微生物功能基因组学 翻译

微生物功能基因组学 翻译
微生物功能基因组学 翻译

The polar clusters. R. sphaeroides cells typically have a chemotaxis cluster at each pole (FIG. 3). These clusters comprise the transmembrane chemoreceptors and the cheop2-encoded proteins CheA2, CheW2 , CheW3 and CheR2. Cluster formation depends on CheA2, CheW2, CheW3 and the chemoreceptors. The cluster senses the periplasmic concentration of chemoeffectors and controls the rate at which CheA2 autophosphorylates. CheA2-P is capable of phosphorylating all of the R. sphaeroides chemotaxis response regulators, meaning that the polar cluster can influence the phosphorylation levels of all of the chemotaxis response regulators in the cell.

The cytoplasmic cluster. The cytoplasmic cluster comprises the cytoplasmic chemoreceptors and the cheop3-encoded proteins CheA3, CheA4, CheW4and CheR3(ReF.73). Cluster formation requires the cytoplasmic chemoreceptors along with CheW4 and either CheA3 or CheA4 (ReF.83). As with the polar chemo-taxis clusters, there are >1,000 chemoreceptors and associated chemosensory proteins in the cytoplasmic cluster. The arrangement of the proteins is unknown, and it is unclear how they form a quaternary complex in the absence of a membrane scaffold. Newly divided wild-type cells typically have a single cytoplasmic cluster located approximately at mid-cell. Unlike the polar chemotaxis clusters, which are automatically segregated at cell division (as each daughter cell inherits one pole from the parent), the cytoplasmic cluster requires a spe-cialized mechanism of protein segregation to ensure that each daughter cell inherits a cluster (FIG. 3) . Before cell division, the single cluster located at mid-cell seems to become two clusters that migrate to about the one-quarter and three-quarter cell positions, one at each position, ensuring that each daughter cell inherits a single cluster. This intriguing mechanism uses PpfA, a protein encoded in cheop3 that is a homologue of the ParA family type I DNA-partitioning ATPases (which are involved in plas-mid and chromosome partitioning). PpfA controls the number and positioning of cytoplasmic clusters. ΔppfA mutant cells have aberrant positioning of the cytoplas-mic cluster and rarely contain more than a single cluster; the two daughter cells inherit either a single cluster or no cluster at all. Although the daughter cell lacking a cluster eventually synthesizes a new one, the delay could explain the reduced chemotaxis phenotype of the ΔppfA mutant.

The cytoplasmic cluster, which is believed to sense the metabolic state of the cell, controls the activity of the two unusual CheA homologues, CheA3and CheA4. CheA4is an N-terminally truncated CheA homologue that lacks the P1 and P2 domains but retains the P3–P5 domains, while CheA 3 has a P1 and a P5 domain separated by a novel 794 amino acid sequence that has phosphatase activity. On stimulation, CheA4phosphorylates the P1 domain of CheA3on His51. Unlike CheA2-P, which can phosphorylate all eight of the chemotaxis responseregulators, CheA3-P acts as a phosphodonor for only CheY1, CheY6 and CheB2 (ReF.75). CheY6and CheB2 are encoded by cheop3 and are essential for normal chemo-taxis; however, CheY1 is encoded by cheop1 and is not expressed in wild-type cells under laboratory conditions. The cytoplasmic cluster is therefore capable of directly influencing the phosphorylation state of only two of the five chemotaxis response regulators that are nor-mally expressed in wild-type cells, CheY6 and CheB2. In addition to its ability to act as a phosphodonor to these response regulators, CheA3 shows specific phosphatase activity towards CheY6-P; this activity depends on the novel 794 amino acid sequence in CheA3(ReF.88). CheA3and CheA4have different receptor-binding (P5) domains;

therefore, independent regulation of the kinase activity of CheA 4 and the phosphatase activity of CheA3 could be crucial for this pathway.The cytoplasmic cluster, which is believed to sense the metabolic state of the cell, controls the activity of the two unusual CheA homologues, CheA3 and CheA4. CheA4is an N-terminally truncated CheA homologue that lacks the P1 and P2 domains but retains the P3–P5 domains, while CheA3 has a P1 and a P5 domain separated by a novel 794 amino acid sequence in CheA3(ReF.88).CheA3 and CheA4have different receptor-binding (P5) domains; therefore, independent regulation of the kinase activity of CheA4 and the phosphatase activity of CheA 3 could be crucial for this pathway.

Role of CheY. Wild-type R. sphaeroides expresses three of its six CheY proteins under laboratory conditions: CheY3, CheY4 and CheY6. CheY6 is essential for chemotaxis, but there is redundancy between CheY3 and CheY4, with only one being required for chemotaxis. In the absence of chemotaxis proteins, the flagellar motor rotates con-tinuously. CheY6-P is capable of stopping the flagellar motor alone, but without CheY3 or CheY4, it is unable to support chemotaxis. All three of these CheY homo-logues can bind the FliM component of the Fla1 flagellar motor in vitro, but the effects of CheY3-P and CheY4-P binding on flagellar rotation are unknown.

