抗风柱设计

抗风柱设计
抗风柱设计

抗风柱是单层工业厂房山墙处的结构组成构件,抗风柱的作用主要是传递山墙的风荷载,上通过铰节点与钢梁的连接传递给屋盖系统而至于整个排架承重结构,下通过与基础的连接传递给基础。

1. 计算模型(假定)

2. 常见结构形式

在钢结构工程中,抗风柱是一种主要构件,根据设计思路的不同,可以把抗风柱的设计理念分为三种,下面分别讨论。

一、悬臂梁式:这种抗风柱的设计形式最为古老,从过去的重屋面单层工业厂房就有。主要特点是:抗风柱柱脚刚接,相当于我们一般的悬臂梁受力形式,抗风柱本身独立承受墙面传递的风荷载。在过去重屋面的单层工业厂房中,因为抗风柱和厂房结构柱所承受的竖向荷载差距较大,为避免不均匀沉降对结构受力形式的改变和不利影响,一般需要释放竖向约束。在轻钢厂房开始的初期,我们经常看到一些图纸中,在抗风柱的顶部加设弹簧板,与主钢架连接,就是这种设计理念。这种抗风柱的主要特点是:1)柱脚刚接;2)截面较大;3)顶部弹簧板连接。这种抗风柱的设计理念是过去单层工业厂房设计的延续,有它自身的合理性。但是,相对于轻型钢结构厂房来说也有需要改进的地方,比如:1)现在的轻屋面钢结构厂房由于自重很轻,实际的沉降量是很小的,加设弹簧板的必要性不是很大;2)柱脚刚接、独立承受风荷载,需要相对较大的截面才能满足。当然,这种设计理念本身并没有错误,可以作为我们设计钢结构工程的一种选择,在有些情况下也有其独特的优点,比如,当主结构要求不能承受风荷载时。在实际工作中,我们经常看到一些图纸:把柱脚设计为铰接、抗风柱截面很大、顶部加弹簧板,则是对这种设计理念的不理解,是一种错误的做法。

二、简支梁式:这种抗风柱的特点是:柱脚铰接、顶部与主钢架铰接,这种抗风柱的受力形式简单,采用较小的截面就能满足。风荷载通过抗风柱传递到主钢架,依靠主钢架的支撑体系承受水平风荷载。我个人比较欣赏这种设计理念,在轻型钢结构厂房设计中,受力形式简单,力的传递途径明确。主要的特点是:1)主钢架承受竖向荷载和横向水平荷载;2)抗风柱承受和传递水平纵向风荷载;3)支撑体系承受纵向水平荷载。这种抗风柱的优点是:1)受力形式简单,截面较小;2)铰接节点加工和安装比较方便,成本低;3)充分发挥了整体结构的承载能力,总体成本低。

三、结构柱式:这种抗风柱的特点是,把抗风柱作成结构的一部分,在承受结构荷载的同时承受风荷载。优点是明显降低了边跨主钢架的截面和用钢量,成本低。缺点是:对于轻钢厂房来说,边跨和中间跨明显不一致,增加了加工的品种,在设置支撑体系时,也因为截面不同,使支撑的节点构造比较烦琐。但是,对于钢结构框架结构来说,上面的缺点不明显,还可以明显提高承载能力,减小构件截面,降低成本,因此是比较合理的选择。

3.布置及位置

4.节点设计

抗风柱设计和支撑设计

一、 抗风柱设计和支撑设计 1、抗风柱设计 跨度18米的两端山墙封闭单层厂房,檐口标高8米,每侧山墙设置两根抗风柱,形式为实腹工字钢。山墙墙面板及檩条自重为0.15kN/m 2,基本风压为0.55kN/m 2,试设计抗风柱的截面。 1)荷载计算 墙面恒载值2/15.0m kN p =; 风压高度变化系数0.1=z μ,风压体型系数9.0=s μ,风压设计值20/693.055.00.19.04.14.1m kN z s =×××==ωμμω; 单根抗风柱承受的均布线荷载设计值: 恒载m kN L p q /26.11815.03 14.1314.1=×××=×××=; 风荷载m kN L q W /82.518693.03 14.1314.1=×××=×××=ω。 2) 内力分析 抗风柱分析模型 抗风柱的柱脚和柱顶分别由基础和屋面支撑提供竖向及水平支承,分析模型如上图。可得到构件的最大轴压力为12.3kN ,最大弯矩为46.6m kN ?。 3) 截面选择 取工字钢截面为300x200x6x8,绕强轴长细比62,绕弱轴考虑墙面檩条隅撑的支承作用,计算长度取3米,那么绕弱轴的长细比为65,满足抗风柱的控制长细比限值[]λ150的要求。 强度校核: a a e MP MP W M A N 2152.90531209/106.464904/1230061<=×+=+=σ 稳定验算:

a a x by tx y MP MP W M A N 21509.93531209 97.0466000004904783.01230011<=×+×=+?β? 挠度验算: 在横向风荷载作用下,抗风柱的水平挠度为13.6mm 小于L/400(20mm),满足挠度要求。 2、支撑设计 跨度18米的两端山墙封闭单层厂房,檐口标高8米,榀距6米,每侧边柱各设有一道柱间支撑,形式为单层X 形交叉支撑。取山墙面的基本风压0.55,试设计支撑形式及截面。 对于单层无吊车普通厂房,支撑采用张紧的圆钢截面,预张力控制在杆件拉力设计值的10%左右。 1)荷载计算 风压高度变化系数0.1=z μ,风压体型系数9.0=s μ,风压设计值20/693.055.00.19.04.14.1m kN z s =×××==ωμμω; 单片柱间支撑柱顶风荷载集中力: kN S F W 95.24188693.04 141=×××=××=ω。 2) 内力分析 柱间支撑分析模型 如上图的计算模型,考虑张紧的圆钢只能受拉,故虚线部分退出计算,得到的支撑杆件拉力值kN N 5.41=; 考虑钢杆的预加张力作用,在拉杆设计中留出20%的余量,杆件拉力设计值kN N 8.492.15.41=×=; 3)截面选择 杆件净面积223221549800mm f N A ===。取20φ的圆钢,截面积为314mm 2

