物理人教版选修3-5原子结构练习题

物理人教版选修3-5原子结构练习题
物理人教版选修3-5原子结构练习题

物理人教版选修3-5原子结构练习题

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原子结构练习题

1.(多选题)关于太阳光谱,下列说法正确的是( )

A .太阳光谱是吸收光谱

B .太阳光谱中的暗线是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的

C .根据太阳光谱中的暗线,可以分析太阳的物质组成

D .根据太阳光谱中的暗线,可以分析地球大气层中含有的元素种类

2.μ子与氢原子核(质子)构成的原子称为μ氢原子(hydrogen muon

atom),它在原子核物理的研究中有重要作用.右图为μ氢原子的能级

示意图.假定光子能量为E 的一束光照射容器中大量处于n =2能级的

μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν

5和ν6的光,且频率依次增大,则E 等于( )

A .()13υυ-h

B .()65υυ-h

C .3υh

D .4υh

3.可见光光子的能量在1.61~3.10 eV 范围内,若氢原子从高能级跃迁到

量子数为n 的低能级的谱线中有可见光,根据氢原子能级图可判断n 为

( )

A .1

B .2

C .3

D .4

4.(多选题)已知氢原子的能级规律为En =E1n2(其中E1=-13.6 eV ,n =1,2,3…),现用光子能量为12.75 eV 的光子去照射一群处于基态的氢原子,则下列说法正确的是( )

A .照射时不能被基态的氢原子吸收

B .可能观测到氢原子发射不同波长的光有3种

C .氢原子发射不同频率的光,存在可见光

D .可能观测到氢原子发射不同波长的光有6种

5.(多选题)若原子的某内层电子被电离形成空位,其他层的电子跃迁到该空位上时,会将多余的能量以电磁辐射的形式释放出来,此电磁辐射就是原子的特征X 射线.内层空位的产生有多种机制,其中一种称为内转换,即原子中处于激发态的核跃迁回基态时,将跃迁时释放的能量交给某一内层电子,使此内层电子电离而形成空位(被电离的电子称为内转换电子).Po 214的原子核从某一激发态回到基态时,可将能量E 0=1.416 MeV 交给内层电子(如K 、L 、M 层电子,K 、L 、M 标记原子中最靠

近核的三个电子层)使其电离,实验测得从Po 214原子的K 、L 、M 层电离出的电子的动能分别为E K =

1.323 MeV 、E L =1.399 MeV 、E M =1.412 MeV.则可能发射的特征X 射线的能量为( )

A .0.013 MeV

B .0.017 MeV

C .0.076 MeV

D .0.093 MeV

6.根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为E ′的轨道,辐射出波长为λ的光子,h 表示普朗克常量,c 表示真空中的光速,则E ′等于( )

A .E -h λc

B .E +h λc

C .E -h c λ

D .

E +hc λ

7.(多选题)在金属中存在大量的价电子(可理解为原子的最外层电子),价电子在原子核和核外的其他电子产生的电场中运动.电子在金属外部时的电势能比它在金属内部作为价电子时的电势能大,前后两者的电势能差值称为势垒,用符号V表示.价电子就像被关在深为V的方箱里的粒子,这个方箱叫做势阱,价电子在势阱内运动具有动能,但动能的取值是不连续的,价电子处于最高能级时的动能称为费米能,用Ef表示.用红宝石激光器向金属发射频率为ν的光子,具有费米能的电子如果吸收了一个频率为ν的光子而跳出势阱,则( )

A.具有费米能的电子跳出势阱时的动能Ek=hν-V-Ef

B.具有费米能的电子跳出势阱时的动能Ek=hν-V+Ef

C.若增大激光器的发光强度,具有费米能的电子跳出势阱时的动能增大

D.若增大激光器的发光强度,具有费米能的电子跳出势阱时的动能不变

8.在氢原子光谱中,电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系.若一群氢原子自发跃迁时发出的谱线中只有2条属于巴耳末线系,则这群氢原子自发跃迁时最多可发出________条不同频率的谱线.

