超疏水表面涂层制备技术的研究进展

超疏水表面涂层制备技术的研究进展
超疏水表面涂层制备技术的研究进展

关于某超疏水涂层综述1

自洁净技术 当今世界现有的技术很多都是来自于大自然中的,自洁净技术就是其中之一。在自然界中的许多生物都表现出自洁净的性质。蝴蝶的翅膀和植物的叶子,例如卷心菜和莲花。自洁净技术的应用围很广,从窗户玻璃的清洗到太阳面板的清洁,从水泥到纺织品。这项技术在20世纪末得到了极大的重视。世界各地都在开发着具有增强光学性质的高效耐用的表面涂层。除了应用方面的好处,这项技术还提供了各种各样的好处,包括减少维护成本,消除繁琐的手工工作,花在清扫工作上的时间也会减少。 自洁净涂料大致分为两个主要的类别,亲水和疏水,这两个类别都是通过水的作用来达到自我清洁的效果。在一个亲水涂层,水在表面扩散,会带走污垢和其他杂质。而在疏水技术中,水在表面滚动滑落,从而达到清洗的目的。然而,亲水性涂料使用合适的金属氧化物具有一个额外的属性,在的辅助作用下,化学分解复杂的污垢,达到清洁的作用。 自清洁的应用,就是超疏水材料的应用。氏方程制定在200年前,现在在湿润科学上仍然是基本的方程。氏方程是描述固气、固液、液气界面自由能γsv ,γSL ,γLv 与接触角θ之间的关系式。表达式为:γsv-γSL=γLvCOS θ。 该方程适用于均匀表面和固液间无特殊作用的平衡状态。COS θ=(уSV-уSL)/уLV 式中уSV 为固体表面在饱和蒸气下的表面力,уLV 为液体在它自身饱和蒸汽压下的表面力,уSL 为固液间的界面力,θ为气、固、液三相平衡时的接触角。当θ>90°时固体表面表现为疏水性质,θ<90°时表现为亲水性质。将与水接触角大于150°的物体表面称为超疏水表面。温泽尔就膜表面的粗糙情况对疏水性的影响进行了深入的研究.对氏方程进行了修正。指出由于实际表面粗糙使得实际接触面积要比理想平面大,提出了Wenzel 方程:cos θ1=r(уSV-уSL)/уLV 。式中r 为实际接触面积/表观接触面积。亲水膜在增加粗糙度后将更亲水.疏水膜则更疏水。在研究织物疏水性能时.提出了另一种表面粗糙新模型——空气垫模型。Cassie 提出接触面由两部分组成,一部分是液滴与固体表面(R)突起直接接触,另一部分是与空气垫(fv)接触,并假定θ1 =180°,引入表面系数f=fs /(fs+fv),Cassie 推导的方程为:cos θ1=fcos θ+f-1=f(cos θ+1)-1。根据Cassie 的模型及公式的理论计算.提高空气垫部分所占的比例将会增强膜表面的超疏水性能。 1.D. Byun, J. Hong, J. H. Saputra Ko, Y. J. Lee, H. C. Park,B.-K. Byun and J. R. Lukes, J. Bionic Eng., 2009, 6, 63–70.【Wetting Character is ticsof Insect Wing Surface 】我们调查了昆虫翅膀表面在微小和纳米比例下的、发现多层的粗糙表面有利于提高疏水性。在检测了10组24个会飞有翅昆虫标本之后,我们发现微小和纳米尺寸下典型存在于昆虫上下翅膀表面。在昆虫翅膀表面的微小的齿状结构与刚毛提高了疏水性,同时也使翅膀更容易被清洗。疏水昆虫翅膀经历了从cassie 到wenzel 的状态的转换。 2.C. Dorrer and J. Ruhe, Soft Matter, 2009, 5, 51–61.【Some thoughts on superhydrophobic wetting 】一滴水接触疏水材料的表面会形成一个近乎完美的球形,即使是一个轻微的倾斜都足以使水滴滚落。根据Cassie 的模型及公式的理论计算.提高空气垫部分所占的比例将会增强膜表面的超疏水性能。液滴必须足够的小以保证不出现显著的重力变形,大小被认为满足直径低于各自毛细管长度。毛细管长度被定义为 g lg ργλ=C ,水的毛细管长度是2.7mm 。应用施加压力,震动底物,应用电压,水滴蒸发实