微生物英文文献及翻译—翻译

A/O法活性污泥中氨氧化菌群落的动态与分布 摘要: 我们研究了在厌氧—好氧序批式反应器(SBR)中氨氧化菌群落(AOB)和亚硝酸盐氧化菌群落(NOB)的结构活性和分布。在研究过程中,分子生物技术和微型技术被用于识别和鉴定这些微生物。污泥微粒中的氨氧化菌群落结构大体上与初始的接种污泥中的结构不同。与颗粒形成一起,由于过程条件中生物选择的压力,AOB的多样性下降了。DGGE测序表明,亚硝化菌依然存在,这是因为它们能迅速的适应固定以对抗洗涤行为。DGGE更进一步的分析揭露了较大的微粒对更多的AOB种类在反应器中的生存有好处。在SBR反应器中有很多大小不一的微粒共存,颗粒的直径影响这AOB和NOB的分布。中小微粒(直径<0.6mm)不能限制氧在所有污泥空间的传输。大颗粒(直径>0.9mm)可以使含氧量降低从而限制NOB的生长。所有这些研究提供了未来对AOB微粒系统机制可能性研究的支持。 关键词:氨氧化菌(AOB),污泥微粒,菌落发展,微粒大小,硝化菌分布,发育多样性 ?简介 在浓度足够高的条件下,氨在水环境中对水生生物有毒,并且对富营养化有贡献。因此,废水中氨的生物降解和去除是废水处理工程的基本功能。硝化反应,将氨通过硝化转化为硝酸盐,是去除氨的一个重要途径。这是分两步组成的,由氨氧化和亚硝酸盐氧化细菌完成。好氧氨氧化一般是第一步,硝化反应的限制步骤:然而,这是废水中氨去除的本质。对16S rRNA的对比分析显示,大多数活性污泥里的氨氧化菌系统的跟?-变形菌有关联。然而,一系列的研究表明,在氨氧化菌的不同代和不同系有生理和生态区别,而且环境因素例如处理常量,溶解氧,盐度,pH,自由氨例子浓度会影响氨氧化菌的种类。因此,废水处理中氨氧化菌的生理活动和平衡对废水处理系统的设计和运行是至关重要的。由于这个原因,对氨氧化菌生态和微生物学更深一层的了解对加强处理效果是必须的。当今,有几个进阶技术在废水生物处理系统中被用作鉴别、刻画微生物种类的有价值的工具。目前,分子生物技术的应用能提供氨氧化菌群落的详细分类说明。

功能基因组学在益生菌的应用

对于乳酸菌的研究已经从最初的形态学研究,发展为细胞水平和分子水平的研究。自2001年完成第一株乳酸菌即乳酸乳球菌IL1403的全基因组测序以来,目前已经公布的测序完成的乳酸菌包括: 嗜酸乳杆菌NCFM /ATCC 700396; 乳酸乳球菌IL1403、长双歧杆菌NCC 2705、植物乳杆菌WCSF1、约氏乳杆菌NCC533以及等。许多与工业生产相关的性状都是由质粒编码的,比如说: 乳糖代谢酶类、蛋白水解酶类、摄取柠檬酸盐的酶、噬菌体抗性、细菌素的生成、多糖的合成、金属离子抗性以及抗生素抗性。 乳酸菌基因组学(比较基因组学和功能基因组学) 在乳品发酵菌种及益生菌方面的应用: (1) 筛选具有特定胞外多糖特性(如短结构,拉丝状) 及数量的嗜热链球菌; (2) 对于益生菌来说,其基因组的分析可以将它们的基因特点和益生功能联系起来在分子水平上筛选具特定功效的益生菌菌株; (3) 进一步探索噬菌体的分子进化规律,阐明乳酸菌抗噬菌体的机制。例如嗜热链球菌对CR ISPR ( clustered regularly interspaced short palin2dromic repeats 呈一定顺序反复规律性出现的基因丛簇) 编码的获得与其抗噬菌体的关系的发现。 基因研究与筛选不同特性的“胞外多糖EPS”相关的嗜热链球菌 研究发现,在酸奶菌种中的嗜热链球菌中都含有一个基因簇: EPS基因簇,它与一种胞外多糖(EPS) 的合成相关,因此被称为EPS基因簇。而对于35株嗜热链球菌的EPS基因簇分析发现:在低“拉丝”结构和短EPS基因之间似乎存在某种特定的联系; 这将为酸奶产黏菌种的筛选和开发提供了理论依据及从分子水平上大规模筛选提供了简单快捷和直观的方法。 乳酸菌的功能基因组学与益生菌菌种特定功效的筛选 功能基因组学Functional genomics的研究又被称为后基因组学,是利用结构