建筑结构抗风设计

建筑结构抗风设计在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。高楼引来“风速杀手”。由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。我们要明白风对建筑的危害机理才能更好地进行抗风设计。风是紊乱的随机现象。风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。 我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济 损失十分惨重。城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。接下来让我们看一些比较成功的抗风设计的实例。 1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)只能让位,退居第二。大楼由9个标准方形钢筒体(22.9mx22.9m)组成。该结构由SOM设计.建筑师为FazlurKahn。建造到52层减少2个简体.到67层再减少2个简体.到92层再

抗风柱设计(相关知识)

抗风柱设计 | | 钢材等级:Q345 柱距(m):8.000 柱高(m):12.100 柱截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=400*200*220*6*10*10 铰接信息:两端铰接 柱平面内计算长度系数:1.000 柱平面外计算长度:7.000 强度计算净截面系数:1.000 设计规范:《门式刚架轻型房屋钢结构技术规程》 容许挠度限值[υ]: l/400 = 30.250 (mm) 风载信息: 基本风压W0(kN/m2):0.420 风压力体形系数μs1:1.000 风吸力体形系数μs2:-1.000 风压高度变化系数μz:1.050 柱顶恒载(kN):0.000 柱顶活载(kN):0.000 墙板自承重 风载作用起始高度 y0(m):1.100 ----- 设计依据 ----- 1、《建筑结构荷载规范》 (GB 50009-2012) 2、《门式刚架轻型房屋钢结构技术规范》(GB 51022-2015) ----- 抗风柱设计 ----- 1、截面特性计算 A =6.4800e-003; Xc =1.1000e-001; Yc =2.0602e-001; Ix =1.8694e-004; Iy =1.5547e-005; ix =1.6985e-001; iy =4.8982e-002; W1x=9.0740e-004; W2x=9.6371e-004; W1y=1.4133e-004; W2y=1.4133e-004; 2、风载计算

抗风柱上风压力作用均布风载标准值(kN/m): 3.528 抗风柱上风吸力作用均布风载标准值(kN/m): -3.528 3、柱上各断面内力计算结果 △组合号 1:1.35恒+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 8.256 7.568 6.880 6.192 5.504 4.816 4.128 断面号: 8 9 10 11 12 13 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 3.440 2.752 2.064 1.376 0.688 0.000 △组合号 2:1.2恒+1.4风压+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -24.902 -47.728 -65.554 -78.358 -86.139 -88.899 轴力(kN) : 7.339 6.727 6.116 5.504 4.893 4.281 3.669 断面号: 8 9 10 11 12 13 弯矩(kN.m): -86.638 -79.354 -67.048 -49.721 -27.371 0.000 轴力(kN) : 3.058 2.446 1.835 1.223 0.612 0.000 △组合号 3:1.2恒+0.6*1.4风压+1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -14.941 -28.637 -39.332 -47.015 -51.684 -53.340 轴力(kN) : 7.339 6.727 6.116 5.504 4.893 4.281 3.669 断面号: 8 9 10 11 12 13 弯矩(kN.m): -51.983 -47.612 -40.229 -29.832 -16.423 0.000 轴力(kN) : 3.058 2.446 1.835 1.223 0.612 0.000

2021年钢结构住宅设计论文

2021年钢结构住宅设计论文 1钢结构的优点 一般来说,材料的特性是推出新型建筑形式的出发点。钢结构是用钢板、热轧型钢或冷加工成型的薄壁型钢制造而成的。和其它材料的结构相比,钢结构有如下一些特点。 1.1材料的强度高,塑性和韧性好钢材和其它建筑材料诸如混凝土、砖石和木材相比,强度要高得多。因此,特别适用于跨度大或荷载很大的构件和结构。钢材还具有塑性和韧性好的特点。塑性好,结构在一般条件下不会因超载而突然断裂;韧性好,结构对动力荷载的适应性强。良好的吸能能力和延性还使钢结构具有优越的抗震性能。另一方面,由于钢材的强度高,做成的构件截面小而壁薄,受压时需要满足稳定的要求,强度有时不能充分发挥。 1.2材质均匀,与力学计算的假定比较符合钢材内部组织比较接近于匀质和各向同性,而且在一定的应力幅度内几乎是完全弹性的。因此,钢结构的实际受力情况和工程力学计算结果比较符合。钢材在冶炼和轧制过程中质量可以得到严格控制,材质波动的范围小。 1.3钢结构制造简便,施工周期短钢结构所用的材料单纯而且是成材,加工比较简便,并能使用机械操作,因此,大量的钢结构一般在专业化的金属结构厂做成构件,精确度较高。构件在工地拼装,可以采用安设简便的普通螺栓和高强度螺栓,有时还可以在地面拼装和焊接成较大的单元再行吊装,以缩短施工周期。此外,对已建成的钢结构也比较容易进行改建和加固,用螺栓连接的结构还可以根据需要

进行拆迁。 1.4钢结构的重量轻钢材的密度虽比混凝土等建筑材料大,但钢结构却比钢筋混凝土结构轻,原因是钢材的强度与密度之比要比混凝土大得多。以同样的跨度承受同样荷载,钢屋架的重量最多不超过钢筋混凝土屋架的1/3至1/4,冷弯薄壁型钢屋架甚至接近1/10,为吊装提供了方便条件。对于需要远距离运输的结构,如建造在交通不便的山区和边远地区的工程,重量轻也是一个重要的有利条件。 当然任何一种材料都不是十全十美的,钢材的耐腐蚀性和耐火性就较为欠缺,在对结构进行防护时费用比钢筋混凝土结构高。不过在没有侵蚀性介质的一般厂房中,构件经过彻底除锈并涂上合格的油漆,锈蚀问题也并不严重。近年来出现的耐大气腐蚀的钢材具有较好的抗锈性能,已经逐步推广应用,并取得了良好的效果。钢材长期经受100℃辐射热时,强度没有多大变化,具有一定的耐热性能,但温度达150℃以上时,就须用隔热层加以保护。钢材不耐火,重要的结构必须注意采取防火措施。例如,利用蛭石板、蛭石喷涂层或石膏板等加以防护。 2钢结构住宅的特点 钢结构住宅与传统结构相比,在使用功能、设计、施工以及综合经济方面具有优势,主要体现在以下方面。 2.1设计制造周期短,设计生产一体化现代结构设计借助于计算机和专业化结构分析软件,使得设计周期大大缩短,设计中的修改和调整非常方便。同时,由于钢结构具有工厂预制、现场安装的特点,

