变流量水系统压差旁通控制系统设计

变流量水系统压差旁通控制系统设计
变流量水系统压差旁通控制系统设计

变流量水系统压差旁通控制系统设计

1压差旁通控制系统的作用

在集中空调水系统总供、回水管之间设电动压差旁通控制系统,当系统的某些支路部分或全部关闭时,通过调节分、集水器旁通水力平衡阀可以对流量进行分流,从而维持分、集水器的压差不变;避免这些支路的改变对其他支路流量产生影响,有利于空调系统运行的稳定性;保证流过冷水机组的流量满足额定流量要求,保障冷水机组的安全、高效运行;实现对主机-水泵运行台数的控制,以大幅度减少能源消耗;使系统能根据冷负荷的变化自动调节进入负荷侧的水流量,达到供给和需求总流量的瞬时一致性。

2电动压差旁通控制系统组成、作用原理和安装部位

该系统由调节阀、电动执行器、压差控制器、变压器组成,详见图1。

风机盘管电动双位两通阀的开、闭和空调箱比例调节两通阀开度,分、集水器之间的压差变化通过波纹管传给压差控制器,压差控制器通过不同触点的接通控制电动执行器同步电动机的正转或反转,从而通过阀杆控制调节阀的开度,将负荷侧多余流量旁通回冷源侧。调节阀全开启时,应关闭1台主机及对应的水泵;调节阀全关闭时,应再开启1台水泵及对应的主机。调节阀稳定在某一开度时,则说明现有制冷机供冷量不小于负荷侧需冷量,多余的流量旁通回冷源侧。

一次泵系统冷水机组的台数控制方法有4种:压差旁通控制法、恒定供回水压差的流量旁通控制法、回水温度控制法、恒定用户处直通调节阀前后压差旁通控制法。其中,以压差旁通控制法采用限位开关开、停水泵-主机最为简单可靠。压差旁通控制法工作原理:低负荷时启动1台冷水机组,其相应的水泵联锁提前开启,调节阀在某一调节位置。负荷增加时,调节阀趋向全关

的位置,这时限位开关闭合,自动启动第2台水泵和相应的冷水机组;负荷继续增加,则进一

步启动第3台冷水机组。当负荷减小时,调节阀趋向全开的位置,这时限位开关打开,自动关闭第3台冷水机组和相应的水泵;负荷继续减小,则进一步关闭第2台冷水机组。调节阀的流量为1台冷水机组的流量,其限位开关用于指示10%~90%的开度。

调节阀连接到总供、回水管之间;压差控制器连接到分、集水器之间。调节阀连接时,水

流方向应与阀体上标明的一致;压差控制器连接时,方向不能接反。详见图2。

3电动压差旁通控制系统工作过程

如图1所示,当分、集水器压差大于压差控制器设定压差时,压差控制器触头元件红、黄两点接通,电动执行器1,2触点闭合通电,调节阀开度增大,旁通流量增大,分、集水器压差降低,达到设定压差;当分、集水器压差小于压差控制器的设定压差时,压差控制器触头元件红、蓝两点接通,电动执行器1,3触点闭合通电,调节阀开度减小,旁通流量减小,分、集水器压

差升高,达到设定压差;当分、集水器压差等于设定压差时,触头元件红与黄、蓝均不接通,调节阀保持开度不变。调节阀全开启时,电动执行器限位开关断电,通过控制回路关闭1台主机及对应的水泵;调节阀全关闭时,电动执行器限位开关闭合,通过控制回路开启1台水泵及对应的主机。

4系统相关设备的选择

4.1 调节阀

4.1.1 选型依据

按1台冷水机组的流量和调节阀两侧压差确定调节阀的口径。

4.1.2 选型举例

某空调系统设3台冷水机组,制冷量1000 kW/台,耗电量189kW/台,冷水额定流量Gs为175 m3/ (台?h)单台机组连接管管径DN200(比摩阻77 Pa/m)系统负荷侧压降?p v=120 kPa。

按流量系数K V的定义:温度为278 ~313 K的水在100 kPa压降下,1 h通过阀门的体积。由于压差调节阀与负荷侧并联,因此,该调节阀在实际压差下的流量系数应为

K V 316G

?p v

316×175m3/(台?h)

120000Pa

由两通调节阀技术参数(见表1)按大于且接近于计算值选用调节阀规格为DN125,其流量系数K V=250,按负荷侧压降120kPa选择最大压差0.3 MP的调节阀。

4.1.3 注意事项

调节阀口径选择的依据是按实际压差由单台机组额定流量计算出来的流量系数,而不能直接将单台机组连接管管径确定为调节阀管径。否则,不仅会造成投资的增加,而且由于机房空间狭窄安装会有困难,同时增加了系统初调的难度,若初调不好则主机-水泵不能自动关闭,导致主机-水泵无谓的电力消耗。