9.氢原子第n能级的能量En=E1

n2

,其中E1是基态能量,而n=1、2、3….若一氢原子发射能量为

3

16

E1的光子后处于比基态能量高出-

3

4

E1的激发态,则氢原子发射光子前处于第________能级,

发射光子后处于第________能级.

10.(14分)已知锌板的截止波长λ0=372 nm.按照玻尔理论,氢原子基态能量为-13.6 eV,试通过计算说明利用氢原子光谱中的光能否使锌板发生光电效应(真空中的光速c=3.00×108 m/s,普朗克常量h=6.63×10-34 J·s)

11.(16分)氢原子的能级图如图所示.某金属的极限波长恰等于氢原子由n=4能级跃迁到n=2能级所发出的光的波长.现在用氢原子由n=2能级跃迁到n=1能级时发出的光去照射,则从该金属表面逸出的光电子的最大初动能为多少.

高中物理-《原子结构》单元测试题

高中物理-《原子结构》单元测试题 一、选择题 1.卢瑟福粒子散射实验的结果是 A.证明了质子的存在 B.证明了原子核是由质子和中子组成的 C.说明了原子的全部正电荷和几乎全部质量都集中在一个很小的核上 D.说明原子中的电子只能在某些不连续的轨道上运动 2.英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象。图中O 表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的图是( ) 3.氢原子辐射出一个光子后,根据玻尔理论,下述说法中正确的是( ) A.电子绕核旋转的半径增大B.氢原子的能量增大 C.氢原子的电势能增大D.氢原子核外电子的速率增大 4.下列氢原子的线系中波长最短波进行比较,其值最大的是 ( ) A.巴耳末系B.莱曼系C.帕邢系D.布喇开系 5.关于光谱的产生,下列说法正确的是( ) A.正常发光的霓虹灯属稀薄气体发光,产生的是明线光谱 B.白光通过某种温度较低的蒸气后将产生吸收光谱 C.撒上食盐的酒精灯火焰发出的光是明线光谱 D.炽热高压气体发光产生的是明线光谱 6.仔细观察氢原子的光谱,发现它只有几条分离的不连续的亮线,其原因是( ) A.观察时氢原子有时发光,有时不发光 B.氢原子只能发出平行光 C.氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的 D.氢原子发出的光互相干涉的结果 7.氢原子第三能级的能量为 ( ) A.-13.6eV B.-10.2eV C.-3.4eV D.-1.51eV 8.下列叙述中,符合玻尔氢原子的理论的是

1 2 3 4 5 ∞ ( ) A .电子的可能轨道的分布只能是不连续的 B .大量原子发光的光谱应该是包含一切频率的连续光谱 C .电子绕核做加速运动,不向外辐射能量 D .与地球附近的人造卫星相似,绕核运行,电子的轨道半径也要逐渐减小 9.氦原子被电离一个核外电子后,形成类氢结构的氦离子。已知基态的氦离子能量为E 1=-54.4 eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是 ( ) A .40.8 eV B .43.2 eV C .51.0 eV D .54.4 eV 10.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用。图为μ氢原子的能级示意图。假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光,且频率依次增 大 , 则E 等 于 ( ) A .h (ν3-ν1) B .h (ν5+ν6) C .h ν3 D .h ν4 11.已知氢原子基态能量为-13.6eV,下列说法中正确的有 ( ) A .用波长为600nm 的光照射时,可使稳定的氢原子电离 B .用光子能量为10.2eV 的光照射时,可能使处于基态的氢原子电离 C .氢原子可能向外辐射出11eV 的光子 D .氢原子可能吸收能量为1.89eV 的光子 12.红宝石激光器的工作物质红宝石含有铬离子的三氧化二铝晶体,利用其中的铬离子产生激光。铬离子的能级如图所示,E 1是基态,E 2是亚稳态,E 3是激发态,若以脉冲氙灯发出波长为λ1的绿光照射晶体,处于基态的铬离子受激发跃迁到E 3,然后自发跃迁到E 2,释放波长为λ2的光子,处于亚稳态E 2的离子跃迁到基态时辐射出的光就是激光,这种激光的波长为( ) A .122 1λλλλ- B .2121λλλλ- C .2121λλλλ- D .2 11 2λλλλ-