翻译专业本科人才培养方案

翻译专业本科人才培养方案 一、培养目标 立足湖南,面向全国,将翻译专业与英语专业、翻译专业硕士有机结合,坚持翻译理论与技巧教学与实践应用并重,培养面向全球一体化、适应中国国情与区域人才市场需要的“基础厚,口径宽,能力强,素质高”的应用型翻译专门人才。 二、专业特色及实现途径 专业特色: 英语翻译专业本着“厚基础、宽口径、强能力、高素质”的培养原则,将通识教育与专业教育相结合,在“通识”中突出“专才”,打造真正适合社会的高级英语人才。本专业学生除受到基础语言技能训练外,系统地学习口译与笔译的技巧,掌握林业、工程机械、经贸等工程领域翻译的基本技巧,掌握基本的翻译理论知识;同时,学生进一步学习汉语文学知识,提高汉语应用能力;广泛了解中国文化与英语国家的文化,从而获得作为职业译员的基本素养,工作能力和研究能力。 实现途径: (1)科学合理、与时俱进的课程体系; (2)英汉双语优良师资; (3)依托我院多年来积累的高水平实践、实习基地,多年来翻译口译大赛的承办及参赛经验以及系统完善的口笔译实训、实习经验, 保证学生翻译实践技能的培养。 (4)依托我校林业优势,借我校工程机械专业优秀师资之力,为培养“专才”铺路。 三、培养要求及保障措施 培养要求:翻译专业本科学生毕业时应达到以下知识、能力和素质要求。 (1)知识要求 通识知识:翻译专业本着“厚基础、宽口径、强能力、高素质”的培养原则,将通识教育与专业教育相结合,在“通识”中突出“专才”,打造真正适合社会的高级英语人才。学生除专业技能外,将进一步学习汉语文学知识,提高汉语应用能力;广泛了解中国文化与英语国家的文化,从而获得作为职业

微生物学细菌中英翻译及促生素概论

清酒乳杆菌(Lactobacillus sakei),弯曲乳杆菌(Lactobacillus curvatus),明串珠菌属的肠膜明串珠菌(Leuconostoc mesenteroides)和非培养的明串珠菌(Uncultured Leuconostoc sp.) 清酒乳杆菌清酒亚种(Lactobacillus sakei subsp.sakei) 弯曲乳杆菌蜜二糖亚种(Lactobacillus curvatus subsp.melibiosus) 粪肠球菌(E.faecalis)屎肠球菌(E.faecium) 鸟肠球菌(E.avium) 酪黄肠球菌(E.casseliflavus) 坚忍肠球菌(E.durans) 鸡肠球菌E.galinarum) 芒地肠球菌(E.mundii) 恶臭肠球菌(E.maladoratum) 希拉肠球菌(E.hirae) 孤立肠球菌(E.solitarius) 棉子糖肠球菌(E.raffinosus) 假鸟肠球菌(E.pseudoavium) 粪肠球变异株(E.faecalis var)。 Abiotrophia adjacens 毗邻贫养菌 Abiotrophia defectiva 软弱贫养菌 Achromobacter spp 无色杆菌属某些种 Acinetobacter /Pseudomonas spp 不动杆菌/假单胞菌属某些种 Acinetobacter baumannii 鲍氏不动杆菌 Acinetobacter calcoaceticus 醋酸钙不动杆菌 Acinetobacter haemolyticus 溶血不动杆菌 Acinetobacter johnsonii 约氏不动杆菌 Acinetobacter junii 琼氏不动杆菌 Acinetobacter lwoffii 鲁氏不动杆菌 Acinetobacter radioresistens 抗辐射不动杆菌 Acinetobacter spp 不动杆菌属某些种 Acinetobacter spp/Pseudomonas spp 不动杆菌属某些种/假单胞菌属某些种 Acinetobacter/Pseudomonas spp 不动杆菌/假单胞菌属某些种 Actinobacillus actinomycetemcomitans 伴放线放线杆菌 Actinomyces israelii 衣氏放线菌 Actinomyces meyeri 麦氏放线菌 Actinomyces naeslundii 内氏放线菌 Actinomyces neuii anitratus 纽氏放线菌无硝亚种 Actinomyces neuii neuii 纽氏放线菌纽氏亚种 Actinomyces neuii radingae 纽氏放线菌罗亚种 Actinomyces neuii turicensis 纽氏放线菌图列茨亚种 Actinomyces odontolyticus 龋齿放线菌 Actinomyces viscosus 粘放线菌

微生物基因组研究

微生物基因组研究 微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、 环保等诸多领域。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,