超疏水微纳米涂层的制备

ZnO/E-51复合涂料超疏水涂层的制备 1.选题的意义 润湿性是固体表面的重要性质之一,通常用液体在固体表面的接触角来表征。一般把与水的接触角大于150°且滚动角小于10°的固体表面,称为超疏水表面。由于超疏水表面与水滴的接触面积非常小,水滴极易从表面滚落,因此,超疏水表面不仅具有自清洁功能,而且还具有防腐蚀、防水、防雾、防雪、防霜冻、防黏附、防污染等功能[1,2],因而在建筑、包装、服装纺织、液体输送、生物医学、交通运输以及微观分析等领域具有广泛的应用前景[3,4]。 2.实验的目的 荷叶表面具有极佳的疏水性和自清洁能力,研究发现其表面的双重微观粗糙结构和低表面能植物蜡的协同作用是形成疏水性能的主要原因。目前人工制备疏水表面的主要有两个途径:,一类是在低表面能的物质表面构造出一定的粗糙结构[5-6],另一类则是在粗糙度合适的物质表面覆盖低表面能材料[7-8]。大量研究表明合适尺度的粗糙结构是指具有微-纳米尺度的二元粗糙结构[5]。当前有关超疏水表面制备技术和方法报道得较多,但大多采用复杂、高成本的纳米技术如光刻、静电纺丝、溶胶-凝胶和相分离、化学反应沉积、层层自组装等。受技术与实验条件的限制,这些超疏水表面制备技术与实际应用还有较大差距。本实验通过ZnO微粉与环氧树脂机械混合,制备ZnO/E-51复合涂料,固化后通过简单的化学刻蚀和表面修饰,形成微-纳米尺度二元粗糙结构,获得具有超疏水特性的大面积表面。 3.实验方法 3.1原材料 原材料ZnO微粉,粒径范围为0.1~1.5um;硬脂酸、冰醋酸和无水乙醇,环氧树脂(CYD-128),去离子水,实验室自制;50%的冰醋酸溶液由去离子水与冰醋酸按比例混合,实验室自制;1%的硬脂酸溶液由无水乙醇和硬脂酸按比例混合,实验室自制。 3.2.ZnO/E-51复合涂料的固化 采用真空袋压法制备固化的ZnO/环氧树脂复合涂料。将环氧树脂E-51和ZnO微粉按质量比1:2称量,采用机械搅拌方法混匀,制备环氧树脂浆料;在环氧树脂浆料中加入质量比为10%的二乙烯三胺固化剂,搅拌均匀;再将加入固化剂后的环氧树脂浆料均匀地涂在处理好的模具表面,铺敷真空袋,抽真空并保持;最后,固化、脱模得到固化后的ZnO/环氧树脂复合涂料。 3.3超疏水表面的制备 首先,将上述固化后的ZnO/E-51复合涂料表面用150#水砂纸打磨,再用丙酮清洗,除去污渍;其次,把试件悬挂在50%冰醋酸溶液中刻蚀预定的时间;第3步,把刻蚀后的试件用去离子水在超声作用下清洗,除出试件表面空隙中的残留物,再在60℃烘箱中烘30min;第4步,把试件悬挂在1%硬脂酸的无水乙醇溶液中浸泡预定的时间,进行表面修饰;最后,把修饰后的试件放在50℃烘箱中烘干,即获得具有超疏水性表面的ZnO/E-51复合涂料表面。 3.4表征分析 采用扫描电镜(SEM,Quanta-200,FEI)在电压为20KV下观察表面形貌;与水的接触角采用动/静态接触角仪(SL200B, 上海梭伦信息科技有限公司)测量,去离子水滴直径约为1.5mm,采用微量注射器滴加到试件表面,取3个不同位置