高中物理选修3-5原子核章节检测带答案

2017年01月19日阿甘的高中物理组卷 一.选择题(共30小题) 1.下列核反应方程中X代表质子的是() A. B. C. D. 2.太阳能是由于太阳内部高温高压条件下的聚变反应产生的,下列核反应属于聚变反应的是() A.→ B.→ C.→ D.→ 3.某原子核内有核子N个,其中包含质子n个,当核经过一次α衰变和一次β衰变后,它自身变成一个新的原子核,可知这个新的原子核内() A.有核子(n﹣3)个B.有核子数(N﹣4)个 C.有中子(N﹣n﹣1)个D.有质子(n﹣1) 4.下列说法正确的是() A.当大批氢原子从4能级跃迁到1能级时,氢原子会产生3种频率的光子

B.卢瑟福提出了原子的核式结构模型 C.β衰变所释放的电子是原子核外的电子电离形成的 D.对放射性物质施加压力,其半衰期将减少 5.居室装修中经常用到花岗岩、大理石等装饰材料.这些材料都不同程度地含有放射性元素.有些含有铀和钍的花岗岩会释放出放射性惰性气体氡,而氡发生衰变,放射出α、β、γ射线,很容易对人体造成伤害.下列的说法中正确的是() A.氡的半衰期为3.8天,若取4个氡原子核经过7.6天后就全部衰变完了 B.β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的 C.γ射线一般伴随α射线或β射线产生,在这三种射线中,γ射线的穿透能力最强,电离能力最弱 D.发生α衰变时,生成核与原来的原子核相比,中子数减少4 6.铝箔被α粒子轰击后发生了以下核反应:→.下列判断正确的是() A.n是质子B.n是电子 C.X是P的同位素 D.X是的同位素 7.下列说法正确的是() A.γ射线在电场和磁场中都不会发生偏转 B.β射线比α射线更容易使气体电离 C.太阳辐射的能量主要来源于重核裂变

物理选修3---5第十八章:原子结构知识点汇总

物理选修3---5第十八章:原子结构知识点汇总 (训练版) 知识点一、电子的发现和汤姆生的原子模型: 1、电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而 发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 2、汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。这就是汤姆生的枣糕式原子模型。 知识点二、α粒子散射实验和原子核结构模型 1、α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①实验装置的组成:放射源、金箔、荧光屏 1

②实验现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动, 不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 2、原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质 量,带负电荷的电子在核外空间绕核旋转。原子核半径小于1014-m,原子轨道半径约1010-m。 3、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。

高中物理基础知识总结24原子原子核

氢原子的能级图 n E /eV ∞ 0 1 -13.6 2 -3.4 3 4 -0.8 5 E 1 E 2 E 3 高考物理知识点总结24 原子、原子核 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、α粒子、γ光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型) 汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说 α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。 卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n 叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (本假设是针对原子稳定性提出的) ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) (终初E E h -=ν) 辐射(吸收)光子的能量为hf =E 初-E 末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为()2 12-==n n C N n ]。 [ (大量)处于n 激发态原子跃迁到基态时的所有辐射方式] ⑶能量和轨道量子化----定态不连续,能量和轨道也不连续;(即原子的不同能量 状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道分布也是不连续的) (针对原子核式模型提出,是能级假设的补充) 氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是: 【说明】氢原子跃迁 ① 轨道量子化r n =n 2r 1(n =1,2.3…) r 1=0.53×10-10m 能量量子化:21n E E n = E 1=-13.6eV ②