4.2电动执行器

4.2.1选型依据

调节阀的口径、阀两侧最大压差确定后,其要求的力矩就是定值。因此,可根据调节阀的口径、阀两侧最大压差,按控制要求选定电动执行器。

4.2.2选型举例

已知调节阀规格DN125、可承受两侧最大压差0.3 MPa要求能就地控制。

由电动执行器技术参数(见表2),选择X型电动执行器:采用递增、可逆就地控制;扭力2500 N.选用限位开关。

4.2.3 注意事项

控制方式按工程实际要求分就地控制(X:递增控制、可逆)和有外来信号(如楼宇自控)控制(Y:比例控制)扭力按所选调节阀承受小压差(2500 N)或大压差(4000 N )选择;附件中一般应选择限位开关,以使电动旁通控制系统具备启、停水泵-主机的功能。

4.3 压差控制器

4.3.1 压差控制器

按空调水系统负荷侧压差、最大压差及电动执行器电气参数选择压差控制器。

4.3.2 选型举例

已知电动执行器电路电源24 V,12VA,负荷侧压差120 kPa压差控制器技术参数见表3。

4.4 变压器

4.4.1 选型依据

按压差控制器、电动执行器电气参数选择变压器。

4.4.2 选型举例

已知压差控制器、电动执行器电气参数24V,50HZ,12VA,变压器技术参数见表4

5电动压差旁通控制系统与节能运转

电动压差旁通控制系统能根据负荷变化及时关闭不需要的水泵和相应的主机,是空调水系统节能运行的最好手段。主机额定水流量对于维持主机蒸发器、冷凝器的高效冷热交换尤为重要,因此,常规一次定流量系统冷源侧不宜采用变流量控制。

6实际运行中存在问题的原因分析及解决方法

6.1出现的问题及原因分析

从笔者对若干家宾馆、酒店、商场、写字楼空调系统实际调查的情况来看,实际运行中电动压差旁通控制系统存在的问题如下:电动旁通阀规格选择不当;负荷侧水流量的供给和需求不一致;不能可靠启、停水泵和主机;甚至旁通控制系统失去调节功能被废弃不用等。

这些问题大多是因空调和电气设计人员对电动压差旁通控制系统在空调系统中所起的作用理解不透彻、对由压差旁通控制系统控制水泵-主机的方式选择不当及未采取可靠的保护措施致使压差旁通控制系统失灵、甚至失效造成的。

另外,空调水被污染、过滤器设置不合理,未对电动调节阀形成有效保护也会导致压差旁通控制系统失去调节功能。若水质不好,空调末端设备的电动双位两通阀或比例调节两通阀前又未设过滤器,极易发生水中焊渣、砂粒、金属氧化物、水垢等卡在阀瓣与阀板之间,导致阀瓣被卡死,从而使调节阀失去调节功能、电动双位两通阀不能关闭或打开。

在实际运行中,当风机盘管电动双位两通阀、空调箱比例调节两通阀不能打开时,管理人员往往将其拆除,几年以来,空调水系统中的电动两通阀与调节阀大部分或全部被拆除,因阀门导致的故障倒是彻底排除了,但系统却无法根据负荷的变化进行变流量调节了,导致能耗显著増加。

6.2 解决办法

要保障压差旁通控制系统长期运转良好,除正确选择压差旁通控制系统各组成部件并调试合格外,保持水质清洁,在所有电动调节阀前设置水过滤器尤为必要。为降低过滤器阻力、减少过滤器的工作量,空调水系统宜设两级过滤:一级设在循环水泵入口,过滤孔径取3 mm;二级设在各调节阀前,过滤级别按60目(孔径0. 3 mm) 选择。

此外,亦应保证系统的正确安装和维持适宜的运行环境。调节阀安装时,管道与阀体必须完全吻合,水流方向应与阀体上标明的方向相同;电动执行器必须垂直安装在阀体之上,避免电动执行器安装在阀的下面;电动执行器上面要留出足够的安装空间以便日常维护时从阀体上拆卸电动执行器;维护阀门时必须切断电源,调节阀两侧隔断阀关闭;变压器、压差控制器、电动执行器运行要求的环境温度,特别是湿度应得到保障。因此,机房要加强通风换气,避免高温、高湿导致短路故障。

7结语

压差旁通控制系统作为集中空调变流量水系统的重要控制子系统,对于满足负荷侧冷水供给和需求总流量的瞬时一致性、维持空调系统运行的稳定性、保障冷水机组的安全高效运行、实现对主机- 水泵运行台数的控制,具有特别重要的意义。把握空调运行规律,掌握压差旁通控制系统工作原理,正确选用压差旁通控制系统中各组成部件,是集中空调水系统稳定、高效运转的基础。

文献来源于李宜浩、梁启双的《变流量水系统压差旁通控制系统设计》

基于AT89C52单片机的流量控制系统课程设计报告(仿真和实物实现)