超疏水表面的制备方法及应用的研究进展

超疏水表面的制备方法及应用的研究进展 摘要:在材料科学发展日新月异的今天,超疏水表面一直是材料研究的重点, 并在军事、工业、民用方面具有极高的应用前景。而润湿性是决定材料疏水性的 关键所在,如何降低润湿性是提高材料疏水性的主要手段。本文简单介绍了表面 润湿性的基本理论,综述了超疏水表面的制备方法,及其相关应用的研究进展。 关键词:超疏水表面;润湿性;微/纳米结构 1.引言 在自然界中,许多生物都有着特殊的表面结构,而其中植物叶片的表面结构 因其特殊的性质引起了人们极高的兴趣。而在植物叶片中,荷叶叶片上表面的特 殊性质又极为明显,荷叶的表面不均匀且大量地分布着平均直径在5~9微米的乳突,而乳突又是由许多的平均直径在121.1~127.5纳米的纳米分支结构组成。除 此之外,我们还可以发现在荷叶的下一层表面中还存在着纳米级的蜡晶。通过蜡 晶结构与乳突组成的微纳结构,成功地减少了叶面与液体的接触面积。与此同时,通过微纳结构,荷叶也减少了与脏污的接触,便于脏污被带走,这就是荷叶叶片 所表现出的自清洁性。而溯其根本,自清洁性又是超疏水性的一个表现。自然界 中还有很多动植物的表面有超疏水的性质,例如在水面自由移动的水蛭。为了这 些动植物的研究,是人们对于超疏水表面的认识更加深入,这对于制备功能材料 具有很好的意义。 润湿性是影响超疏水性质的关键,是指某种液体在一个平面上的延展,覆盖 的能力。假设有一液面铺展在一平面上,气、液、固三种物质接触于同一点处。 气-液界面的切线与固-液接触面的夹角为θ,称θ为接触角。为了方便判定,通 常以水与固体表面的接触角θ的大小来判断润湿性,并区分亲疏水表面。当θ大 于150?时,该表面被称为超疏水表面;当θ大于90°时,被称为疏水表面;当θ 小于90°时,被称为亲水表面;当θ小于10°时,被称为超亲水表面。其中,90° 作为亲水与疏水的分界。 假设有一理想的平滑均匀平面,没有任何粗糙介质,则表面接触角θ满足杨 氏方程: 图1两种粗糙表面的润湿模型:Wenzel模型和Cassie模型 近年来,由于超疏水表面在日常生活中及工业生产等方面有极高的价值,超 疏水表面的制备及相关应用研究日益增多,本文主要综述超疏水表面的制备方法 与其相关应用。 2超疏水表面的制备方法 固体表面的润湿性主要由两个因素决定:表面的粗糙程度和表面能。目前常 见的制备方法有刻蚀法、模版法、气相沉积法、电纺法、溶胶-凝胶法、机械拉伸、相分离法等等。但以这种方法分类并不能准确而直观的表明其制备方法的本质依据。根据润湿性的影响因素,制备方法可大致分三类:赋予低表面能物质表面适 当的粗糙结构,对粗糙表面进行表面改性以降低表面能和降低表面能同时增加粗 糙程度。 2.1赋予低表面能物质粗糙结构 赋予低表面能物质粗糙结构大致而言,就是在低表面能物质表面构造微观结构,这种方法制备的超疏水表面具有可控性强、稳定性好的性质。

超疏水表面涂层的制备

超疏水表面涂层的制备 摘要:近年来,由于超疏水膜表面在自清洁、微流体系统和特殊分离等方面的潜在应用,超疏水性膜的研究引起了极大的关注。本文着重介绍了超疏水表面涂层的几种制备方法,并对超疏水表面涂层的发展前景进行了展望。 关键字:超疏水、自清洁、制备方法 超疏水表面已在自然界生物的长期进化中产生,许多动植物(如荷叶、水稻叶、蝉翼和水黾腿)表面具有超疏水和自清洁效果,最典型的代表是所谓的荷叶效应超疏水表面是指与水的接触角大于150°而滚动角小于10°的表面[1]。Barthlott和Neinhuis[2]通过观察植物叶表面的微观结构,认为自清洁特征是由粗糙表面上微米结构的乳突以及表面的存在蜡状物共同引起的。江雷[3]认为荷叶表面微米结构的乳突上还存在着纳米结构,而这种纳/微米阶层结构是引起表面超疏水的根本原因。固体表面超疏水性是由固体表面的化学成分和微观几何结构共同决定的。由于超疏水涂层独特的表面特性和潜在的应用价值而成为功能材料领域的研究 热点,,并获得越来越广泛的应用。 超疏水涂层的制备方法 通常,制备超疏水表面有两种途径一种是在具有低表面能的疏水性材料表面进行表面粗糙化处理;另一种是在具有一定粗糙度的表面上修饰低表面能物质。查找和整理前人对于超疏水薄膜的研究,整理下来超疏水薄膜的制备方法可分为6种方法[4],分别为:气相沉淀法、相分离法、模板法及微模板印刷法、刻蚀法、粒子填充法和其他方法。 气相沉积法 气相沉积法包括物理气相沉积法(PVD)、化学气相沉积法(CVD)等。它是将各种疏水性物质通过物理或化学的方法沉积在基底表面形成膜的过程。 Julianna A等[5]通过气相沉积法,在聚丙烯膜表面沉积多孔晶状聚丙烯涂层,使聚丙烯膜呈现超疏水性,接触角达到169°,其接触角提高了42°。他们同时对聚四氟乙烯膜进行沉积处理,接触角提高30°左右。他们用原子力显微镜表征其表面形貌,两种膜表面都呈高低不同的各种突起,他们认为正是这种高低不同的突起使膜的疏水性增强。 相分离法 相分离法是在成膜过程中通过控制成形条件,使成膜体系产生两相或多相,形成均一或非均一膜的成膜方式。该方法制备过程简便,实验条件较为容易控制,可以制备均匀、大面积的超疏水薄膜,具有较大的实际应用价值。 Takahiro Ishizaki和Naobumi Saito[6]把镁合金浸渍在硝酸铈水溶液中20分钟,二氧化铈结晶膜就可以在镁合金表面纵向生长了。晶体的密度随着浸渍时间的增加而增加。然后,把结晶膜浸泡在含有FAS和四(三甲基硅氧基)钛(TTST)甲苯溶液中,FAS分子就可以覆盖在结晶膜上,形成超疏水的涂层。这里TTST作为催化剂,促进FAS分子的水解和/或者聚合。 模板法及微模板印刷法 模板及软模板印刷法是以具有微米或纳米空穴结构的硬的或软的基底为模