微生物英语

Microscope 显微镜 Antony van leeuwenhoek 吕文虎克 Louis Pasteur 巴斯德 Joseph Lister 李斯德 Robert Koch 郭霍 Koch postulate 郭霍法则 molecular Koch postulate 分子郭霍法则Bacterium 细菌 Coccus 球菌 Diplococcus 双球菌 Bacillus 杆菌 Spiral bacterium 螺型菌 Vibrio 弧菌 Spirillum 螺菌Polymorphism 多形性 Cell wall 细胞壁Peptidoglycan 肽聚糖Mucopeptide 粘肽 Glycopeptide 糖肽 Murein 胞壁质 N-acetylmuramic acid ,NAM N-乙酰胞壁酸N-acetylglucosamine, NAG N-乙酰葡糖胺Diaminopimelic acid, DAP 二氨基庚二酸Teichoic acid 磷壁酸 Ribitol 核糖醇 Lipoteichoic acid, LTA 脂磷壁酸 Outer membrane 外膜Lipopolysaccharide LPS 脂多糖 Lipid A 脂质A Lysozyme 溶菌酶 Protoplast 原生质体Spheroplast 圆球体Bactrrial L form 细菌L形 Cytoplasmic membrane 细胞膜 Mesosome 中介体 Cytoplasm 细胞质 Ribosome 核糖体 Plasmid 质粒 Inclusion 内含物 Metachromatic granule 异染颗粒 Volutin 纡回体 Nuclear material 核质 Nucleoid 拟核 Capsule 荚膜 Microcapsule 微荚膜 Slime layer 黏液层 Smooth colony 光滑型菌落 Mucoid colony 黏液型菌落 Rough colony 粗糙型菌落 Flagellum 鞭毛 Pilus(fimbria) 菌毛 Common pilus 普通菌毛 Sex pilus 性菌毛 Fertility 致育性 Spore 芽孢 Endospore 内芽孢 Vegetative form 繁殖体 Spore wall 芽孢壁 Cortex 皮质层 Coat 芽孢壳 Exosporium 芽孢外衣 Light microscope 光学显微镜 Electron microscope 电子显微镜 Dark microscope 暗视野显微镜 Gram stain 革兰染色法 Bacterial metabolism 细菌代谢 Obligate aerobe 专性需氧菌 Microaerophilic bacterium 微需氧菌 Facultative anaerobe 兼性厌氧菌 Obligate anaerobe 专性厌氧菌 Superoxide dismutase SOD 超氧化物歧化酶 Catalase 触酶 Peroxidase 郭氧化物酶 Binary fission 二分裂法 Growth curve 生长曲线 Lag phase 迟晚期 Logarithmic phase 对数生长期 Stationary phase 稳定期 Decline phase 衰亡期 Autotroph 自养菌 Heterotroph 异养菌 Saprophyte 腐生菌 Permease 通透酶 Fermentation 发酵 Pyrogen 热原质 Antibiotic 抗生素 Exotoxin 外毒素 Endotoxin 内毒素 Bacteriocin 细菌素 Culture medium 培养基 Basal medium 基础培养基 Nutrient medium 营养培养基 Selective medium 选择性培养基 Different medium 鉴别培养基 Anaerobic medium 厌养培养基 Cooked meat medium 庖肉培养基 1

