解。 (2)熟悉Grapher和sufer以及matlab软件的使用,会进行基本的操作和数据处理。 二、实习内容 (1)重磁数据的光滑、拟合、插值和网格化 1、利用Grapher软件实现磁异常曲线的光滑、拟合与去噪 上图红线代表线性光滑后的结果,可见磁异常在局部呈锯齿状,很可能地下分布有基性的喷出岩;蓝线代表10阶多项式拟合后的结果,可以反映区域场的变化情况。

将原始曲线改为散点图,可看出光滑后的效果。 2、利用Surfer软件实现磁异常数据的网格化与显示 测区内测点分布图如下:

打开sufer,点击Grid中出现Data,然后选中目标文件进行网格化,将网格化的文件在sufer中显示如下:

(2)组合长方体重力异常计算与分析

1、计算出多个长方体的重力异常,并将结果导出为GRD格式Model 1: X1 = -100; %长方体X方向起点坐标 X2 = 100; %长方体X方向终点坐标 Y1 = -100; %长方体Y方向起点坐标 Y2 = 100; %长方体Y方向终点坐标 Z1 = 10; %长方体Z方向起点坐标 Z2 = 55; %长方体Z方向终点坐标 经过matlab运行后导出mod_1.grd Model 2: X1 = 120; %长方体X方向起点坐标 X2 = 180; %长方体X方向终点坐标 Y1 = 120; %长方体Y方向起点坐标 Y2 = 180; %长方体Y方向终点坐标 Z1 = 1; %长方体Z方向起点坐标 Z2 = 20; %长方体Z方向终点坐标

电子科技大学学院

电子科技大学生命科学与技术学院标准实验报告 (实验)课程名称《医学成像技术》 电子科技大学教务处制表

电子科技大学 实验报告 学生姓名:陈睿黾学号:2209101028指导教师:廖小丽 实验地点:人文楼418 实验时间:2006.6.2 一、实验室名称:医疗仪器实验室 二、实验项目名称:傅立叶变换核磁共振一维、二维成像 三、实验学时:4学时 四、实验原理: 利用样品的原子核在梯度磁场及高频电磁场的激励下产生的自发辐射信号的频率和相位因空间位置不同而不同来进行成像。 五、实验目的: 对磁共振成像整个过程进行了解,同时对每一个参数改动后对磁共振信号及图像影响的效果有直观的认识,了解一维、二维成像原理,进一步熟悉磁共振成像原理。 六、实验内容: 采用定标样品(三注油孔)对一维成像(空间频率编码)有所认识。对梯度场各参数对一维成像的影响进行观察。 了解瞬间梯度场,对二维成像(空间相位编码)有所认识。了解瞬间梯度场的梯度大小和瞬间梯度保持时间对二维成像图形的影响。 七、实验器材: GY-CTNMR-10KY核磁共振成像实验仪、计算机、注油三孔实验样品 八、实验步骤: 1.按实验要求连线。 2.开机预热。

3.将注油三孔样品放入样品池中,打开磁共振成像软件,设置共振频率:按下“参数设置”页面再按下“自动采集”出现采集的信号图及傅立叶变换的频谱图,调节“频率设置”中间的按钮,直至出现波形符合预期目标的图形。 4.调节匀场:分别调节电源上匀场调节电位器并同时调节软件中的XY 匀场至傅立叶频谱图中峰最尖锐最高信号最长,适当调节共振频率,使波形看上去尽量平滑。 5.设置Z 梯度场和一维成像:调偏Z 匀场调节使峰变宽变低,同时出现Z 轴线上投影的一维成像信号。调节Z 梯度和工作频率,使得信号频谱占半个屏幕同时在中间。 6.二维磁共振成像记录:按下“成像记录及操作”,然后按下“记录”等待2分钟,记录结束计算机会提示结束并且“采集”不再闪动。按下“二维傅立叶变换”这时你调节“行选择”可以看到每一列二次傅立叶变换的谱图。按下“成像彩色显示”即可得到所需的成像彩色密度图。 九、 实验数据及结果分析: 1.一维成像: 开机预热,磁铁温度在34.62℃,匀场电流为19.4mA 。 放入注油三孔样品,打开核磁共振成像软件,调节共振频率及相关参数,通过观察,发现在第一脉冲宽度为12S μ、第二脉冲宽度为24S μ、脉冲间隔为15mS 、XY 匀场电流分别为38mA 、5mA 、共振频率在18.7402MHz 附近时波形较好、噪声较小。 观察自由衰减信号及其频谱,逐渐加大梯度场观察到信号及频谱的变化,在无梯度场时无法区分任何空间信息,如图(1)。

铁磁共振实验报告

一、实验背景 早在1935年,著名苏联物理学家兰道(Lev Davydovich Landau 1908—1968)等就提出铁磁性物质具有铁磁共振特性.经过十几年,在超高频技术发展起来后,才观察到铁磁共振吸收现象,后来波耳得(Polder )和侯根(Hogan )在深入研究铁磁体的共振吸收和旋磁性的基础上,发明了铁氧体的微波线性器件,使得铁磁共振技术进入了一个新的阶段.自20世纪40年代发展起来后,铁磁共振和核磁共振、电子自旋共振等一样,成为研究物质宏观性能和用以分析其微观结构的有效手段. 微波铁磁共振现象是指铁磁介质处在频率为?0的微波电磁场中,当改变外加恒定磁场H 的大小时,发生的共振吸收现象.通过铁磁共振实验,我们可以测量微波铁氧体的共振线宽、张量磁化率、饱和磁化强度、居里点等重要参数.该项技术在微波铁氧体器件的制造、设计等方面有着重要的应用价值. 二、实验目的 1.了解微波谐振腔的工作原理,学习微波装置调整技术. 2.掌握铁磁共振的基本原理,观察铁磁共振现象. 3.测量微波铁氧体的共振磁场B ,计算g 因子. 三、实验原理 1.磁共振 自旋不为零的粒子,如电子和质子,具有自旋磁矩.如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂后两能级间的能量差为: 02B h E πγ=? (1) (其中,γ为旋磁比,h 为普朗克常数,0B 为稳恒外磁场). 又有e m e g 2=γ,故0022B g B h m e g E B e μπ =?=?.(其中,g 即为要求的朗德g 因子,其值约为2.πμe B m eh 4=为玻尔磁子, 其值为1241074.29--??T J ) 若此时再在稳恒外磁场的垂直方向加上一个交变电磁场,该电磁场的能量为

相关文档
最新文档