超疏水表面的制备方法_石璞

功 能 高 分 子 学 报Journal of Fu nctional Polym ers Vol.21No.22008年6月 收稿日期:2008-03-10 基金项目:国家自然科学基金(10672197) 作者简介:石 璞(1976-),男,安徽安庆人,讲师,在读博士,研究方向:生物医学材料。E -m ail:s hipu1976@https://www.360docs.net/doc/ec806056.html, 通讯联系人:陈 洪,E -mail:ch enh ong cs@https://www.360docs.net/doc/ec806056.html, 综 述 超疏水表面的制备方法 石 璞1,3, 陈 洪2, 龚惠青3, 袁志庆1, 李福枝3, 刘跃军3 (1.中南大学粉末冶金研究所,长沙410083; 2.中南林业科技大学,长沙410004; 3.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008) 摘 要: 超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究 的热点之一。其中超疏水表面的制备方法是研究的关键点。介绍和评述超疏水表面的制备方法, 对该领域的发展方向进行了展望。 关键词: 超疏水;表面;制备方法 中图分类号: O647 文献标识码: A 文章编号: 1008-9357(2008)02-0230-07 Methods to Prepare Superhydrophobic Surface SH I Pu 1,3, CH EN H ong 2, GONG H u-i qing 3, YUAN Zh-i qing 1, LI Fu -zhi 3, LIU Yue -jun 3 (1.Institute o f Pow der M etallurgy ,Central South U niv ersity ,Chang sha 410083,China; 2.Central South University of Forestry and Technology ,Changsha 410004,China; 3.Key Laboratory of New Material and Technology for Package,Hunan University of Technology ,Zhuzhou 412008,Hunan,China)Abstract: Superhydr ophobic m aterials have received tremendous attention in recent year s because of its special proper ties such as w ater -proof,ant-i po llution,reduction resistance o f flow ing liquid,etc.It beco mes ho tspo t research in functional m aterial field,and the preparation m ethods to acquir e excellent superhydropho bic surface are key to the r esearch.Repr esentative articles in r ecent years about prepar ation methods are review ed in this article.T he prospect of dev elo pments is proposed. Key words: super hy drophobic;surface;preparation methods 自从Onda 等[1]1996年首次报道在实验室合成出人造超疏水表面以来,超疏水表面引起了研究人员的广泛兴趣。总体说来,目前的研究主要集中在以下几个领域:(1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。高雪峰和江雷[2]、冯琳[3]、郭志光[4~5]等的论文中有详细的描述和精美的电镜照片。(2)使用无机物[6]或在金属表面制备具有超疏水性表面的材料。(3)使用高分子材料制备具有超疏水性的表面。(4)理论研究[7~11],主要是通过构建模型以探讨表面结构状况与接触角或滚 动角的关系。关于超疏水表面的基本理论,金美华的博士论文[38]有详细论述。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米-纳米级粗糙结构;另外一类是用低表面能物质在微米-纳米级粗糙结构上进行修饰处理。其中,制备合适微米-纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶-凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 230