《过程控制仪表》课程设计报告 设计题目 指导老师 设计者 专业班级 设计日期

目录 第一章流量控制系统(实验部分) (1) 2.1 控制系统工艺流程 (1) 2.2 控制系统的控制要求 (5) 2.3 系统的实验调试 (7) 第二章流量控制系统工艺流程及控制要求 (9) 2.1 控制系统工艺流程 (9) 2.2 设计内容及要求 (10) 第三章总体设计方案 (11) 3.1 设计思想 (12) 3.2 总体设计流程图 (13) 第四章硬件设计 (14) 4.1 硬件设计概要 (14) 4.2 硬件选型 (15) 4.3 硬件电路设计系统原理图及其说明 (16) 第五章软件设计 (17) 5.1 软件设计流程图及其说明 (17) 5.2 源程序及其说明 (18) 第六章系统调试及使用说明 (20) 第七章收获、体会 (21) 参考文献 (22)

设计电磁流量计为流量传感器,单片机为核心流量控制系统。本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控 1、设计电磁流量计为流量传感器,单片机为核心流量控制系统。系统主要由水泵、水泵电机、流量传感器、电动阀门、阀门电机、单片机控制系统等组成。 2、写出流量控制过程,绘制控制系统组成框图 3、利用单片机对流量进行控制 (1)系统硬件电路设计 单片机采用89S52;设计键盘及显示电路,电机控制电路(可控硅,光电耦合器)。 (2)编制流量控制程序

过程控制系统习题答案

什么是过程控制系统?其基本分类方法有哪几种? 过程控制系统通常是指连续生产过程的自动控制,是自动化技术中最重要的组成部分之一。基本分类方法有:按照设定值的形式不同【定值,随动,程序】;按照系统的结构特点【反馈,前馈,前馈-反馈复合】。 热电偶测量的基本定律是什么?常用的冷端补偿方式有哪些 均质材料定律:由一种均匀介质或半导体介质组成的闭合回路中,不论截面和长度如何以及沿长度方向上的温度分布如何,都不能产生热电动势,因此热电偶必须采用两种不同的导体或半导体组成,其截面和长度大小不影响电动势大小,但须材质均匀; 中间导体定律:在热电偶回路接入中间导体后,只要中间导体两端温度相同,则对热电偶的热电动势没有影响; 中间温度定律:一支热电偶在两接点温度为t 、t0 时的热电势,等于两支同温度特性热电偶在接点温度为t 、ta和ta、t0时的热电势之代数和。只要给出冷端为0℃时的热电势关系,便可求出冷端任意温度时的热电势,即 由于冷端温度受周围环境温度的影响,难以自行保持为某一定值,因此,为减小测量误差,需对热电偶冷端采取补偿措施,使其温度恒定。冷端温度补偿方法有冷端恒温法、冷端补偿器法、冷端温度校正法和补偿导线法。 为什么热电阻常用三线制接法?试画出其接线原理图并加以说明。 电阻测温信号通过电桥转换成电压时,热电阻的接线如用两线接法,接线电阻随温度变化会给电 桥输出带来较大误差,必须用三线接法,以抵消接线电阻随温度变化对电桥的影响。 对于DDZ-Ⅲ型热电偶温度变送器,试回答: 变送器具有哪些主要功能? 变送器的任务就是将各种不同的检测信号转换成标准信号输出。 什么是变送器零点、零点迁移调整和量程调整? 热电偶温度变送器的输入电路主要是在热电偶回路中串接一个电桥电路。电桥的功能是实现热电偶的冷端补偿和测量零点的调整。

流量控制系统设计

目录 第一章过程控制仪表课程设计的目的意义 (2) 1.1 设计目的?2 1.2课程在教学计划中的地位和作用?2 第二章流量控制系统(实验部分)?3 2.1控制系统工艺流程.........................................3 2.2 控制系统的控制要求?4 2.3 系统的实验调试 (5) 第三章流量控制系统工艺流程及控制要求......................... 63.1 控制系统工艺流程.............................................. 6 3.2设计内容及要求?7 第四章总体设计方案?8 4.1 设计思想 (8) 4.2 总体设计流程图........................................... 8第五章硬件设计..................................................... 95.1 硬件设计概要?9 5.2 硬件选型 ......................................................... 9 5.3 硬件电路设计系统原理图及其说明 (13) 第六章软件设计..................................................... 146.1 软件设计流程图及其说明 (14) 6.2 源程序及其说明............................................... 16第七章系统调试及使用说明?17 第八章收获、体会?20 参考文献 (21)

基于组态软件的流量比值过程控制系统设计

《过程控制工程》 课程设计报告书 课题名称基于组态软件的流量比值过程控制系统设计姓名 学号 专业 指导教师 机电与控制工程学院 年月日

摘要 随着科学技术的快速发展,人们对过程控制提出了更高的要求,在许多生产过程中,要求两种或两种以上的物料流量成一定的比例关系混合进行反应,对物料比例的要求甚为严格,如果不能满足要求,或是比例失和调,将会导致产品的质量达不到要求,以致造成损失,严重时会导致事故的发生.研究比值控制系统很有必要,提高比值控制系统的精度及水平具有深远的意义。 根据系统的工艺要求及实际需要,提出了流量比值控制的设计方案,因为组态王开发监控系统软件具有适应性强、开放性好、易于扩展、经济、开发周期短等优点,本设计着重说明了组态王在设计开发流量比值控制系统中的应用。 单闭环比值控制系统是在开环比值控制系统上增加对副物料的闭环控制回路,用以实现主、副物料的比值保持不变该控制系统能保证主、副物料的流量比值不变,同时,系统结构简单,因此在工业生产过程自动化中应用较广。此文主要讲的是强碱氢氧化钠的单闭环流量控制法。实际运行结果表明,系统不仅能按比值关系进行控制,而且具有较强的抗干扰能力。该设计可以用于化工厂,制药等场所。