大跨度结构的抗风设计

大跨度结构的抗风设计 摘要:大跨度结构设计中风荷载是控制荷载之一。由于其在风荷载和结构特性方面的复杂性,至今还没有建立像高层建筑那样有效的风荷载分析方法。本文回顾总结国内外大跨度结构抗风设计方法,并指出其存在的不足,进一步分析这种结构的破坏形式及有关的抗风措施。 关键字:风荷载,风压分布,风振响应,风洞试验,抗风措施 Abstract: the big span structure design stroke is one of the load load control. For the wind load and structure characteristics of complexity, so far no set up like that effective high-rise building wind load analysis method. This paper reviewed and summarized up big span structure wind design method, and points out the existing problems and further analyses the structure, the destroy form of wind resistance and relevant measures. Key word: wind loading, wind pressure distributions, wind vibration response, wind tunnel test, wind measures 1. 引言 借着2008年北京奥运会和2010年上海世博会的契机,在中国掀起了一股修建大跨度体育馆(场)的热潮,出现了像“鸟巢”、“水立方”等跨度大、建筑新颖、结构复杂的建筑物。DavenPort[1]曾经说过,如果没有风,结构尤其是大型结构的设计将会容易很多,造价也会低很多。这些大跨度结构受力复杂,质量较轻、阻尼较小,处于湍流度高的低矮大气边界层中,其风致动力响应较为明显,很多时候已经不能单纯地依据规范进行设计,特别是这些结构的抗风设计几乎是无据可依。这时,大跨度空间结构的抗风设计成为衡量结构师水平的一个重要标志。 2大跨度结构抗风设计基本方法 建筑结构的抗风研究是个系统工程[2],在大跨度结构的抗风研究中,风工程研究人员的主要任务就是从外形迥异的建筑形式中归纳出结构表面风压分布的规律,解释风压分布的机理,通过结构风致响应的分析获得等效静风荷载。 图2.1结构抗风研究的主要流程

高层建筑结构的抗风设计

高层建筑结构的抗风设计 【摘要】随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。根据建设规模,我国城市建设中占据比例最大的是高层建筑,而高层建筑结构的多变性和复杂性,使得结构设计工作成为建筑施工的重点和难点。面对高层建筑结构设计的相关问题,本文将对高层建筑抗风结构常见结构的问题进行分析。 【关键词】高层,建筑结构,抗风设计 一.前言 随着我国经济的快速发,在建筑方面高层建筑结构与低层建筑结构一样,需要同时承受结构自身自重(及其他荷载)产生的垂直作用和风荷载产生的水平作用,相对于低层建筑结构水平荷载对整个结构受力影响通常较小的状况,在高层建筑结构中水平风荷载会成为高层(超高层)建筑结构设计的受力控制因素。针对我国高层建筑结构的抗风设计进行深入的研究和探讨。 二.高层建筑结构抗风设计中存在的问题 1.设计风压等级的确立 设计风压等级的建立需要考虑多种因素的影响。目前,我国还没有对结构设计风压等级给出明确定义,具体的划分原则和范围界定还需进一步的研究探讨。 2.风振系数的确定 我国目前确定结构风震系数时采用的阻尼比是按已建建筑在微振下所获取的阻尼比实测值确定的,而抗风设计所取的风载是30-100年一遇的大风荷载。此时,结构的振动将不是微小振动,而是有较大位移的振动,而大位移振动与微振的结构阻尼比是不同的,一般前者比后者大;而阻尼比增大,将使风振系数减小。因此目前我国进行高层建筑钢结构抗风设计所取的风振系数可能偏大。 3.风振舒适度的考虑 《高规》中规定重现期为10年的最大加速度限值为:公共建筑0.28m/s2;公寓建筑0.20m/s2。本文认为存在如下有待完善之处:首先,重现期取为10年已不能满足要求。《建筑荷载设计规范》中对一般结构基本风压重现期已规定为50年,且对特殊结构还要进行重现期为100年的舒适度验算;其次,该规定只将民用建筑分为公共建筑和公寓建筑两类,不够具体;再次,将峰值加速度限值仅定为0.28m/s2和0.20m/s2,不够精确。 三.高层建筑的抗风设计