表面微细结构制备超疏水表面

评 述 第49卷 第17期 2004年9月 表面微细结构制备超疏水表面 郑黎俊 乌学东* 楼 增 吴 旦 (上海交通大学化学化工学院, 上海 200240. * 联系人, E-mail: xdwu@https://www.360docs.net/doc/ec806056.html, ) 摘要 超疏水是指固体表面上水的表观接触角超过150?的一种特殊表面现象, 本文从热力学角度评述了导致超疏水状态的两种理论模型: Wenzel 模型和Cassie 模型, 讨论了表面微细结构对超疏水状态的影响以及Wenzel 和Cassie 两种状态之间的内在联系. Wenzel 和Cassie 是两种可以同时共存的超疏水状态, 在一定条件下可以实现从Cassie 到Wenzel 状态的不可逆转变, 而这两者在接触角滞后中表现出截然不同的性质. 概括和总结了通过设计表面微细结构来达到超疏水表面的制备策略, 并对超疏水表面在现代工程领域内的应用前景作了展望. 关键词 微细结构表面 自洁表面 接触角 超疏水性 粗糙度 表面润湿是固体表面的重要特征之一, 也是最为常见的一类界面现象, 它不仅直接影响自然界中动、植物的种种生命活动, 而且在人类的日常生活与工农业生产中也起着重要的作用. 润湿性可以用表面上水的接触角来衡量, 通常将接触角小于90?时的固体表面称亲水表面(hydrophilic surface), 大于90?称疏水表面(hydrophobic surface). 近年来, 随着微纳米科学技术的不断发展, 以及越来越多的行业对特殊表面性能材料的迫切需求, 人们对微观结构在生命科学和材料科学中的应用有了更多的认识, 对于固体表面微细结构与润湿性之间的关系也有了更深入的理解[1,2]. 对润湿性可控表面研究的重大进步, 使得制备无污染、自清洁表面的梦想成为了现实[3]. 自洁表面一般可通过制备超亲水或超疏水表面两种途径制得: Wang 等[4]利用紫外光诱导产生的接触角接近0?的超亲水TiO 2表面, 这种表面材料已经成功地被用作防雾及自洁的透明涂层[5], 其机理为液滴在高能表面上铺展开形成液膜, 然后通过液膜流动, 夹带表面污物运动而起到自洁的功能; 而科学家在对动植物表面 的研究中发现[6], 自然界中通过形成超疏水表面来达到自洁功能的现象更为普遍, 最典型的如以莲叶为代表的多种植物叶子的表面[7](莲叶效应 Lotus- ef-fect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等等, 这是大自然对我们的暗示. 通过观察和研究发现, 此类表面上除了具有疏水的化学组分外, 更重要的是在微观尺度上具有微细的粗糙结构. 如图1所示, 电子显微镜下, 荷叶表面具有双层微观结构, 即由微米尺度的细胞和其上的纳米尺度蜡状晶体两部分组成; 蝶类翅膀上的粉末由100 μm 左右的扁平囊状物组成, 囊状物由无数对称的几丁质(chitin)组成的角质层构成, 其表面并不光洁, 这就是蝴蝶常具有色彩斑斓的结构色以及较好的疏水性的原因[8]; 水鸟类羽毛也具有微米或亚微米尺度的致密排列, 同时具有较好的 透气性和疏水性. 固体表面的润湿性由其化学组成和微观几何结构共同决定. 众所周知, 润湿性能主要受固体表面化学组成的影响, 固体表面自由能σSG 越大, 就越容易被一些液体所润湿, 反之亦然. 所以寻求和制备高表面自由能或低表面自由能的固体表面是制备超亲水 图1 (a) 荷叶表面的双层结构; (b) 蝴蝶鳞片的排列以及鳞片表面的微观结构; (c) 羽毛的微观结构 https://www.360docs.net/doc/ec806056.html, 1691