物理选修3-5原子结构

物理周练(7) 1.下列说法中正确的是() A.玻尔通过对氢原子光谱的研究建立了原子的核式结构模型 B.核力存在于原子核内任意两个核子之间 C.天然放射现象的发现使人类认识到原子具有复杂的结构 D.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关 2.对玻尔理论下列说法中,不正确的是() A.继承了卢瑟福的原子模型,但对原子能量和电子轨道引入了量子化假设 B.原子只能处于一系列不连续的状态中,每个状态都对应一定的能量 C.用能量转化与守恒建立了原子发光频率与原子能量变化之间的定量关系 D.氢原子中,量子数N越大,核外电子的速率越大 3.下列科学家提出的原子物理理论中,对其中描述不正确的是() A.普朗克假设:振动着的带电微粒的能量只能是某一最小能量值的整数倍 B.德布罗意提出:实物粒子也具有波动性,其动量P、波长λ,满足γ=h/p C.贝可勒尔发现天然放射现象,揭示了原子核具有复杂结构 D.波尔的定态理论和跃迁理论,很好地解释了所有原子光谱的实验规律 4.如图是氢原子的能级示意图.当氢原子从n=4的能级跃迁到n=3的能级时,辐射出光子a;从n=3的能级跃迁到n=2的能级时,辐射出光子b.以下判断正确的是() A.在真空中光子a的波长大于光子b的波长 B.光子b可使氢原子从基态跃迁到激发态 C.光子a可使处于n=4能级的氢原子电离 D.大量处于n=3能级上的氢原子向低能级跃迁时最多辐射2种不同谱线 5.根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.图中虚线表示原子核所 形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从a运动到b、再 运动到c的过程中,下列说法中正确的是() A.动能先增大,后减小B.电势能先减小,后增大 C.电场力先做负功,后做正功,总功等于零D.加速度先变小,后变大 6.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中() A.可能吸收一系列频率不同的光子,形成光谱中的若干条暗线 B.可能发出一系列频率不同的光子,形成光谱中的若干条亮线 C.只吸收频率一定的光子,形成光谱中的一条暗线 D.只发出频率一定的光子,形成光谱中的一条亮线 7.如图所示为氢原子能级的示意图,现有大量的氢原子处于n=4的激 发态,当向低能级跃迁时辐射出若干不同颜色的光.关于这些光下列 说法正确的是() A.由n=4能级跃迁到n=1能级产生的光子波长最长 B.由n=2能级跃迁到n=1能级产生的光子频率最小 C.这些氢原子总共可辐射出3种不同频率的光 D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的

高中物理必背知识点原子和原子核公式

高中物理必背知识点原子和原子核公式 原子和原子核公式总结 1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数 粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的 偏转(甚至反弹回来) 2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构) 3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁} 4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕} 5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。射线是伴随射线和射线产生的〔见第三册P64〕 6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度} 7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。 注:

(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握; (2)熟记常见粒子的质量数和电荷数; (3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键; (4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。 考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。为大家整理了高中物理必背知识点:原子和原子核公式

高中物理 9原子与原子核的结构课后作业 新人教版选修12

二、原子与原子核的结构 1.卢瑟福提出了原子的核式结构模型,这一模型建立的基础是( ) A.α粒子的散射实验 B.对阴极射线的研究 C.天然放射现象的发现 D.质子的发现 解析:卢瑟福根据α粒子的散射实验的结果,提出原子的核式结构模型。故正确选项为A。答案:A 2. 如图为卢瑟福和他的助手做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,关于观察到的现象,下述说法中正确的是( ) A.相同时间内放在A位置时观察到屏上的闪光次数最多 B.相同时间内放在B位置时观察到屏上的闪光次数只比放在A位置时稍少些 C.放在C、D位置时屏上观察不到闪光 D.放在D位置时屏上仍能观察到一些闪光,但次数极少 解析:α粒子散射实验现象是判断各选项是否正确的依据。大多数α粒子几乎不发生偏转,少数α粒子发生了大角度偏转,极少数α粒子几乎返回去。A、B、D正确。 答案:ABD 3.一个原子核错误!未找到引用源。Bi,关于这个原子核,下列说法中正确的是( ) A.核外有83个电子,核内有127个质子 B.核外有83个电子,核内有83个质子 C.核内有83个质子、127个中子 D.核内有210个核子 解析:根据原子核的表示方法可知,这种原子核的电荷数为83,质量数为210。因为原子核的电荷数等于核内质子数,故该核内有83个质子。因为原子核的质量数等于核内质子数与中子数之和,即等于核内核子数,故该核核内有210个核子,其中有127个中子。 答案:BCD 4.质子、中子和氘核的质量分别为m1、m2、m3,真空中光速为c,当质子和中子结合成氘核时,放出的能量是( ) A.m3c2 B.(m1+m2)c2 C.(m3-m1-m2)c2 D.(m1+m2-m3)c2 解析:根据ΔE=Δmc2,质子和中子结合成氘核放出的能量是ΔE=(m1+m2-m3)c2,D项正确。 答案:D 5.下列对原子结构的认识中,错误的是( ) A.原子中绝大部分是空的,原子核很小 B.电子在核外空间绕核运动,向心力为库仑力 C.原子的全部正电荷都集中在原子核内