建筑结构抗风设计

体育场网架屋盖结构风振浅析 XXX (学校,南京,210016) 摘要:伴随着的材料科学发展和土木工程施工工艺的进步,新建的体育场看台多用外形美观、结构新颖的大跨度柔性结构方向发展,这不仅满足了结构使用功能的需要,同时也给观众提供了开阔的视野。大跨度网架屋盖结构在风荷载下会受到强大的吸力,并引起柔性屋面的振动。本文简要介绍了大跨结构表面风压分布特征,风致破坏机理和风洞试验在大跨屋盖结构的应用。 关键词:大跨网架屋盖结构;风致破坏;风洞试验 A Brief Analysis of Study on Wind Induced Dynamic Response of Long Span Grid Roof Structures XXX ( College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China) Abstract:Along with the development of science and technology,the stands of stadium are often covered with long—span flexible roof structures with beautiful shapes and new structural systems.It not noly meets the function of use,but also provide the audience with good view.When wind flows around roofs,the airflow will be separated to form a high suction zone,and the flexible roofs will suffer from wind—induced buffeting response.The article made a brief introduction of the issue Key words:Long-span grid structures;wind damage;wind tunnel test 引言 风灾是自然灾害的主要灾种之一,虽然其作用幅度比一般地震荷载小,但其作用频度却比地震荷载高得多。随着结构规模的增加,风荷载变得越来越重要,以至于最后成为结构设计中控制性荷载,近年来,国内外建造了大量的重大工程建筑结构,在这些重大工程的设计中,强风作用下结构的风荷载往往决定着结构的安全性能。典型的实例是大跨度网架屋盖结构,此类结构不断出现在体育场馆、机场、文体活动中心和展览馆等大型公共建筑中。国内著名的大悬挑屋盖体育场有上海虹口足球场、青岛体育中心、上海八万人体育场以及台州体育中心主体育场等,国外实例有意大利罗马体育场、美国亚特兰大奥运会主体育场、加拿大蒙特利尔奥林匹克体育场等。此类建筑造价颇高,作为公共建筑,社会效益显著,多为当地标志性建筑。 此类体育场屋盖具有质量轻、跨度大、柔性大、阻尼小、自振频率低的特点,而且这类结构往往比较低矮,在大气边界层中处于风速变化大、湍流度高的区域,再加上屋顶形状多不规则,绕流和空气动力作用十分复杂,风在体育场内形成了一个大的三维空间的非定常湍流场,体育场内风流动的机理很复杂,所以这种大跨屋盖对风荷载十分敏感。风荷

钢结构抗风柱的设计样本

钢构造抗风柱设计 一、简介设立在房屋构造两端山墙内,抵抗水平风荷载钢筋混凝土构造柱简称为抗风柱。将抗风柱在水平方向连接起来、起整体加固作用钢筋混凝土梁简称为抗风横梁。普通用于高耸、内部大空间、横墙少砖混构造房屋,如工业厂房、大型仓库等。图1为单层厂房透视图,咱们从图中可以看一下抗风柱位置状况: 抗风柱虽然在《钢构造设计规范》和《门式刚架规范》中均未有专门条文简介如何设计,但是作为构造受力构件,只要分析清晰它在构造体系中受力状态,按照规范有关条文进行计算分析,并满足规范规定构造规定,咱们就能合理设计出安全经济抗风柱。接下来咱们就抗风柱设计全面简介如下: 二、力学分析 抗风柱有三种布置办法: (1) 即抗风柱柱脚与基本刚接,柱顶与屋架通过弹簧片连接。 (2) 即抗风柱柱脚与基本铰接,柱顶与屋架通过长圆孔连接板或弹簧片连接。按这两种布置办法,屋面荷载所有由刚架承受,抗风柱不承受上部刚架传递竖向荷载,只承受墙体和自身重量和风荷载,成为名副其实“抗风柱”。 (3)按门式刚架轻钢构造布置,抗风柱与屋架梁刚接,与钢梁、钢柱一起构成门式刚架构造。即抗风柱柱脚与基本铰接(或刚接),柱顶与屋架刚接。按

这种布置办法,屋面荷载由刚架及抗风柱共同承担。抗风柱同步承担竖向荷载和风荷载。 第一种布置方式即悬臂梁式。 重要特点是:抗风柱柱脚刚接,相称于咱们普通悬臂梁受力形式,抗风柱自身独立承受墙面传递风荷载。在过去重屋面单层工业厂房中,由于抗风柱和厂房构造柱所承受竖向荷载差距较大,为避免不均匀沉降对构造受力形式变化和不利影响,普通需要释放竖向约束。在轻钢厂房开始初期,咱们经常看到某些图纸中,在抗风柱顶部加设弹簧板,与主钢架连接,就是这种设计理念。 这种抗风柱重要特点是: 1)柱脚刚接; 2)截面依照实际状况,有时较大,有时就会很节约; 3)顶部弹簧板连接。 咱们当前把悬臂梁式抗风柱力学模型展示如图2所示:第二种为简支梁式,这种抗风柱特点是:柱脚铰接、顶部与主钢架铰接,这种抗风柱受力形式简朴,采用较小截面就能满足。风荷载通过抗风柱传递到主钢架,依托主钢架支撑体系承受水平风荷载。在轻型钢构造厂房设计中,受力形式简朴,力传递途径明确。 重要特点是: 1)主钢架承受竖向荷载和横向水平荷载;

谈钢结构住宅建筑设计研究(2)