关键字:单闭环比值控制系统设计主副物料工业生产过程 任务书 1. 根据双容液位单回路过程控制系统的具体对象和控制要求,独立设计控制方案,正确选用过程仪表。 2. 根据双容液位单回路过程控制系统A/D、D/A和开关I/O的需要,正确选用过程模块。 3. 根据与计算机串行通讯的需要,正确选用RS485/RS232转换与通讯模块。 4. 运用组态软件,正确设计双容液位单回路过程控制系统的组态图、组态画面和组态控制程序。 5. 提交包括上述内容的课程设计报告。

压载水处理系统-CCS通函TM18

Form: RWPRR401-B C C S通 函 Circular 中国船级社 China Classification Society (2010年)通函第 18 号总第 18 号 (2010)Circ.18 /Total No. 18 2010年4 月28日(共8页) 28 / 04 / 2010 (total pages: 8) 发: 本社总部有关处室,本社验船师、审图中心,有关船东,船舶管理公司,船厂,设计单位 To relevant departments of CCS Headquarters, CCS surveyors, plan approval centers, related shipowners, ship management companies, shipyards and design units 关于实施IMO《2004年国际船舶压载水及沉积物控制和管理公约》 的信息通告 Notice on Information regarding Implementation of IMO International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 国际海事组织在2004年2月召开的外交大会上通过了《2004年国际船舶压载水及沉积物控制和管理公约》(以下简称压载水公约)。虽然目前压载水公约尚未生效,但该公约对现有船舶安装压载水管理系统有追溯要求。为方便业界及时了解公约生效及实施要求现状,现将相关信息通告如下,并附上压载水公约的中英文本,供参照实施。 The International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 (hereinafter referred to as the Ballast Water Convention) was adopted at a Diplomatic Conference at IMO held in February, 2004. Although the Ballast Water Convention has not yet entered into force, it contains retroactive requirements for installation of ballast water management systems on existing ships. The following information is notified to the industries for understanding the status quo in relation to the entry-into-force and implementation requirements of the Ballast Water Convention in a timely manner. Both the English and Chinese texts of the Ballast Water Convention are also attached for reference.

最新基于单片机的流量控制系统设计—教学提纲

广东环境保护工程职业学院 毕业设计(论文) 题目:基于单片机的流量控制系统设计 系:机电工程系 专业:机电设备维修与管理 班级: 13机电设备维修与管理3班姓名:黄启熙 指导教师: 完成时间: 2016年4月17日

摘要 流量是自动化生产过程中重要的过程参数之一。以下采用AT89C51单片机,对流量控制系统的硬件和软件系统进行了设计。传感器采集流量信息,由变换器变换为模拟电信号,并通过AD转换器转化成离散信号,传给单片机。控制系统的软件处理信息输出离散的控制信号,实现对流量的控制。 关键词:单片机叶片式霍尔传感器流量控制

目录 题目:基于单片机的流量控制系统设计 (1) 摘要 (2) 关键词:单片机叶片式霍尔传感器流量控制 (2) 目录 (3) 前言 (4) 第一章绪论 (5) 1.1 研究目的、意义及研究内容 (5) 1.3 流量计概述 (5) 第二章工作原理及系统硬件设计 (6) 2.1 系统工作原理 (6) 2.2 硬件构成 (6) 2.3流量计的介绍 (7) 2.4流量计的选择 (8) 第三章软件设计 (9) 3.1 软件设计思路 (9) 3.2 主程序设计 (9) 3.3 流量控制子程序 (10) 第四章中断服务子程序 (12) 4.1 设定值输入程序 (12) 4.2 A/D中断子程序 (12) 4.3 定时器中断子程序 (15) 4.4 数码管显示子程序 (17) 4.5 步进电机控制程序 (19) 总结 (21) 参考文献 (23)

前言 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力 和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。 流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。【1】在天然气工业蓬勃发展的现在,天然气的计量引起了的特别关注,因为在天然 气的采集、处理、储存、运输和分配过程中,需要数以百万计的流量计,其 中有些流量计涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别高。此外,在环境保护领域,流量测量仪表也扮演着重要角色。人们 为了控制大气污染,必须对污染大气的烟气以及其他温室气体排放量进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液 和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水 排放口都成了流量测量对象。同时在科学试验领域,需要大量的流量控制系 统进行仿真与试验。流量计在现代农业、水利建设、生物工程、管道输送、 航天航空、军事领域等也都有广泛的应用。