微生物基因组研究进展及意义

微生物基因组研究进展及其意义 近年来,病原微生物的基因组研究取得了飞速的进展。所谓基因组研究是指对微生物的全基因进行核苷酸测序,在了解全基因的结构基础上,研究各个基因单独或数个基因间相互作用的功能。由于过去人们大多从表型分析入手,寻找已知功能的编码基因,实际只了解微生物中极少数的基因,如链球菌的链激酶基因、结核杆菌编码的热休克蛋白基因等。还有大量未知基因未被发现。通过基因组研究,则从根本上揭示了微生物的全部基因,不仅可发现新的基因,还可发现新的基因间相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律,从而得以发展新的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能有在工农业生产上的应用价值。因此,全球除已完成了70余株覆盖重要病毒科的病毒代表株全基因组研究外,据美国基因组研究所(The Institute for Genomic Research, TIGR)报道,目前已完成了19种微生物基因组测序,其中11种与人类及疾病相关(嗜血流感杆菌,生殖道支原体,肺炎支原体,幽门螺杆菌,枯草杆菌,伯氏疏螺旋体,结核杆菌,梅毒螺旋体,沙眼衣原体,普氏立克次体)。另外,还有40余种微生物已被登记正在进行测序,预计在1999~2000年完成〔1〕。 病毒基因组研究进展 病毒因其基因组小,是进行基因组研究最早的生物体。早在1977 年已完成了噬菌体DNA的全基因测序。存在于脊髓灰质炎疫苗中的SV40,是最早完成全基因测序的与疾病相关的病毒;此后,许多病毒均已完成了全基因测序,并根据序列的开放阅读框架(ORF)对编码蛋白进行了推导。已对相当一些病毒蛋白进行了重组表达,还对一些病毒基因编码的调控序列进行了研究。除一般大小的病毒已完成了基因组测序,对大基因组病毒,疱疹病毒科,如水痘病毒基因组为0.125Mb(Mega-basepair,兆碱基对)〔2〕。巨细胞病毒,基因组为0.229Mb〔3〕。我国已对痘苗病毒天坛株(约0.2Mb)进行了全基因测序,发现与国外的痘苗毒株序列有明显的差异〔4〕。我国还对甲、乙、丙、丁、戊、庚型肝炎病毒进行了国内毒株的全基因测序。近来还对国内2株发现的虫媒病毒毒株完成了全基因测序。我国从不同来源的标本中发现了不少乙肝病毒变异株,有的具有特殊的生物学特性〔5〕。对病毒基因中调控因子的分析,发现了与乙肝病毒增强子作用的新细胞核因子〔6〕。 因此,目前对病毒的基因组研究已进入了后基因组阶段,即从全基因水平研究病毒的生物学功能,同时发现新的基因功能。对于医学病毒学当前主要方向是研究病毒基因组中与致病及诱生免疫应答相关的基因,从而揭示和解决迄今尚未解决的问题,以达到控制或消灭一些重要病毒感染的目的。 建议目前可进行后基因组研究的领域为: 1.病毒持续性感染:基因组中与持续性感染相关的基因,基因变异或调控因子研究。已报道的乙肝病毒的前核心基因出现终止密码突变,

浅析翻译人才培养的社会需求导向

浅析翻译人才培养的社会需求导向 【关键词】社会需求;双语转换;培养目标;教学模式 【摘要】从分析我国翻译事业得现状动身,提出了翻译人才培养应以社会需求为导向得观点,认为翻译工作得特别性决定了翻译人才培养模式得特别性,而传统外语专业教学模式不适合于翻译人才得培养. 近年来,我国得翻译学科建设取得了长足得进展,翻译院系和翻译研究机构在一些高校相继建立.2006年春,教育部批准在部分高校(复旦大学、广州外语外贸大学和河北师范大学)试点设立本科翻译专业.2007年1月,国务院学位委员会批准设立“翻译硕士专业学位”.翻译学科体系得健全与进展,不仅是翻译事业进展得需要,也是我国改革开放政策不断深化,经济、科学与文化事业蓬勃进展得需要. 1翻译人才培养应以社会需求为导向 人才培养要习惯社会与经济进展得需求.任何一个新专业得设置,都必须以社会需求为导向,凸显“应用”特色.也确实是讲,社会需要什么人才,学校就培养什么人才.《翻译硕士专业学位设置方案》把培养目标定位在“德、智、体全面进展、能习惯全球经济一体化及提高国家国际竞争力得需要、习惯国家经济、文化、社会建设需要得高层次、应用型、专业性口笔译人才”,正是秉承了“以社会需求为导向”得理念,将人才培养与社会需求紧密结合起来.wWwcOm 翻译历来是国际交流与交往得重要桥梁和纽带.改革开放以来,我国在政治、经济、文化和科技等各个领域得对外交流与合作日益频繁,各种国际会议日益增多,国外先进得科学技术不断涌人,迫切需要将其转化为我们自己得语言去了解、汲取和掌握.另一方面,随着我国国际地位得提高,世界各地不断掀起“ 翻译工作得特别性要求翻译专业课程设置必须理论与实践相结合,学生不仅要学习翻译理论与技巧,还要在理论指导下进行翻译实践.然而,目前我国翻译方向硕士生得培养却存在着“重理论、轻实践”得咨询题,其培养目标为高校教学人员和科研人员,培养模式偏重于学术性,对翻译得专业性和应用性则不够重视.在人学考试、培养目标、课程设置、教学安排和学位论文写作等方面,基本上按照学术型人才培养模式进行得.忽视翻译操作技能得培养,就会导致翻译实践能力偏低,不利于高层次、应用型、专业性翻译人才得培养.某大学一位教师告诉笔者,他们学校有资料翻译任务,想请新近聘用得一位翻译方向硕士毕业生承担一部分,没想到这位毕业生难道拒绝参与,讲自己是搞翻译理论研究得,不擅长翻译实践.翻译理论研究对翻译学科建设无疑起了重要得推动作用,翻译理论关于翻译实践得指导作用也是不容忽视得,但仅仅明白得理论而可不能实践,如此得毕业生就无法满足社会对翻译实践人才得需求. 由于我校去年新上了翻译方向硕士点,我曾利用参加国内翻译学术会议得机会,向一些知名外语院校得教师询咨询翻译方向硕士研究生是否应开设翻译实践课,得到得回答大多是否定得.我咨询他们,学生得操作能力差该如何办?他们告诉我,用翻译项目来弥补.翻译项目实践诚然是必要得,但翻译项目并非人人都能得到,并非总是能够得到,没有项目时该如何办?笔者认为,必须为翻译方向硕士生开设一定数量得翻译实践课,以确保他们有足够多得实践机会.就我所知,北京外国语大学对学生翻译实践能力得培养比较重视.2001年,我在北外英语学院