龙源期刊网 https://www.360docs.net/doc/ec6297749.html, 谈钢结构住宅建筑设计研究 作者:李谷满 来源:《城市建设理论研究》2013年第11期 摘要:本文阐述了常用钢结构住宅体系,探讨了钢结构住宅建筑设计措施。 关键字:钢结构;住宅;建筑;设计 中图分类号:TU391 文献标识码:A 文章编号: 一、常用钢结构住宅体系 钢结构体系形式有多种,但应用于住宅建筑的钢结构体系主要可分为轻钢龙骨体系、纯钢框架体系、钢支撑框架体系、钢框架一混凝土剪力墙体系、错列析架体系、钢框架一核心筒体系等。不同的结构体系有不同的适用范围,虽然有些结构体系应用范围较广,但通常会受到经济等因素的限制。轻钢龙骨结构体系较适用于1~3 层的低层住宅,不适用于强震区的高层住宅。纯钢框架体系一般适用于6 层以下的多层住宅,不适用于强震区的高层住宅,并且用于高层住宅经济性相对较差。钢支撑框架体系比纯钢框架体系侧向刚度大,常用于多层及小高层住宅,应用较广;而且当房屋层数较高时,该体系要比纯钢框架体系经济。钢框架—混凝土剪力墙体系常用于小高层及高层住宅;而且从受力特点看出,带缝剪力墙体抗震性能较好,较适用于地震区。错列析架结构体系具有住宅布置灵活、楼板跨度小、结构自重轻和造价低的特点,是一种经济、实用、高效的新型结构体系,适用于多层及小高层住宅。 为了体现钢结构住宅的优越性,减轻结构自重,外墙体一般采用轻质复合板,与梁柱的连接方式,主要采用外挂式,也可采用内嵌式。内墙材料一般可采用空心砌块、加气混凝土等轻质填充材料,也可采用纸面石膏板,纤维石膏板、玻璃纤维增强水泥板、纸面稻草板。楼板体系作为房屋的水平构件,起着支撑竖向荷载和传递水平荷载作用。因此楼板必须有足够的强度、刚度和整体稳定性,还要具有较好的隔音、防水和防火性能,同时宜尽量采用技术和构造措施减轻楼板自重,并提高施工速度。国外钢结构住宅普遍采用木板为楼层板,我国由于木材资源短缺,现阶段主要采用压型钢板—现浇混凝土组合楼板、预制混凝土叠合板、现浇钢筋混凝土楼板、密排托架—现浇混凝土组合楼板、轻骨料或加气混凝土楼板。 钢结构建筑的屋顶依据屋面材料和屋面的结构布置,可以做成平屋顶或是坡屋顶。平屋顶即在钢楼板层的基础上只需将面层换做防水层材料或是彩色涂层牙型钢板,并按要求设置一定的排水坡度和排水天沟。坡屋顶的构造一般是在钢屋架上设置檩条,上铺彩色涂层压型钢板或彩钢板夹芯板,采用彩钢夹芯板,色彩美观,还具有一定的保温隔热效果,施工简便,可以做到不渗水。 二、钢结构住宅建筑设计要点

太阳能路灯抗风设计

2.3.2 抗风设计 在太阳能路灯系统中,结构上一个需要非常重视的问题就是抗风设计。抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。下面按以上两块分别做分析。 ⑴太阳能电池组件支架的抗风设计 依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为27m/s(相当于十级台风),电池组件承受的风压只有365Pa。所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。 在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓杆固定连接。 ⑵路灯灯杆的抗风设计 路灯的参数如下: 电池板倾角A = 16o 灯杆高度= 5m 设计选取灯杆底部焊缝宽度δ= 4mm 灯杆底部外径= 168mm 如图3,焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W 的计

算点P到灯杆受到的电池板作用荷载F作用线的距离为 PQ = [5000+(168+6) /tan16o]×Sin16o = 1545mm =1.545m。所以,风荷载在灯杆破坏面上的作用矩M = F×1.545。 根据27m/s的设计最大允许风速,2×30W的双灯头太阳能路灯电池板的基本荷载为730N。考虑1.3的安全系数, F = 1.3×730= 949N。 所以,M = F×1.545= 949×1.545= 1466N.m。 根据数学推导,圆环形破坏面的抵抗矩W = π× (3r2δ+3rδ2+δ3)。 上式中,r是圆环内径,δ是圆环宽度。 破坏面抵抗矩W = π×(3r2δ+3rδ2+δ3) =π×(3×842×4+ 3×84×42+43)= 88768mm3 =88.768×10-6 m3 风荷载在破坏面上作用矩引起的应力= M/W = 1466/(88.768×10- 6)=16.5×106pa=16.5 Mpa<<215Mpa 其中,215 Mpa是Q235钢的抗弯强度。 所以,设计选取的焊缝宽度满足要求,只要焊接质量能保证,灯杆的抗风是没有问题的。

钢结构抗风柱地设计

钢结构抗风柱的设计 一、介绍设置在房屋结构两端山墙内,抵抗水平风荷载的钢筋混凝土构造 柱简称为抗风柱。将抗风柱在水平方向连接起来、起整体加固作用的钢筋混凝 土梁简称为抗风横梁。一般用于高耸、内部大空间、横墙少的砖混结构房屋, 如工业厂房、大型仓库等。图1为单层厂房透视图,我们从图中可以看一下抗 风柱的位置情况: 抗风柱虽然在《钢结构设计规范》和《门式刚架规范》中均未有专 门条文介绍如何设计,但是作为结构受力构件,只要分析清楚它在结构体系中 的受力状态,按照规范相关条文进行计算分析,并满足规范规定的构造要求, 我们就能合理的设计出安全经济的抗风柱。接下来我们就抗风柱的设计全面介 绍如下: 二、力学分析 抗风柱有三种布置方法: (1) 即抗风柱柱脚与基础刚接,柱顶与屋架通过弹簧片连接。 (2) 即抗风柱柱脚与基础铰接,柱顶与屋架通过长圆孔连接板或弹簧片连接。按这两种布置方法,屋面荷载全部由刚架承受,抗风柱不承受上部刚架传递的竖向荷载,只承受墙体和自身的重量和风荷载,成为名副其实的“抗风柱”。 (3)按门式刚架轻钢结构布置,抗风柱与屋架梁刚接,与钢梁、钢柱一起组成门式刚架结构。即抗风柱柱脚与基础铰接(或刚接),柱顶与屋架刚接。按这种布置方法,屋面荷载由刚架及抗风柱共同承担。抗风柱同时承担竖向荷 载和风荷载。 第一种布置方式即悬臂梁式。 主要特点是:抗风柱柱脚刚接,相当于我们一般的悬臂梁受力形式,抗风柱本身独立承受墙面传递的风荷载。在过去重屋面的单层工业厂房中,因