船舶压载水系统

船舶压载水系统 目录 定义 系统设计原则 船舶压载水处理系统 定义 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是:根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 系统设计原则 组成 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成。 舱室布置 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。 一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。 货油船可以用货油舱兼压载舱。 管路 1、船舶压载水系统的管路布置有三种形式:支管式、总管式和管隧式。 2、船舶压载水舱内吸口管应当同时具有加水功能。 3、各压载水舱的压载吸入口应布置在有利于压载水排出的位置。 4、为满足压载水系统的工作特点和简化管路,多采用调驳阀箱来调驳各压载水舱的压载水。 5、船舶压载水系统应当能够将全船各压载舱的压载水驳进、驳出或相互调驳。也可不用压载泵,舷外海水靠压差自动流入压载水舱。 船舶压载水处理系统 定义 船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。

前景 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO成员国港口,违反公约将面临制裁和处罚。随着“压载水公约”生效日期的临近,世界各国都在加紧研发船舶压载水处理技术。截至目前,国外研发机构共30余家,已有13家研发机构获得IMO初步批准,其中瑞典、德国、韩国及挪威已获最终批准。 我国现拥有占世界总吨位3.4%的庞大船队,我国又是造修船大国,拥有一个巨大的船舶关键设备市场,同时,国际市场也蕴含巨大潜力。 压载水处理技术的产业化不仅是保护海洋生态环境的迫切需要,而且对提高国产船舶关键设备装船率、提高航运业和造修船业核心竞争力具有重要意义。同时,对海军自主装备建设意义也十分重大。

基于PLC 的流量控制系统

辽宁工业大学 电气控制与PLC技术课程设计(论文)题目:基于PLC的流量控制系统设计 院(系):电气工程学院 专业班级:自动化112 学号: 110302032

学生姓名:王毅 指导教师:(签字) 起止时间:2014.6.30~2014.7.11 本科生课程设计(论文) 课程设计(论文)任务及评语 自动化:电气工程学院教研室:

I 本科生课程设计(论文) 摘要 随着科技的飞速发展,自控系统的应用正在不断深入,同时代替传统控制检测技术日益更新。自动控制技术可谓无所不能。 本文提出一种对液体流量进行实时精确控制的设计方案。该方案以PLC控制为基础,由上位机、PL C、电动调节阀组成。它不仅适用于流量控制,在改变动作设备后同样适用于对温度、液位、速度、高度等模拟量的控制。 论文采用文字叙述与图表相结合的方式,逐步做出解释,从而得出具体结论。更清晰的展示了设计的全过程与每个细节之间的处理方式。 关键词:PLC;自动控制;流量控制 II 本科生课程设计(论文)

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成总体结构 (2) 2.2.1 控制方案比较和确定 (2) 2.2.2 流量控制系统的组成及原理图 (3) 2.2.3 水流量系统控制流程 (4) 第3章硬件设计 (5) 3.1PLCS7-200介绍 (5) 3.2主机CPU224 (6) 3.3变频器的选择 (8) 3.4水泵电机的选择 (9) 3.5流量变送器的选择 (10) 第4章软件设计 (11) 4.1PLC程序设计 (11) 4.2系统流程图 (11) 4.3程序 (13) 第5章课程设计总结 (16) 参考文献 (17) III 本科生课程设计(论文) 第1章绪论 PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它 采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系