常见微生物的界、门、纲、目、科、属、种中英文对照

常见微生物 界(Domain)、门(Phylum)、纲(Class)、目(Order)、科(Family)、属(Genus)、种(Species)中英文对照

界(Domain)Bacteria细菌 Archaea古生菌

门(Phylum)Proteobacteria 变形菌门 Bacteroidetes 拟杆菌门 Actinobacteria 放线菌门Gemmatimonadetes 芽单胞菌门Acidobacteria 酸杆菌门 Planctomycetes 浮霉菌门Verrucomicrobia 疣微菌门 Chloroflexi 绿弯菌门 Nitrospirae 硝化螺旋菌门 Firmicutes 厚壁菌门 Chlorobi 绿菌门 Cyanobacteria 蓝藻细菌门Fibrobacteres 纤维杆菌门 Elusimicrobia 迷踪菌门Armatimonadetes 装甲菌门 Euryarchaeota 广古菌门 Chlamydiae 衣原体 Crenarchaeota 泉古菌门 Tenericutes 无壁菌门 Spirochaetes 螺旋体属

Alphaproteobacteria 甲型(α)变形杆菌纲Gammaproteobacteria 丙型变形菌纲Betaproteobacteria β-变形菌纲Actinobacteria 放线菌门、纲Cytophagia 纤维粘网菌Gemmatimonadetes 芽单胞菌门、纲Deltaproteobacteria δ-变形菌纲Acidobacteria-6 酸杆菌门Acidimicrobiia 酸微菌纲Verrucomicrobiae 疣微菌纲 Opitutae 丰佑菌纲 Nitrospira 消化螺菌属Thermomicrobia 热微菌门 Bacteroidia 拟杆菌纲 Bacilli 杆菌 Chloroflexi 绿弯菌门Anaerolineae 厌氧绳菌纲 Clostridia 梭状芽胞杆菌Elusimicrobia 迷踪菌门Ktedonobacteria 纤线杆菌纲Thermoplasmata 热原体纲Chlamydiia 衣原体Thaumarchaeota 奇古菌门 Mollicutes 柔膜菌纲Methanomicrobia 甲烷微菌纲Holophagae 全噬菌纲Spirochaetes 螺旋体属

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

微生物用英语

active immunity(主动免疫): Immunity acquired through direct stimulation of the immune system by antigen. active transport(主动运输):Transport of molecules against a concentration gradient (from regions of low concentration to regions of high concentration) with the aid of proteins in the cell membrane and energy from ATP. Alcohol fermentation(乙醇发酵):is the formation of alcohol from sugar. Yeast, when under anaerobic conditions, convert glucose to pyruvic acid via the glycolysis pathways, then go one step farther, converting pyruvic acid into ethanol, a C-2 compound. aerobe(好氧微生物): A microorganism that lives and grows in the presence of free gaseous oxygen (O2). aflatoxin(黄曲霉毒素): From Aspergillus flavus t, a mycotoxin that typically poisons moldy animal feed and can cause liver cancer in humans and other animals. AIDS(爱滋病): Acquired Immune deficiency syndrome. The complex of signs and symptoms characteristic of the late phase of human immunodeficiency virus (HIV) infection. Ames test(艾姆氏实验): A method for detecting mutagenic and potentially carcinogenic agents based upon the genetic alteration of nutritionally defective bacteria anabolism(合成代谢): The energy consuming process of incorporating nutrients into protoplasm through biosynthesis. anaerobe(厌氧微生物): A microorganism that grows best, or exclusively, in the absence of oxygen. antibiotic(抗生素):A chemical substance from one microorganism that can inhibit or kill another microbe even in minute amounts. antibody(抗体): A large protein molecule evoked in response to an antigen that interacts specifically with that antigen. antigen(抗原): Any cell, particle, or chemical that induces a specific immune response by B cells or T cells and can stimulate resistance to an infection or a toxin. antigenic determinant(抗原决定基):The precise molecular group of an antigen that defines its specificity and triggers the immune response. antimetabolite(抗代谢物):A substance such as a drug that competes with, substitutes for, or interferes with a normal metabolite. antiseptic(防腐剂):A growth-inhibiting agent used on tissues to prevent infection. antiserum(抗血清):Antibody-rich serum derived from the blood of animals (deliberately immunized against infectious or toxic antigen) or from people who have recovered from specific nfections. antitoxin(抗毒素):Globulin fraction of serum that neutralizesa specific toxin. Also refers to the specific antitoxin antibody itself. arthrospore(节孢子):A fungal spore formed by the septation fragmentation of hyphae. ascospore(子囊):A spore formed within a saclike cell (ascus) of Ascomycota following nuclear fusion and meiosis. asepsis(无菌):A condition free of viable pathogenic microorganisms. autoantibody(自身抗体):An "anti-self antibody having an ffinity for tissue antigens of the subject in which it is formed. autoantigen(自身抗原):Molecules that are inherently part of self but are perceived by the