为抗风柱和厂房结构柱所承受的竖向荷载差距较大,为避免不均匀沉降对结构 受力形式的改变和不利影响,一般需要释放竖向约束。在轻钢厂房开始的初期,我们经常看到一些图纸中,在抗风柱的顶部加设弹簧板,与主钢架连接,就是 这种设计理念。 这种抗风柱的主要特点是: 1)柱脚刚接; 2)截面根据实际情况,有时较大,有时就会很节省; 3)顶部弹簧板连接。 我们现在把悬臂梁式抗风柱力学模型展示如图2所示:第二种为简 支梁式,这种抗风柱的特点是:柱脚铰接、顶部与主钢架铰接,这种抗风柱的 受力形式简单,采用较小的截面就能满足。风荷载通过抗风柱传递到主钢架, 依靠主钢架的支撑体系承受水平风荷载。在轻型钢结构厂房设计中,受力形式 简单,力的传递途径明确。 主要的特点是: 1)主钢架承受竖向荷载和横向水平荷载; 2)抗风柱承受和传递水平纵向风荷载; 3)支撑体系承受纵向水平荷载。 这种抗风柱的优点是: 1)受力形式简单,截面较小; 2)铰接节点加工和安装比较方便,成本低; 3)充分发挥了整体结构的承载能力,总体成本低。 我们现在把简支梁式抗风柱力学模型展示如图3所示: 三、设计计算对于抗风柱首先要满足《钢结构设计规范》中对于钢柱的基 本规定: 1、容许长细比

钢结构住宅建筑设计探讨 吴启东

钢结构住宅建筑设计探讨吴啟东 发表时间:2019-07-24T11:30:51.380Z 来源:《防护工程》2019年8期作者:吴啟东[导读] 本文对上述问题进行了分析,并对住宅平面进行了研究,推出几种适合钢结构体系的住宅单体平面。 广东天元建筑设计有限公司 528237 摘要:钢结构住宅的建筑设计是钢结构住宅设计的重要组成部分,钢结构住宅除了要将钢结构建筑的特点体现出来之外,同时又要满足多样化的住宅功能需求,使人们对多样化住宅功能的需求得到满足,故设计人员应该着力解决钢结构结构体系和住宅房型功能需求之间的冲突,同时还应与住宅建筑设计相结合,基于此,本文对钢结构住宅建筑设计进行了分析和介绍,着力解决住宅房型功能需求与钢结构结构体系的矛盾,并结合住宅建筑设计,采用标准化、模数化的方式对连接部件和结构构件进行设计。本文对上述问题进行了分析,并对住宅平面进行了研究,推出几种适合钢结构体系的住宅单体平面。 关键词:钢结构;住宅;建筑设计;标准化;模数化 前言:在我国住宅建筑工程高速发展的今天,有越来越多的住宅工程开始采用钢结构体系,整个住宅建筑工程的质量在很大程度上受到了设计质量的影响,因此在住宅工程设计中钢结构住宅建筑设计具有十分重要的地位,正因为如此住宅建筑设计人员开始重视钢结构的设计工作并全面的提升住宅建筑工程的整体质量。钢结构住宅跟传统的砌筑式住宅不同,具有自重轻、强度高、抗震性能好、施工快等优点,钢构件以工厂加工为主,易实现标准化、模数化、系列化,同时,其结构体系及维护体系也有别于传统的住宅同时也是钢结构住宅的建筑设计是钢结构住宅设计的重要组成部分。因此杜宇钢结构住宅,需要针对钢结构建筑的特点,在建筑设计方面进行研究,并对一些特殊问题进行深入探讨。 1钢结构住宅建筑的优势 (1)便于功能区间的合理布置钢结构住宅本身具有较强的钢材强度,因此在布置的时候可以采用大开间柱的方式,灵活地分割建筑平面,通过其非承重墙体可以对室内空间进行灵活分割,从而实现开放式住宅。同时,由于钢结构具有连接简单的优势,因此可以将跃层或错层结构更好地应用在垂直平面内。在结构布置条件相同的情况下,通过改造可以根据需要改成2室2厅2卫或者2室2厅1卫两种形式。 (2)具有较高的抗震性能和承载强度在荷载相同的情况下,采用钢结构具有最小的截面;在截面相同的情况下,采用钢结构具有最大的承载力。因为钢结构本身具有较轻的重量,4层砖混结构的重量相当于6层轻钢住宅的重量,所以地震对钢结构的影响作用比较小。 (3)具有较短的设计制造周期通过对专业化结构分析软件和计算机的运用,钢结构住宅建筑设计中能够极大地缩短设计周期,而且还可以很方便地进行设计修改和调整。由于可以实现工厂预制和现场安装,因此设计人员在工作室完成钢结构住宅的设计工作之后,工厂的生产线就可以将后续的产品制作完成,因此其可以有效的缩短项目建设周期[1]。 (4)钢结构重量轻、强度高。从国内外震害调查结果看,钢结构住宅建筑倒塌数量最少。钢结构构件、墙板及有关部品在工厂制作,减少现场工作量,缩短施工工期,钢结构住宅在工地的施工实质上是工厂产品的组装和集成,再补充少量无法在工厂进行的工序项目,符合产业化的要求。钢材可以回收,建造和拆除时对环境污染较少。符合推进住宅产业化,发展节能省地型住宅的国家政钢结构工厂制作质量可靠,尺寸精确,安装方便,易与相关部品配合。 2存在的主要问题 (1)钢结构住宅的研发投入不够如对钢结构住宅防火、防腐性能研究及施工集成的研究还不系统配套。当前要集中力量解决多层(4~6层)、小高层(11~12层)、高层(12层以上)与钢结构住宅配套使用的外墙板性能、生产、施工和价格的难题。 (2)缺乏政策的配套和支持,缺乏系统合理的协调与分工,使产业总体发展不协调没有制订废物处理、有效利用资源、建筑材料回收等政策法律。建筑业应对砂石开采应有严格政策和措施、对水泥工业的发展、对水的利用等应有总量控制。应建立“钢结构住宅产业体系技术开发补助金制度”、“钢结构住宅产业化基金”、对钢结构住宅试点工程应给予补贴,对钢结构住宅也应制订专门的经济技术考核指标等。 (3)钢结构住宅数量少钢结构住宅在住宅建筑中的比例不足1%,虽有部分房地产开发商也开始研究钢结构住宅,但广大住宅开发商还未投入钢结构住宅中来,成本高、防火、防锈问题,影响他们的积极性。没有从钢结构住宅综合效益和“终生成本”来考虑也是原因之一。 (4)住宅单元的标准化设计与建筑空间造型多样化的矛盾按照钢结构特点,在钢框架范围内可按照使用需求对内部空间进行分割,但对钢结构的外部维护结构的处理,由于受到钢框架结构的限制而无法象传统住宅一样有较大的选择余地。钢结构住宅单元或套型模块设计要综合考虑柱、梁、楼板、外墙板、屋面板和隔墙板及设备、管线的优化选型,但不能因此完全简单划一,要尽量避免钢结构带来的建筑平、立面单调呆板,创造形式丰富多样的钢结构住宅造型。 3提高钢结构住宅设计的建议 (1)建筑设备要考虑钢结构住宅的特点,各种管线和设备是住户一进门首先遇到的问题。要选用和开发适合钢结构住宅的各项设备,选用先进的技术和设备用于钢结构住宅。 (2)钢结构设计要做到安全合理。选择合理结构体系、可靠方便的节点构造、尽量减少构件规格品种;现场焊接工作量较少、为构件制作、运输、吊装创造条件。 (3)钢结构住宅建筑要以建筑设计为主导,其他专业紧密互动配合。改变目前仅有结构工程师的积极性,而没有建筑师声音。钢结构住宅建筑除要遵循住宅建筑设计一般原则外,还要注重解决:如何发挥钢结构的优势?梁跨度可增大、开间更灵活、为住户创造更大的空间和面积;如何避免钢结构带来的建筑平、立面单调呆板的问题。目前在钢结构住宅设计中建筑师的智慧和积极性发挥不够。要发挥建筑师与结构、水、电、设备等专业协调能力,如解决钢结构住宅建筑防火、防腐蚀问题,做到成本增加不多而效果较好。 (4)从试点工程和国外的经验看,要发展钢结构住宅体系,宜釆用研究开发、设计制造、施工维修、管理一条龙的模式。以企业为核心,院校、设计、研究单位发挥各自优势,相互配合解决关键技术和产品的研发生产,组成专业的钢结构房屋开发公司或房地产开发公司来实施。如莱钢建设集团公司、北京赛博思金属结构工程有限责任公司、天津市建委、北新建材集团、杭萧钢构、浙江宝业集团等公司的做法。各企业要找到钢结构住宅突破口,长远规划,分步实施,以取得较好的经济效益。