基于单片机的河道自动化闸门流量控制系统

河道自动化闸门流量控制系统 摘要 电子系统、通信系统和信息技术的现代发展帮助了运河自动化系统的设计。渠道灌溉大量使用了灌溉用水。以微控制器为基础的系统是非常灵活的,而这个系统可以比PLC更轻松地连接到不同的模块。系统采用基于智能微控制器的远程终端(RTU),可以通信不同的传感器、通信调制解调器、存储器、模数转换器和不同的模块。 在本文中,我们提出了一个基于单片机的流量控制系统的设计闸门在运河自动化。流量控制系统由子系统组成:RTU、太阳能发电系统、液位测量系统、流量测量系统、闸门执行系统、通信系统。本文着重研究分流流量控制活动、分支和直接管出口。远程终端单元监控上游水位,下游水位,下游流量,电力状态,闸门开度,闸门的健康和安全。所有系统组件设计用于太阳能和电池备份。传统的操作系统有些缺点和不准确。本文建议的系统有助于提高灌溉作业效率,电力使用,测量的准确性,水的分布和反应的不平衡,并控制在闸门位置的流量连续。该系统也有助于减少水的浪费和劳动依赖。 关键词河道自动化;渠流控制系统;渠门控制系统 一、引言 渠道灌溉被广泛用于灌溉水源。因此,灌溉渠水管理是全面灌溉发展的关键因素。传统的方法是使用水的用户(农民)以旋转的形式提供水的需求。传统的系统有着许多弱点,包括预测和实际流量。而一旦有错误可能会引入流量测量和水库的水含量,这也没有考虑到人类和自然干预的不平衡,在传统的系统中。由于这一点,用户在最后忍受缺水的问题。为了提供有效的输送和避免不平衡,渠道自动化在灌溉中起着至关重要的作用。 很多研究人员在研究流量控制的时候。Mahesh Nandania已经解决了闸门运行中出现的一些实际问题。系统控制运河闸门运用PLC(可编程逻辑控制器)和VFD(变频驱动)系统和监控与数据采集与监控(SCADA)系统。mandavia在印度提到操作系统,送水的做法,需要的操作管理系统,现代化的管自动化系统现状。马加德等人,提到该系统是在尼罗河的大运河在艾伦布拉德利使用PLC。它包括远程监控和控制在所有地点从中央控制[ 3 ]。而Bautista 等人,提到了盐河项目的运河自动化系统是基于需求和服务。在这个系统中的主要策略是保持水位接近目标水平。大部分的门可以手动操作,但其中一些是自动化的。有效地处理前馈和反馈控制逻辑组合。丁等人,采用PID(比例积分微分)控制器与模糊控制相结合的渠道自动化。自动管手术通过Deshmukh等人的编程实现了,利用了使用高诺斯PLC。Manuel Rijo 已经开发了两个地方的PI(比例积分)自动控制模式,即上游和下游利用PLC 。Donia提出了计算机辅助控制系统新的排水可以成功地监测和控制流。 从文献可以看出该研究没有集中在一些重要的方面:(1)基于单片机的RTU(远程终端单元)系统可以使用便宜的新界面,开发也比PLC更灵活,(2)万一发生破坏,会影响系统的安全性,(3)对系统的不确定性的反应,(3)闸门的操作,如自动/手动和远程/本地详细模式,(4)在电源效率不可用的情况下,有效的使用备用电池电源管理技术, (5)每个RTU时间同步在浇口位置来帮助监控和数据采集系统(SCADA)的及时分析系统,(6)适用于区域的地形和明智的可用的通信技术(7)适用于渠道结构的流量测量技术。本文提出了基于微控制器的远程流量控制系统的太阳能电池供电的12V直流电池备份。系统监视和控制水位流量,还监测电源状态,上游水平,下游水平和系统状态。在任何不确定的情况下会启动推送通信。所需的流量指令由远程SCADA自动或由操作员使用SACDA。它还显示,存储和通信所有必需的参数,如闸门水平,流量和闸门门打开和报警。第二节介绍了传统的系统和缺点。第三节介绍了建议的运河自动化系统。门流控制设计和RTU的智

过程控制―上水箱液位与进水流量串级控制系统.

目录 1 过程控制系统简介 (2) 1.1 系统组成 (2) 1.2 电源控制台 (3) 1.3 总线控制柜 (3) 2 实验原理 (4) 2.1 单容水箱设备工作原理 (4) 2.2 双容水箱设备工作原理 (7) 2.3 系统工作原理 (9) 2.4 控制系统流程图 (9) 3实验结果分析 (11) 3.1 实验过程 (11) 3.2实验分析 (12) 3.2.1单容水箱实验结果分析 . (12) 3.2.2双容水箱实验结果分析 . (14) 3.2.3单容双容水箱比较 . (16) 3.3实验结论 (17) 总结 . (18) 参考文献 (19)

1 过程控制系统简介 1.1 系统组成 本实验装置由被控对象和上位控制系统两部分组成。系统动力支路分两路:一路由三相(380V 交流)磁力驱动泵、电动调节阀、直流电磁阀、PA 电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V 变频)、涡轮流量计及手动调节阀组成。 1、被控对象 水箱:包括上水箱、中水箱、下水箱和储水箱。储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。 管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。 2、检测装置 压力传感器、变送器:采用SIEMENS 带PROFIBUS-PA 通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS 带PROFIBUS-PA 通讯接口的检测和变送一体的电磁式流量计。 3、执行机构 调节阀:采用SIEMENS 带PROFIBUS-PA 通讯协议的电动调节阀,用来进行控制回路流量的调节。它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。

压载水处理系统

压载水处理系统 【定义: 1、船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。也称船舶压载水管理系统。英文简称BWMS。 2、系指对压载水进行处理使其达到或高于《国际船舶压载水及其沉积物管理和控制公约》第D-2条规定的压载水性能标准的任何系统。压载水管理系统包括压载水处理设备、所有相关控制设备、监测设备以及取样设施。 【背景: 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 【D2标准生效日的不确定性: 《压载水公约》中对船舶的要求是排放经处理的压载水必须满足D2标准,而D2标准的生效并不取决于该公约的生效。这是因为虽然该公约生效日期不确定,但公约中D2标准的生效日对各类型船舶很明确,而该条款又是追溯性的,这就意味着无论公约是否生效,无论是否缔约国,对船舶安装满足D2标准压载水管理系统的要求都是强制性的,所以船舶尤其是新造船舶一定要在船舶设计时考虑这一要求。目前的问题是没有满足所有船舶需要的、足够数量的压载水管理系统,所以D2标准第1个生效日的推迟在所难免。2007年召开的IMO 第25次大会A.1005(25)决议解决了2009年建造的船舶问题,将D2标准的适用日推迟到2011年12月31日,但2010年及之后建造的船舶和现有船舶的适用时间是否推迟要由2009年召开的MEPC(59)会议决定。 【压载水处理D-2标准

智能化流量控制系统设计要点

东北大学秦皇岛分校控制工程学院《过程控制系统》课程设计 设计题目:智能化流量控制系统设计 学生: 专业: 班级学号: 指导教师: 设计时间:2013.7. 1-2013.7.6