超疏水材料制备及其在油水分离中的应用研究进展

超疏水材料制备及其在油水分离中的应用研究进展 摘要随着世界机械化以及工业化的发展,全球的水资源污染逐渐严重,人民群众对于水资源的供应以及淡水资源的处理越发关注,且为水资源处理技术的发展做出了较大贡献。作为水资源净化技术的重要组成部分,油水分离净化技术水平不仅关系着淡水资源的提供质量,而且对于人民群众的身体健康也具有重要影响。基于此,本文将超疏水材料制备及其在油水分离中的应用作为主要研究内容,通过对超疏水材料进行简单阐述,进而对超疏水材料的应用以及其在油水分离中的应用进行详细的研究与分析。本文旨在为超疏水材料在油水分离中的应用研究提供几点参考性建议,并为水资源的净化处理技术发展提供积极的推动作用。 关键词超疏水材料制备;油水分离;应用研究 前言 由于工业化的发展导致海洋中的水资源污染情况越加恶劣,有大量的油产品以及机溶剂污染流入海洋中,对海洋中的水资源产生了严重破坏,进而为水资源净化技术提出了更高的要求,对人类生存与发展也产生了威胁。基于此种宏观环境,本文对超疏水材料在油水分离中的应用进行详细的研究与分析。 1 超疏水材料概述 超疏水材料主要是利用其中较为独特的化学结构以及其本身的润湿性能来作为水资源净化技术中的一种使用材料。由于该种材料在材质表面上具有润湿性的特殊原理,并能够作为超疏水材料而应用至油水分离的水资源净化中,其还具有两方面的特征。第一方面,表面为微纳米结构。第二方面,表面具有低表面能的特色。同时,在该种材料的制备过程中还具有成本较低以及制备材料环保的优势。因此,在油水分离的水资源净化中被广泛使用。但在超疏水材料的具体制备中还有耗时周期长的缺点,而该种缺点与实际制备中的优势相比并不对超疏水材料的实际应用构成威胁[1]。 2 超疏水材料的应用 由于超疏水材料在近几年的广泛使用中其本身的特殊性能受到各领域研究人员的关注,进而推动着超疏水材料在多个研究领域以及生活领域被应用。本文将超疏水材料的应用特性总结为以下五个方面。第一方面,自清洁的特性应用。由于超疏水材料本身具有良好的润湿性,在其进行使用的过程中能够对自身的灰尘与脏污进行自行清理。在具体的应用中,将超疏水材料的特性应用在城市高楼的建设中,利用超疏水材料的自清洁特性减少建筑玻璃清洁的次數,降低楼房玻璃清洁的成本,并在一定程度上节约水资源[2]。第二方面,抗冰雪的特性应用。由于在冰天雪地的寒冷地区,电线、航行等方面均会有风雪粘粘,进而导致电力能源的传输问题,并对正常的航行产生困扰。而应用超疏水材料的抗冰雪特性将

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

超疏水材料研究报告进展

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b)

超疏水表面涂层制备技术的研究进展_王英

1 引 言 植物叶表面的自清洁效果引起了人们的兴趣,这种自清洁性质以荷叶为代表,因此称为“荷叶效应”。德国生物学家Barthlott[1]在1997年通过对近300种植物叶的结构进行研究,认为这种自清洁的特征是由粗糙的表面和表面存在的疏水的蜡状物质共同引起的。中科院研究小组[2]研究发现,在荷叶表面微米结构的乳突上还存在纳米结构,这种微米-纳米相复合的阶层结构是引起超疏水表面的根本原因;并通过试验证明[3],单纯的微米或纳米结构虽然可以使表面产生超疏水性,但水滴在表面上不易滚动。通过大量的研究发现,固体表面浸润性由以下2个因素共同决定:①表面化学组成;②表面粗糙度。超疏水表面可以通过2种方法制得:①利用低表面能材料来构建粗糙结构; ②在粗糙表面上修饰低表面能物质。荷叶表面微观结构能够自清洁的这一发现为人工构筑超疏水表面提供了灵感。 2 超疏水表面制备技术 随着人们对超疏水表面的深入研究,许多制备方法不断涌现,目前,已经有多种方法可以人工制备超疏水表面,比如以天然动植物超疏水表面作为模板,用聚合物在其表面固化或用光刻印的方法将模板的表面形貌信息转移到复制物的表;用化学沉积(气相沉积、电化学沉积或逐层沉积)的方法在基材表面形成超疏水薄膜表面;或采用静电纺丝的方法形成纤维状微纳米尺度粗糙表面等等。 2.1 等离子体处理技术 利用等离子体对普通材料或含氟的低表面能物质进行表面粗糙化处理来制备超疏水表面的方法称为等离子体法。 Lacroix等[4]通过简单的等离子体聚合与等离子体刻蚀技术在硅基底上制得了粗糙的结构,经过进一步氟化物修饰表面后,表面呈现出超疏水的特性,水滴与表面的接触角接近180°。Khorasani等[5]在室温环境下利用CO2脉冲激光处理聚二甲基硅氧烷,使其表面产生多孔结构,测得其表面与水的接触角高达175°。这种技术处理表面是获得粗糙结构的有效方法,其优点是选择性高、快速等,但是存在的局限是成本高并且不利于大面积超疏水表面的制备。 2.2 溶胶-凝胶法 溶胶-凝胶法(Sol-gel法)是指用含有高化学活性组分的化合物作为前驱物,在酸或碱条件下进行水解产生活性的羟基,经过水解缩合反应形成溶胶,随着水解缩合反应的进行,溶胶的粘度进一步增加,最后形成凝胶,经过陈化、干燥成为干凝胶。当把溶剂去除后,有时会留下一些微纳米孔,这些孔结构赋予了材料一些性能,如超疏水性。 曲爱兰等[6]通过制备不同粒径和形状的SiO2粒子,构成了符合Cassie模型的非均相界面模型,使得水滴与涂膜表面接触时能够形成较小的粗糙度因子与高的空气捕捉率,然后利用氟硅烷的表面自组装功能制备得到了具有仿生类"荷叶效应”的超疏水膜,两者共同作用赋予了涂膜超疏水性能。测得水的静态接触角达到(174.2±2)°,接触角滞后几乎接近0°。郭志光等[7]采用溶胶-凝胶法与自组装技术相结合在硅片表面制备了具有一定表面粗糙度的薄膜,再经全氟辛基三氯甲硅烷化学修饰后制备出了具有超疏水性能的薄膜,水滴与膜表面的接触角为155~157°,滚动角小于5°。 超疏水表面涂层制备技术的研究进展 The research progress of ultra hydrophobic surface coating preparation technology 王 英(甘肃中医药大学定西校区 定西师范高等专科学校,甘肃 定西 743000)摘 要:由于超疏水表面在自清洁表面、微流体系统和生物相容性等方面的潜在应用,有关超疏水表面的研究引起了极大的关注。本文归纳了超疏水表面的制备方法和相关的理论分析, 简单介绍了本研究小组最新研制的一种超疏水涂层材料制备技术,展望了超疏水表面的研究趋势和应用前景。 关键词:超疏水;仿荷叶;多级结构;表面技术;超疏水涂层 Abstract:In recent years,for the potentional application of super hydrophobic surface in self-cleaning coating,microfluidic systems and biological compatibility etc,the research which is related on these aspects has aroused great concern.This article summarizes the preparation method of the super hydrophobic surface and some theoretical analysis related on, simply introduces a kind of newest preparation method on super hydrophobic coating materials which is developed by a research team,and also opens a prospect in the research trends and application on the super hydrophobic surface. Key words:super-hydrophobic;lotus leaf like;multi level structur;surface technology;super-hydrophobic coating 中图分类号:0647 文献标识码: B 文章编号:1003-8965(2016)01-0032-02 基金项目:2011年度甘肃省高等学校科研资助項目(1127–02)。 作者简介:王英(1966—),女,河南开封人,副教授,硕士。 综 述 32