高中物理 第2章 原子结构 1 电子教师用书 教科版选修3-5

1.电子 [先填空] 1.阴极射线 由阴极发出撞击到玻璃壁上产生荧光的射线,称为阴极射线. 2.汤姆孙实验结论 实验表明:阴极射线在磁场和电场中产生偏转,说明阴极射线是带负电的粒子流.[再判断] 1.阴极射线是由真空玻璃管中的感应圈发出的.(×) 2.阴极射线撞击玻璃管壁会发出荧光.(√) 3.阴极射线在真空中沿直线传播.(√) [后思考] 产生阴极射线的玻璃管为什么是真空的? 【提示】在高度真空的放电管中,阴极射线中的粒子主要来自阴极,对于真空度不高的放电管,粒子还有可能来自管中的气体,为了使射线主要来自阴极,一定要把玻璃管抽成

真空. 1.阴极射线带电性质的判断方法 (1)方法一:在阴极射线所经区域加磁场,根据射线的偏转情况确定其带电的性质. (2)方法二:在阴极射线所经区域加一电场,根据射线的偏转情况确定其带电的性质. 2.结论 根据阴极射线在磁场中和电场中的偏转情况,判断出阴极射线是带负电的粒子流. 1.如图2-1-1所示,在阴极射线管正下方平行放置一根通有足够强直流电流的长直导线,且导线中电流方向水平向右,则阴极射线将会向________偏转. 图2-1-1 【解析】阴极射线方向水平向右,说明其等效电流的方向水平向左,与导线中的电流方向相反,由左手定则,两者相互排斥,阴极射线向上偏转. 【答案】上 2.如图2-1-2是电子射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,可采用加磁场或电场的方法. 【导学号:11010016】 图2-1-2 若加一磁场,磁场方向沿________方向,若加一电场,电场方向沿________方向.【解析】若加磁场,由左手定则可判定其方向应沿y轴正方向;若加电场,根据受力情况可知其方向应沿z轴正方向. 【答案】y轴正z轴正 注意阴极射线电子从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结(必修三) 载自:搜高考网.soogk. 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对大家有所帮助. 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型) 汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说 α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (本假设是针对原子稳定性提出的) ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) ( ) 辐射(吸收)光子的能量为hf=E初-E末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为 ]。

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

高中物理原子与原子核知识点总结选修3-5

高中物理原子与原子核知识点总结(选修3-5) 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助. 一波粒二象性 1光电效应的研究思路 (1)两条线索: 10 J·S h为普朗克常数 h=6.63×34 ν为光子频率 2.三个关系 (1)爱因斯坦光电效应方程E k=hν-W0。 (2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。 (3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc。 3波粒二象性 波动性和粒子性的对立与统一 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

(3)光子说并未否定波动说,E =h ν=hc λ 中,ν(频率)和λ就是波的概念。 光速C=λν (4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。 3.物质波 (1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。 (2)物质波的波长:λ=h p =h mv ,h 是普朗克常量。 二 原子结构与原子核 (1)卢瑟福的核式结构模型 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.(1)电子的发现:1897年,英国物理学家汤姆孙通过对阴极射线的研究发现了电子。电子的发现证明了原子是可再分的。 (2)汤姆孙原子模型:原子里面带正电荷的物质均匀分布在整个原

高中物理人教版选修3-5 18.2《原子的核式结构模型》教案设计

原子的核式结构 一、教学目标 1.知识与技能 ①了解原子结构模型建立的历史过程及各种模型建立的依据。 ②知道ɑ粒子散射实验的实验方法和实验现象以及原子核式结构模型的主要内容。 2.过程与方法 ①通过对ɑ粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力。 ②通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。 ③了解研究微观现象的方法。 3.情感态度与价值观 ①通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。 ②通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 二、教学重点 ①引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定“枣糕模型”,得出原子的核式结构。 ②在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法。 三、教学难点 引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否定“枣糕模型”,得出原子的核式结构模型。 四、教学资源 多媒体教学设备、PPT多媒体课件、网上下载的FLASH小课件。 五、教学过程 1.回顾历史,引入新课