目录 一. 设计任务 (3) 二.前言 (3) 四.系统硬件设计 (5) 4.1 设备的选型 (5) 4.1.1 控制器的选型 (5) 4.1.2变频器的选型 (6) 4.1.3流量传感器变送器的选型 (6) 4.2 硬件电路 (7) 五.软件设计 (8) 5.1 控制规律的选择 (8) 5.2 MATLAB 仿真 (8) 5.2.1 传递函数的确定 (8) 5.2.2 采用数字PID控制的系统框图 (9) 5.2.3 基于临界比例度法的PID参数整定 (9) 5.3程序编写 (12) 六.结束语 (16) 七.参考文献 (17) 附页.Matlab 仿真程序及原始图表 (17)

一.设计任务 1、系统构成:系统主要由流量传感器,PLC控制系统、对象、执行器(查找资料自己选择) 等组成。传感器、对象、控制器、执行器可查找资料自行选择,控制器选择PLC为控制器。PLC类型自选。 2、写出流量测量与控制过程,绘制流量控制系统组成框图。 3、系统硬件电路设计自选。 4、编制流量测量控制程序:软件采用模块化程序结构设计,由流量采集程序、流量校准程序、流量控制程序等部分组成 二.前言 本课程设计来源于工业工程中对于流量的监测和控制过程,其目的是利用PLC来实现过程自动控制。目前,PLC使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制,应用领域极为广泛,涉及到所有与自动检测、自动化控制有关的工业及民用领域。PLC 通过模拟量I/O模块和A/D、D/A模块实现模拟量与数字量之间的转换,并对模拟量进行闭环控制。 三.系统控制方案设计 图3.1 控制系统工艺流程图

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩 机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保 证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2.压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

过程控制之液位流量串级控制系统

过程控制之液位流量串级控制系统 1.1控制系统在实际应用中的重要意义 单回路控制系统是过程控制中结构最简单的一种形式,它只用一个调节器,调节器也只有一个输入信号,从系统方框图看,只有一个闭环。在大多数情况下,这种简单系统已经能够满足工艺生产的要求。但在复杂的控制系统中,则需在单回路的基础上,采取其它措施,组成复杂控制系统,而串级控制系统就是其中一种改善和提高控制品质的极为有效的控制系统。 液位和流量是工业生产过程中最常用的两个参数,对液位和流量进行控制的装置在工业生产中应用的十分普遍。液位的时间常数T 一般很大,因此有很大的容积迟延,如果用单回路控制系统来控制,可能无法达到较好的控制质量。而串级控制系统则可以起到十分明显的提高控制质量的效果,因此往往采用串级控制系统对液位进行控制。 1.2 系统结构设计 过程控制系统由四大部分组成,分别为控制器、调节器、被控对象、测量变送。本次为流量回路控制,即为闭环控制系统,结构组成如下图1.1所示。 图1.1液位单回路控制系统框图 当系统启动后,水泵开始抽水,通过管道分别将水送到上水箱和下水箱,由HB 返回信号,是否还需要放水到下水箱。其过程控制系统图如图1.2所示。 1.3控图 单容 所Qi 为口流加以控 扰。被调量为水箱中的水位H,它反映水的流入与流出量之间的平衡关系。现在分析水位在电磁阀开度扰动下的动态特性。显然,在任何时刻水位的变化均满足下述物料平衡方程: ()1i o dH Q Q dt F =-(1.1)

其中 i Q k μμ=(1.2) o Q = 1.3) F 为水箱的横截面积;k μ是决定于阀门特性的系数,可以假定它是常数;k 是与电磁阀开度有关的系数,在固定不变的开度下,k 可视为常数。 液位对象的传递函数: ()( )i H s Q s =2.1 控制规律的比较与选择 2.1.1 常见控制规律的类型及优缺点比较 PID 控制的各种常见的控制规律如下: 一、比例调节(P 调节) 在P 调节中,调节器的输出信号()u t 与偏差信号()e t 成比例,即 ()()C u t K e t =(2.1) 式中Kc 称为比例增益(视情况可设置为正或负),()u t 为调节器的输出,是对调节器起始值()0u 的增量,()0u 的大小可以通过调整调节器的工作点加以改变。 在过程控制中习惯用比例增益的倒数表示调节器输入与输出之间的比例关系: ()()1 u t e t δ=(2.2) 其中δ称为比例带。 比例调节的显著特点就是有差调节。 比例调节的余差随着比例带的加大而加大。从这一方面考虑,人们希望尽量减小比例带。然而,减小比例带就等于加大调节系统的开环增益,其后果是导致系统激烈振荡甚至不稳定。稳定性是任何闭环控制系统的首要要求,比例带的设置必须保证系统具有一定的稳定裕度。此时,如果余差过大,则需通过其它的途径解决。 δ很大意味着调节阀的动作幅度很小,因此被调量的变化比较平稳,甚至可以没有超调,但余差很大,调节时间也很长。减小δ就加大了调节阀的动作幅度,引起被调量来回波动,但系统仍可能是稳定的,余差相应减小。δ具有一个临界值,此时系统处于稳定边界的情况,进一步减小δ系统就不稳定了。 二、积分调节(I 调节)的特点 在I 调节中,调节器的输出信号的变化速度du (t)/d t 与偏差信号e 成正比,即: ()()I du t K e t dt =(2.3) 或 ()()0t I u t K e t dt =?(2.4) 式中K I 称为积分速度,可视情况取正值或负值。上式表明,调节器的输出与偏差信号的积分成正比。 I 调节的特点是无差调节,与P 调节的有差调节形成鲜明对比。式(2.3)表明,只有当被调量偏差e