微生物学考试资料

微生物学思考题 第一章绪论 1.微生物有哪五大共性,其中最基本的是哪一个,何故? 微生物五大共性分别是:1:体积小,面积大;2:吸收多,转化快;3:生长旺,繁殖快;4:适应强,易变异;5:分布广,种类多。其中最基本的特性是体积小,面积大。微生物是一个突出的小体积大面积系统,从而赋予它们具有不同于一切大生物的五大共性,因为一个小体积大面积系统,必然有一个巨大的营养物质吸收面、代谢废物的排泄面和环境信息的交换面,故而产生了其余四个共性。巨大的营养物质吸收面和代谢废物的排泄面使微生物具有了吸收多,转化快,生长旺,繁殖快的特点。环境信息的交换面使微生物具有适应强,易变异的特点。而正是因为微生物具有适应强,易变异的特点,才能使其分布广,种类多。 2.为什么说巴斯德和柯赫是微生物学的奠基人?(请不要简单罗列二个人的工作,而应该对他们的工作及意义进行评论) 路易·巴斯德,主要贡献:①否认了“自生说”;②初步应用免疫学,利用预防接种法治疗疾病,给人类带来幸福;③证实了发酵作用与微生物活动有关;④发明了巴氏灭菌法。④分离鉴定了引起家蚕蚕病杆菌并提出预防措施,被誊为微生物的奠基人。 罗伯特·柯赫,专门研究细菌,特别是病原菌,对微生物学有卓越贡献:①建立微生物学研究基本技术,被誉为细菌学技术之父。②证实病害的病原菌学说(柯赫法则)。 具体证实了炭疽病菌是炭疽病的病原菌。 发现了肺结核病的病原菌。 他们将微生物大的研究从形态描述推进到生理学研究阶段,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术,从而奠定了微生物学的基础,开辟了医学和工业微生物等分支学科。巴斯德和柯赫是微生物学的奠基人 3.微生物包括哪几大类群? 真核:酵母菌、霉菌、原生动物、单细胞藻类 原核:真细菌(放线菌、支原体、立克次氏体、衣原体、蓝细菌)、古细菌 非细胞结构:病毒、亚病毒(类病毒、拟病毒、朊病毒) 4.名词解释:微生物、种、菌株、型。 A 微生物:是指一切体形微小,单细胞或个体结构简单的多细胞,甚至没有细胞结构 的低等生物的统称 B种:是一个基本分类单位;是一大群表型特征高度相似、亲缘关系极其接近,与同属内其他种有明显差别的菌株的总称。 C菌株:表示任何由一个独立分离的单细胞繁殖而成的纯种群体及其一切后代(起源于共同祖先并保持祖先特性的一组纯种后代菌群)。因此,一种微生物的不同来 源的纯培养物均可称为该菌种的一个菌株。菌株强调的是遗传型纯的谱系。 D型:常指亚种以下的细分。当同种或同亚种内不同菌株之间的性状差异不足以分为新的亚种时,可以细分为不同的型。例如:按抗原特征的差异分为不同的血清型5.用一个具体事例说明人类与微生物的关系,为什么说微生物是人类的敌人,更是我们的朋友? 对于人类来说,微生物有有害的,也有有益的,它们可以使人致病,也可以为人治病,可以给人类造成损失,也可以为人类创造财富。 致病的如葡萄球菌、天花病毒等,治病的如青霉素、噬菌体等,肠道中的双歧杆菌还有维护肠道正常细菌菌群平衡、抑制病原菌的生长、防止便秘、在肠道内合成维生素、氨基酸