通过播放1964年我国第一颗原子弹爆炸成功的视频,介绍人类现在已经开始利用原子的核能,其实早在1897年,汤姆孙就发现了电子,使人类第一次敲开原子世界的大门,今天我们就循着前人的足迹研究原子内部结构的发现过程。 2.发现电子,提出问题 汤姆孙发现电子,根据原子呈电中性,原子内还有带正电部分,那么原子内部具有怎样的结构呢?汤姆孙提出了原子的葡萄干布丁模型,动画展示原子葡萄干布丁模型,汤姆孙的原子葡萄干布丁模型虽然能够解释一些物理现象,但无法解释卢瑟福α粒子散射实验3.ɑ粒子散射实验原理、装置、实验现象 ɑ粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。ɑ粒子散射实验在课堂上无法直接演示,利用动画向学生模拟实验的装置、过程和现象,使学生获得直观的切身体验,留下深刻的印象。通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的ɑ粒子。动画展示实验中,通过显微镜观察到的现象,并且要让学生了解,这种观察是非常艰苦细致的工作,所用的时间也是相当长的。α粒子散射实验的数据 教师适时提问:根据以上实验数据,用科学语言表述实验结果: 学生分组讨论交流得到实验结果:绝大多数沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。 教师再次提问:根据汤姆孙原子模型分析,α粒子轰击金箔后应出现什么情况? ①α粒子出现大角度散射有没有可能是与电子碰撞后造成的? ②按照汤姆孙原子模型,α粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转? 学生分组讨论交流得到结果:

高中物理《原子核》知识梳理

《原子核》知识梳理 【原子核的组成】 1.1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。 2.卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。 3.质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。 【放射性元素的衰变】 1.天然放射现象 人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。 1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔·居里经过研究发现了新元素钋和镭。 用磁场来研究放射线的性质: α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强 β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱; γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。 2.原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。)。 3.半衰期:放射性元素的原子核有半数发生衰变需要的时间。放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。 【放射性的应用与防护】 1.放射性同位素的应用: 利用它的射线(贯穿本领、电离作用、物理和化学效应) 做示踪原子。 2.放射性同位素的防护:过量的射线对人体组织有破坏作用,这些破坏往往是对细胞核的破坏,因此,在使用放射性同位素时,必须注意人身安全,同时要放射性物质对空气、水源等的破坏。

高中物理第三章原子结构之谜第二节原子的结构检测[粤教版]选修35

第三章原子结构之谜 第二节原子的结构 A级抓基础 1.卢瑟福提出了原子的核式结构模型,这一模型建立的基础是( ) A.α粒子的散射实验B.对阴极射线的研究 C.天然放射性现象的发现 D.质子的发现 答案:A 2.(多选)下列对原子结构的认识中,正确的是( ) A.原子中绝大部分是空的,原子核很小 B.电子在核外旋转,库仑力提供向心力 C.原子的全部正电荷都集中在原子核里 D.原子核的直径大约是10-10 m 解析:原子是由位于原子中心带正电的原子核和核外带负电的电子构成的,电子在核外绕核高速旋转,库仑力提供向心力,由此可判定B、C正确,根据散射实验知原子核直径数量级为10-15 m,而原子直径的数量级为10-10 m,故A正确,D错误. 答案:ABC 3.(多选)卢瑟福对α粒子散射实验的解释是( ) A.使α粒子产生偏转的主要原因是原子中电子对α粒子的作用力 B.使α粒子产生偏转的力是库仑力 C.原子核很小,α粒子接近它的机会很小,所以绝大多数的α粒子仍沿原来的方向前进 D.能发生大角度偏转的α粒子是穿过原子时离原子核近的α粒子 解析:原子核带正电,与α粒子间存在库仑力,当α粒子靠近原子核时受库仑力而偏转,电子对它的影响可忽略,故A错、B对;由于原子核非常小,绝大多数粒子经过时离核较远因而运动方向几乎不变,只有离核很近的α粒子受到的库仑力较大,方向改变较多,故C、D对. 答案:BCD 4.卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是( ) 解析:α粒子轰击金箔后偏转,越靠近金箔,偏转的角度越大,所以A、B、C错误,D 正确. 答案:D B级提能力