船舶压载水处理系统项目可行性报告

船舶压载水处理系统项目可行性报 告 国统调查报告网(即中金企信国际咨询公司)拥有10余年项目可行性报告撰写经验,拥有一批高素质编写团队,卓立打造一流的可行性研究报告服务平台为各界提供专业可行的报告(注:可出具各类项目的甲级资质)。 项目可行性报告用途(企业投融资、国家发改委立项、银行贷款申请、申请进口设备免税、境外投资项目核准、政府资金项目申报) 可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 由于可行性研究报告属于订制报告,以下报告目录仅供参考,成稿目录可能根据客户需求和行业分类有所变化。 第一章船舶压载水处理系统项目总论 第一节船舶压载水处理系统项目背景 一、船舶压载水处理系统项目名称

二、船舶压载水处理系统项目承办单位 三、船舶压载水处理系统项目主管部门 四、可行性研究工作的编制单位 五、研究工作概况 第二节编制依据与原则 一、编制依据 二、编制原则 第三节研究范围 一、建设内容与规模 二、船舶压载水处理系统项目建设地点 三、船舶压载水处理系统项目性质 四、建设总投资及资金筹措 五、投资计划与还款计划 六、船舶压载水处理系统项目建设进度 七、船舶压载水处理系统项目财务和经济评论 八、船舶压载水处理系统项目综合评价结论 第四节主要技术经济指标表 第五节结论及建议 一、专家意见与结论 二、专家建议 第二章船舶压载水处理系统项目背景和发展概况第一节船舶压载水处理系统项目提出的背景

双闭环流量比值控制系统设计

目录 摘要 0 双闭环流量比值控制系统设计 (1) 1、双闭环比值控制系统的原理与结构组成 (1) 2、课程设计使用的设备 (1) 3、比值系数的计算 (2) 4、设备投运步骤以及实验曲线结果 (2) 5、总结 (6) 6、参考文献 (6)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

基于单片机的流量控制系统设计

过程控制系统 课程设计 设计题目:基于单片机的流量控制系统设计 学生姓名: 专业:测控技术与仪器 班级学号: 指导教师 设计时间:

《过程控制系统》课程设计任务书 专业测控技术与仪器班级姓名 设计题目:基于单片机的流量控制系统设计 一、设计实验条件 过程控制系统实验室实验系统 二、设计任务 1、设计电磁流量计为流量传感器,单片机为核心流量控制系统。系统主要由水泵、水泵电机、流量传感器、电动阀门、阀门电机、单片机控制系统等组成。 2、写出流量控制过程,绘制控制系统组成框图 3、利用单片机对流量进行控制 (1)系统硬件电路设计 单片机采用89S52;设计键盘及显示电路,电机控制电路(可控硅,光电耦合器)。(2)编制流量控制程序 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间: 2 周 2、设计时间安排: 熟悉实验设备、实验、收集资料:4天 设计计算、绘制技术图纸:4天 编写课程设计说明书:5天 答辩:1天

一,流量控制系统设计意义 工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。【1】 在天然气工业蓬勃发展的现在,天然气的计量引起了人们的特别关注,因为在天然气的采集、处理、储存、运输和分配过程中,需要数以百万计的流量计,其中有些流量计涉及到的结算金额数字巨大,对测量和控制准确度和可靠性要求特别高。此外,在环境保护领域,流量测量仪表也扮演着重要角色。人们为了控制大气污染,必须对污染大气的烟气以及其他温室气体排放量进行监测;废液和污水的排放,使地表水源和地下水源受到污染,人们必须对废液和污水进行处理,对排放量进行控制。于是数以百万计的烟气排放点和污水排放口都成了流量测量对象。同时在科学试验领域,需要大量的流量控制系统进行仿真与试验。流量计在现代农业、水利建设、生物工程、管道输送、航天航空、军事领域等也都有广泛的应用。 二,系统方案 1、方案整体思路 液体流量控制通常采用电动调节阀实现,近年来,电动调节阀的结构和控制方式发生了很大的变化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电动调节阀的控制数字化提供了基础。将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成数字控制量,构成数字PID控制器,它具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。 本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控制。 2、实现流程 流量控制系统是一个过程控制系统,在设计的过程中,必须明确它的组成部分。过程控制系统的组成部分有:控制器、执行器、被控对象和测量变送单元,其框图如图1所示。 直流电机PID控制阀门 设定值流量输出

二次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “ —→”代表系统控制 “ —→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

相关文档
最新文档