抗风柱设计

抗风柱设计 抗风柱就是一根梁,无非是两段都是铰接,或是一端铰接一端固结,或者都是固结。 抗风柱受力的模型: 大家可以清楚的看到,抗风柱只是承受一个均部的风荷载(如果考虑高度变化的话,其实应该是一个梯形荷载,就是下端小,上端大)。这里还需要注意一个问题,就是抗风柱其实也是多少承担一些屋面梁的恒载和活载的。不过我们通常的做法是不考虑屋面梁恒载和活载传递给抗风柱的。而实际上,就是考虑也没有多少力量,轴向力对于抗风柱来说就无关紧要了。(大家注意,我们一定要忽略一些对主体影响很小的因素,这样才能保证我们计算的简单化)

抗风柱的计算要点: A 需要参考的是轻钢规程附录的风荷载规定

我们来简单解释下轻钢规程中的风荷载规定: 轻型房屋钢结构的风荷载,是以我国现行国家标准《建筑结构荷载规范》为基础确定的。计算这种房屋结构风荷载标准值时所需的风荷载体型系数,由于我国现有资料不完备,因此主要采用了美国金属房屋制造商协会《低层房屋体系手册》()中有关小坡度房屋的规定。分析研究表明,当柱脚铰接且刚架的小于 和柱脚刚接且小于(例如,檐口高度为,刚架跨度分别小于和)时,采用规定的风荷载体型系数计 GB50009MBMA 1996l/h 2.3l/h 3.0h 8m l 18m 24m GB50009

算所得控制截面的弯矩,较按规定的体型系数计算所得值低,即严重不安全。因此,需要采用的规定值。 手册中关于风荷载的规定,是在有国际权威性的加拿大西安大略大学边界层风动试验室,由美国钢铁研究会、美国和加拿大钢铁工业结构研究会等专业机构共同试验研究得出,是专门针对低层钢结构房屋的,内容全面且详尽,已为多国采用,并纳入国际标准。 手册规定的风荷载体型系数必须与以年一遇的最大英里风速为基础的速度风压配套使用。因此转换到与我国荷载规范规定的以年一遇的平均最大风速为基础的基本风压㎡配套使用时,必须乘以的平均换算系数。此外,美国规范规定,这遇风组合时,结构构件设计的允许应力可提高 倍。考虑到这两个因素的影响,引用的体型系数后,我国的基本风压值应乘以综合调整系数即。 关于阵风系数,荷载规范的说明中指出,“对于低矮房屋的围护结构,按本规范提供的阵风系数确定的风荷载,与某些国外规范专为低矮房屋制定的规定相比,有估计过高的可能。考虑到近地面湍流规律的复杂性,在取得更多资料以前,本规范暂不明确低矮房屋围护结构风荷载的具体规定,容许设计者参照国外对低矮房屋的边界层风洞试验资料或有关规定进行设计”。由于手册中规定的风荷载体型系数已经包含了阵风效应,且是内、外压力的峰值组合,因此可以不用考虑阵风系数。 MBMA 0~60%MBMA MBMA AISI MBMA SICC ISO MBMA 50(mph)(psf)GB500095010min (m/s)(kN/) 1.41.33MBMA 1.05( 1.4/1.33)GB50009MBMA