高中物理-原子结构章末复习

高中物理-原子结构章末复习 【知识网络梳理】 【知识要点与方法指导】 一、重点、难点、方法 1.原子核式结构的提出与α粒子散射实验的关系 卢瑟福设计的α粒子散射实验是为了探究原子内电荷的分布,并非为了验证汤姆孙模型的正与误,他在做了α粒子散射实验后,根据实验现象的分析提出了原子的“核式结构”模型。 2.对氢原子能级跃迁的理解 (1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足 hv E E =-末初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hv 大于或小于E E -末初时都不能被原子吸收。 (2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差。 (3)当光子能量大于或等于13.6eV 时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6eV 。氢原子电离后,电子具有一定的初动能。 一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数为2 (1)2 n n n N C -= =。 (4)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能 原 子结构 ?? ? ? ? ? ??? ?? 电子的发现原子模型????? ????光谱光谱分析:用明线光谱和吸收光谱分析物质的化学组成 ?? ???吸收光谱发射光谱???连续谱 线状谱?? ?汤姆孙的发现:阴极射线为电子流 电子发现的意义:原子可以再分??????????? ???? 汤姆孙枣糕式模型卢瑟福核式结构模型玻尔原子结构模型氢原子光谱和光谱分析?? ???能量量子化轨道量子化能级跃迁

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结 1.汤姆生模型(枣糕模型) ()发现电子,使人们认识到原子有复杂结构。从而打开人们认识原子的大门. 2.核式结构模型:()通过α粒子散射实验,总结出核式结构学说。由α粒子散射实验的实验数据还可以估算出()大小的数量级是()。 核式结构与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定),辐射(吸收)光子的能量为() 氢原子跃迁的光谱线问题[一群氢原子从n激发态原子跃迁到基态时可能辐射的光谱线条数为()。 ⑶能量和轨道量子化----定态不连续,能量和轨道也不连续; 氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:() 【说明】氢原子跃迁 ① 轨道量子化r n=n2r1(n=1,2.3…)r1=0.53×10-10m

能量量子化:E1=-13.6eV ② ③氢原子跃迁时应明确: 一个氢原子直接跃迁向高(低)能级跃迁,吸收(放出)光子 ( 某一频率光子 ) 一群氢原子各种可能跃迁向低(高)能级跃迁放出(吸收)光子 (一系列频率光子) ④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子 A光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。(即:光子和原子作用而使原子电离) B光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。 ⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。 ⑶玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

人教版高中物理选修3-5 知识点梳理 重点题型(常考知识点)巩固练习 原子结构 【学习目标】 1.知道电子是怎样发现的; 2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验; 5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想. 【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线 (1)气体的导电特点: 通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电. 平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象. (2)1858年德国物理学家普里克发现了阴极射线. ①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线. ②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子 (1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m ). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流). 电子的电量 ()191.602177334910C e =?-, 电子的质量 319.109389710kg m =?-, 电子的比荷 111.758810C/kg e m =?.

电子的质量约为氢原子质量的 1 1836 . 3.汤姆孙对阴极射线的研究 (1)阴极射线电性的发现. 为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷. (2)测定阴极射线粒子的比荷. 4.密立根实验 美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量 密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍. 5.电子发现的意义 以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕. 6.19世纪末物理学的三大发现 对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子. 要点二、原子的核式结构模型 1.汤姆孙的原子模型 “枣糕模型”. “葡萄干布丁模型”(如图所示). “葡萄干面包模型”. 汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均