超疏水高分子薄膜的研究进展 (1)

超疏水高分子材料的研究进展 摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。 关键词:超疏水,高分子材料,自清洁 Developments of super-hydrophobic Ploymeric material Abstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end. Key Words: super-hydrophobic, polymeric membrane, self-cleaning. 引言 自然界是功能性表面的不竭源泉。植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。植物叶表面的微观结构产生自清洁性这一发现不仅为人工构筑超疏水表面提供的灵感,而且植物叶本身也是一个优异的模板,通过对其结构的复制,可望得到具有类似于植物叶表面微结构及自清洁性能的表面。通过对生物体表面结构仿生可以实现结构和性能的完美统一[3-12]。 随着高分子材料在日常生活中的广泛应用,针对高聚物材料存在的表面问题,例如表面的防污性、湿润性,防冰冻,抗菌性等的研究变得越来越重要,特别是智能高分子材料的性能研究尤为引人注目。由于超疏水材料在自清洁、

自清洁超疏水涂层的研究

自清洁超疏水涂层的研究 摘要:本文综述了具有自清洁超疏水涂层的研究进展,介绍了实现自清洁目的的涂层所要具备的超疏水条件,并对超疏水的理论模型进行了综述。此外,介绍了几种自清洁超疏水涂层的类型,如:“仿生荷叶”型、有机硅型、有机氟型、有机氟硅型。 关键词:自清洁超疏水理论模型 一、前言 自清洁涂层是能够不通过人工,而是自身可以通过外部环境保持洁净的表面。例如,阳光的照射、风的作用以及雨水的冲洗。此外,当水在这固体表面上表现出很明显的疏水性,水滴和涂层表面的接触角大于150°,并且滞后角不超过10°的涂层叫做超疏水涂层。 二、超疏水的理论模型 对大自然中的超疏水表面研究后发现,表面能达到超疏水的两个条件,一是低的表面能,二是表面有粗糙的结构。这里,简要介绍超疏水的理论模型。 1 Wenzel 模型 在1936年,通过热力学定律,Wenzel计算出了液体和不平整表面相接触时产生的接触角,以及液滴和平整表面接触时所产生的接触角之间的关系[1]。 可以有效地运用仿生的方法来在表面构建粗糙度,Woo Kyung Cho和他的团队[3]通过将有机硅水解,然后通过有低表面性质的氟硅进行改性。从而制备得到了有一定粗糙度的超疏水涂层。经过测定发现,水滴在涂层表面的接触角达到了160°以上,并且滞后角为2.4°,这里的粗糙度主要是由于F-的作用。另有团队[4]将γ-氨丙基三乙氧基硅烷(APS)添加在纳米级的SiO2溶胶中,反应之后,在基材表面经过浸渍提拉法涂层。干燥后在SEM下能看到有微米级的颗粒团聚在一起,这和荷叶表面的结构十分的相似,如此所得的涂层水接触角能够达到156°,滞后角在3°以下,而且在整个过程中的稳定性好,能够在工业上进行推广。 现如今,欧美地区的各国以及我国香港等很多企业都开发出了此类涂料或助剂。此类先进的研究和新的产品对今后自洁领域的进一步扩大有很大的帮助。而基于这一理念的涂层仍是研究的热点。 2 基于超疏水理论的自清洁涂层 在超疏水表面上的水滴能自动收缩成球状,使得其与表面的接触面积在很大程度上减小。如果污染物的表面能高于涂层的表面能,这样,污染物想要附着在