高层建筑结构的抗风设计 刘桐良

高层建筑结构的抗风设计刘桐良 发表时间:2019-07-19T16:03:20.703Z 来源:《基层建设》2019年第12期作者:刘桐良 [导读] 摘要:随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。 身份证号码:41048219900729XXXX 河南汝州 467599 摘要:随着高层建筑高度的增加,结构对风荷载更加敏感,在不少地区,抗风研究和设计已成为控制结构安全性能和使用性能的关键因素。根据建设规模,我国城市建设中占据比例最大的是高层建筑,而高层建筑结构的多变性和复杂性,使得结构设计工作成为建筑施工的重点和难点。面对高层建筑结构设计的相关问题,本文将对高层建筑抗风结构常见结构的问题进行分析。 关键词:高层;建筑结构;抗风设计 1 前言 随着我国经济的快速发,在建筑方面高层建筑结构与低层建筑结构一样,需要同时承受结构自身自重(及其他荷载)产生的垂直作用和风荷载产生的水平作用,相对于低层建筑结构水平荷载对整个结构受力影响通常较小的状况,在高层建筑结构中水平风荷载会成为高层(超高层)建筑结构设计的受力控制因素。针对我国高层建筑结构的抗风设计进行深入的研究和探讨。 2 高层建筑结构抗风设计中存在的问题 2.1 设计风压等级的确立 设计风压等级的建立需要考虑多种因素的影响。目前,我国还没有对结构设计风压等级给出明确定义,具体的划分原则和范围界定还需进一步的研究探讨。 2.2 风振系数的确定 我国目前确定结构风震系数时采用的阻尼比是按已建建筑在微振下所获取的阻尼比实测值确定的,而抗风设计所取的风载是30-100年一遇的大风荷载。此时,结构的振动将不是微小振动,而是有较大位移的振动,而大位移振动与微振的结构阻尼比是不同的,一般前者比后者大;而阻尼比增大,将使风振系数减小。因此目前我国进行高层建筑钢结构抗风设计所取的风振系数可能偏大。 2.3 风振舒适度的考虑 《高规》中规定重现期为10年的最大加速度限值为:公共建筑0.28m/s2;公寓建筑0.20m/s2。本文认为存在如下有待完善之处:首先,重现期取为10年已不能满足要求。《建筑荷载设计规范》中对一般结构基本风压重现期已规定为50年,且对特殊结构还要进行重现期为100年的舒适度验算;其次,该规定只将民用建筑分为公共建筑和公寓建筑两类,不够具体;再次,将峰值加速度限值仅定为0.28m/s2和 0.20m/s2,不够精确。 3 高层建筑的抗风设计 3.1 高层建筑结构在风荷载作用下的破坏形式 主体结构开裂或损坏,如位移过大引起框架、剪力墙、承重墙裂缝或结构主筋屈服;层间位移引起非承重隔墙开裂;局部风压过大引起玻璃、装饰物、围护结构破坏;建筑物的频繁、大幅度摆动使居住者感到不适;长期的风致振动引起结构疲劳,导致破坏。 3.2 高层建筑结构抗风的一搬设计原则 保证结构具有足够的强度,能可靠地承受风荷载作用下的内力;结构必须具有足够的刚度,控制高层建筑在水平荷载作用下的位移,保证良好的居住和工作条件;选择合理的结构体系和建筑外形。采用较大的刚度可以减少风振的影响;圆形、正多边形平面可以减少风压的数值;尽量采用对称平面形状和对称结构布置,减少风力偏心产生的扭转影响;外墙、玻璃、女儿墙及其它围护构件必须有足够的强度并与主体结构可靠地连接,防止局部破坏。 3.3 风荷载的计算 我国规范GB50068-2001《建筑结构可靠度设计统一标准》对荷载统计采用50年设计基准期,并且用平稳二项随机过程来描述荷载的随机过程。气流遇到建筑物时,在建筑物表面上产生压力或吸力,即形成风荷载,其大小主要与近地风的性质、风速、风向有关,也与建筑的高度、形状和地表面状况有关。根据新规范进行主体结构计算时,垂直于建筑物表面的风荷载标准值按下式计算,风荷载作用面积应取垂直于风向的最大投影面积。 3.4 风荷载作用下高层建筑的振幅、震动速度和加速度控制 根据现行的建筑结构设计规范,对于高层建筑结构在风荷载作用下的变形响应主要作以下两方面的限制: (一)限制结构的顶端水平位移u与总高度H的比值(u/H),目的是控制结构的总变形量。 (二)限制相邻两层楼盖间的相对水平位移Δh与层高h的比值(Δu/h),一般Δu /h在结构的各层中具有不同的比值,且往往最大的Δu/h 要超过u/H的限值。限制最大的Δu/h目的是防止填充墙、装饰部件的损坏,避免电梯轨道和管道等设施产生过大的变形。 高层建筑结构的变形控制对于控制风振侧移是非常重要的,结构侧移特别是层间侧移是决定建筑物破坏程度的因素,因此能否将侧移控制在允许限度内,是检验抗侧力体系有效性的重要指标。 3.5 高层建筑结构抗风加固的方法 (一)增大截面法。增大构件的截面面积,提高承载能力及截面刚度,改变自振频率,减小结构的动力风荷载效应。多用于加固结构中的梁、板、柱和钢结构中的柱及屋架以及砖墙、砖柱等。此法会减小使用空间,增加结构自重。 (二)外包钢加固法。在结构构件四周包以型钢进行加固,分干式外包钢和湿式外包钢两种形式。在保持原构件截面尺寸的同时提高构件承载力、延性和刚度,适用于混凝土柱、梁、屋架和砖窗间墙以及烟囱等结构构件的加固。但用钢量较大、维修费用较高。 (三)预应力加固法。外加预应力钢拉杆对结构进行加固。在几乎不改变使用空间的条件下,提高构件的承载力。广泛用于受弯构件以及混凝土柱、钢梁及钢屋架的加固。加固效果好而且经济,很有发展前景;不足的是增加了施加预应力的工序和设备。 (四)改变受力体系加固法。增设支点或采用托梁拔柱的办法改变结构的受力体系。大幅度提高结构构件的承载力,减小挠度、裂缝宽度。多用于大跨度结构。 (五)外部粘钢加固法。用胶粘剂在构件外部粘贴钢板。施工简易周期短,加固后几乎不改变构件的外形和使用空间,大大提高构件

相关文档
最新文档