高中物理选修3-5原子结构知识点

第八章原子结构 一、电子的发现: (一)电子的发现: 1.电子是怎样发现的: 汤姆生用测定粒子的荷质比的方法发现了电子。 汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。 2.电子的发现对人类认识原子结构的重要性。 ①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。 ②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。 (二)汤姆生的原子模型(枣糕模型) 葡萄干面包模型 二、原子的核式结构的发现 (一)原子核式结构的发现: 1.什么叫散射实验? 用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。 2.为什么用α粒子的散射(实验)现象可以研究原子的结构? 原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。 ①由于α粒子具有足够的能量可以接近原子的中心, ②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。 3.α粒子散射装置 ①放射源(Pa“坡”)玛丽·居里的祖国波兰。 ②金箔:1μm,能透光,有3000多层原子厚。 ③荧光屏荧光屏和显微镜能够围绕金箔在一个 ④显微镜圆周上转动,从而可以观察到穿过金箔后 ⑤转动圆盘偏转角度不同的α粒子 4.实验过程:实验室建在地下,通道大拐角(防光进入)

高中物理-原子结构+练习

高中物理-原子结构+练习 一、研究进程 汤姆孙(糟糕模型)→卢瑟福由α粒子散射实验(核式结构模型)→ 波尔量子化模型 →现代原子模型(电子云模型) 二、α 粒子散射实验 a 、实验装置的组成:放射源、金箔、荧光屏 b 、实验的结果: 绝大多数α 粒子基本上仍沿原来的方向前进, 少数 α 粒子(约占八千分之一)发生了大角度偏转, 甚至超过了90o 。 C 、卢瑟福核式结构模型内容: ①在原子的中心有一个很小的原子核, ②原子的全部正电荷和几乎全部质量集中在原子核里, ③带负电的电子在核外空间里旋转。 原子直径的数量级为m 10 10-,而原子核直径的数量级约为m 1015-。 c 、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。 d 、核式结构的不足 认为原子寿命的极短;认为原子发射的光谱应该是连续的。 三、氢原子光谱 1、公式:)11(1 2 2n m R -=λ m=1、2、3……,对于每个m,n=m+1,m+2,m+3…… m=2时,对应巴尔末系,其中有四条可见光,一条红色光、一条是蓝靛光、 另外两条是紫光。

2、线状光谱:原子光谱(明线光谱)是线状光谱,比如霓虹灯发光。 3、吸收光谱(主要研究太阳光谱):吸收光谱是连续光谱背景上出现不连续的暗线。 吸收谱既不是线状谱又不是带状光谱(连续光谱) 4、实验表明:每种原子都有自己的特征谱线。(明线光谱中的亮线与吸收光谱中的暗线相对应,只是通常在吸收光谱中的暗线比明线光谱中的两线要少一些) 5、光谱分析原理:根据光谱来鉴别物质和确定它的化学组成。 6、连续光谱(带状光谱):炽热的固体、液体或高压气体的光谱是连续光谱。 三、波尔模型 1、电子轨道量子化r=n 2r 1 , r 1=0.053nm ——针对原子的核式结构模型提出。 电子绕核旋转可能的轨道是分立的。 2、原子能量状态量子化(定态)假设——针对原子稳定性提出。 电子在不同的轨道对应原子具有不同的能量。原子只能处于一系列 不连续的能量状态中,这些状态中原子是稳定的,电子虽然绕核旋转, 但不向外辐射能量,这些状态叫定态。 取氢原子电离时原子能量为0,用定积分求得E 1= -13.6ev. 21n E E n =,E 1 = —13.6ev 3、原子跃迁假设(针对原子的线状谱提出) 电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出光子。 电子吸收光子时会从能量较低的定态轨道跃迁到能量较高的轨道。末初E -E hv =。 注:电子只吸收或发射特定频率的光子完成原子内的跃迁。如果要使电子电离,光子的能量 与氢原子能量之和大于等于零即可。 4、局限性 保留了经典粒子的观念,把电子的运动仍然看成经典力学描述下轨道运动,没有彻底摆脱经典理论的框架。→无法解释较为复杂原子的光谱。 5、现代原子模型: 电子绕核运动形成一个带负电荷的云团,对于具有波粒二象性的微观粒子,在一个确定时刻其空间坐标与动量不能同时测准,这是德国物理学家海森堡在1927年提出的著名的测不准原理。

相关文档
最新文档