2011-金属基体超疏水表面制备及应用的研究进展

金属基体超疏水表面制备及应用的 研究进展 Progress in Fabrication and A pplicat ion of Superhydrophobic Surfaces on M etal Substrat es 徐文骥,宋金龙,孙 晶,窦庆乐 (大连理工大学精密与特种加工教育部重点实验室,辽宁大连116024) XU Wen ji,SONG Jin long,SUN Jing,DOU Q ing le (Key Labor ator y for Precision and No n traditio nal M achining Technolog y fo r M inistry of Education,Dalian U niversity of T echno logy,Dalian116024,Liaoning,China) 摘要:在介绍润湿性相关理论的基础上,综述了国内外金属基体超疏水表面的制备方法及应用,重点讨论了阳极氧化法、电化学沉积法、化学腐蚀法、化学沉积法、一步浸泡法、热氧化法、模板法、复合法等,及超疏水表面在响应开关、自清洁、流体减阻、耐腐蚀、防冰霜、油水分离、微型水上运输器等方面的应用,最后评述了各种方法的特点,提出了在金属基体上制备超疏水表面所面临的问题。 关键词:金属基体;超疏水表面;研究进展 中图分类号:T G66 文献标识码:A 文章编号:1001 4381(2011)05 0093 06 Abstract:On the basis of the fundamental theories,the fabr ication and application of superhydropho bic surfaces on metal substrates w er e r eview ed.It em phasized to discuss preparation methods of anod ization,electro chem ical depositio n,chem ical etching,chemical deposition,one step solution imm er sion,thermal ox idatio n,template,co mposite,etc.Super hy drophobic surfaces on m etal substrates w ere also summarized in the applicatio n of response sw itch,self cleaning,drag reduction,corro sion resistance,anti icing,w ater and oil m ixture separatio n,miniatur e transporter over w ater.M ean w hile,characteristics of different kinds o f techniques w ere discussed.Finally,the pr oblem s about fabricatio n of super hy drophobic sur faces on m etal substrates w er e bro ug ht fo rw ar d. Key words:metal substrate;superhydropho bic surface;research progr ess 润湿性是固体表面的重要性质之一[1],常用接触角来衡量,当接触角小于90 时为亲水表面,小于5 时为超亲水表面,大于90 时为疏水表面,大于150 时为超疏水表面。在自然界中,到处可见超疏水现象,荷叶、水稻叶子等植物叶片具有自清洁效应,水黾能够毫不费力地站在水面上[2],蝴蝶翅膀能在雨中不被淋湿。1996年Onda等[3]首次报道了人工合成超疏水表面, 1997年,德国植物学家Bar thlott和Neinhuis[4,5]对植物的超疏水性进行了系统研究,发现荷叶的自清洁性是由表面微米结构和表面蜡层共同引起的。江雷等[6]对荷叶的进一步研究,发现微米结构的乳突上还存在纳米结构,而微纳米结构和表面蜡层共同作用是引起荷叶表面超疏水的根本原因。 由于超疏水表面具有自清洁[7,8]、减阻[9-11]、耐腐蚀[12,13]、防结冰[14-19]等特性,而金属材料在工农业生产中又被广泛地应用,因此研究金属基体超疏水表面的制备方法及应用极为重要,也引起了各国研究人员的极大兴趣。 1 相关理论 1.1 Yong氏模型 当少量液滴滴在理想固体(绝对光滑)表面,在固、液、气三相的交界处,由固、液界面经过液体内部至液、气界面的夹角称为接触角 ,其大小满足Yo ng氏方程[20]: cos =( sg- sl)/ lg(1)式中: sg, sl和 lg分别表示固 气、固 液、液 气界面的表面张力。 由式(1)可得,当液体确定时,即 lg确定时,接触

相关文档
最新文档