微生物学

山东轻工业学院 2004 年攻读硕士学位研究生入学考试试题 (答案一律写在答题纸上,答在试题上无效,试题附在答卷内交回) 考 试 科 目:微生物学 试题适用专业:发酵工程/食品科学 A卷共 3页 一、名词解释(每小题 3 分,共 30 分) 1、芽孢 2、噬菌斑 3、原生质体融合 4、 拮抗 5、巴斯德消毒法 6、移码突变 7、一步生长曲线 8、类毒素 9、加富性选择培养基 10、Ames试验 二、填空(每空 1 分,共 35 分) 1、科赫的重要业绩之一是建立了研究微生物的一系列重要方法,尤其在(1)方面。 2、细菌的繁殖主要以(2)方式进行;酵母菌的无性繁殖包括(3)和(4) ;放线菌 的繁殖常以(5)方式进行,在液体培养基内也可以(6)方式进行。 3、表型延迟现象产生的机制有两种(7) 、 (8) 。 4、大肠杆菌T4 噬菌体的结构由(9) 、 (10) 、 (11)三部分组成。 5、按培养基的物理状态划分,生产实践中用到的绝大多数发酵培养基属于(12) 。 6、消毒剂煤酚皂液即(13)的混合液。 7、吲哚试验用于证明微生物是否具有(14)酶。 8、 (15) 、 (16) 、 (17)是证明基因突变不对应性的三个经典实验。 9、相同温度下,湿热灭菌比干热灭菌更有效,是由于(18) 、 (19) 、 (20) 。 10、制取酵母菌的原生质体用(21)酶脱壁,而制取金黄色葡萄球菌的原生质体, 则用(22)酶脱壁。 11、酵母菌生活史的三种类型是(23) 、 (24) 、 (25) 。 12、一般来说, (26)、(27)、(28)和(29)是异养微生物的良好碳源。 13、若以取得死或活的有机物作为营养物质划分,可将微生物的营养类型分为(30)、

翻译专业本科人才培养方案

翻译专业本科人才培养方案 专业简介: 2008年湖北大学获批本科翻译专业,是湖北省首批获得该专业招生资格的单位之一,翻译专业于2009年开始对外招生。翻译专业坚持以素质教育为核心,以现代化教育技术为手段,贯彻“以人文教育为本,以基本功训练为先,以翻译技能培养为重”的教学理念,大力加强师资队伍建设、课程建设与实践教学建设,大力培养学生的创新精神和实践能力,通过一系列的教学改革与实践,在科学研究、课程建设、人才培养等方面取得了令人满意的成绩。目前翻译专业拥有一支结构合理、业务能力强的教师队伍,“英汉口译”和“英汉笔译”为校级精品课程,形成了“一专多能、一凭多证、分段培养”的人才培养模式,为社会输送了一批“厚基础、宽口径、高素质、强能力”应用型翻译人才。本专业学生经过系统的学习,在全国英语专业四、八级考试中显示出很强的竞争力,通过率远高于全国综合类大学平均水平,其中专业四、八级口试通过率均为100%;近年来在省级以上学术竞赛中获奖人数众多,不少学生考取国内外重点大学翻译方向研究生;翻译专业学生积极参加社会实践活动,翻译人才培养质量符合教育部外语专业相关规定要求,毕业生深受社会和用人单位好评。 专业编号:110312 专业代码:050261 一、培养目标 本专业培养德才兼备、具有广阔国际视野的通用型翻译专业人才。毕业生应熟练掌握相关工作语言,具备较强的逻辑思维能力、较宽广的知识面、较高的跨文化交际素质和良好的职业道德,了解中外社会文化,熟悉翻译基础理论,较好地掌握口笔译专业技能,熟练运用翻译工具,了解翻译及相关行业的运作流程,并具备较强的独立思考能力、工作能力和沟通协调能力。毕业生能够胜任外事、经贸、教育、文化、科技、军事等领域中一般难度的笔译、口译或其他跨文化交流工作。

微生物学-名词解释

微生物

10.温和噬菌体: 噬菌体基因与宿主菌染色体整合,不产生子代噬菌体且不裂解细菌,但是菌体DNA能随细菌DNA复制,并随细菌的分裂而传代。 11.前噬菌体: 整合在细菌基因组中的噬菌体基因组。 12、溶原性转换: 溶原性细菌因前噬菌体的整合而产生新的性状。 13.接合: 细菌通过性菌毛相互连接,将遗传物质(主要是质粒DNA)从供体菌转给受体菌的方式。 14.转化: 供体菌裂解释放的游离DNA片段被受体菌直接摄取,使受体菌获得新性状的过程。 15.转导: 由噬菌体介导,将供体菌的DNA片段转移到受体菌内,使后者获得前者的部分遗传性状,这种基因转移方式称转导。 16.基因转座: 通过转座元件等的作用使一段DNA从基因组的一个部位转移到另一个部位的现象。 17.条件致病菌: 有些细菌在正常情况下并不致病,但在某些条件改变的特殊情况下可以致病,这类菌称为条件致病菌或机会致病菌。 18.菌群失调: 也称菌群比例失调,指宿主体内菌群中各菌种间的比例发生较大幅度变化而超出正常范围的状态,特别是原籍菌的数量和密度下降,外籍菌和环境菌的数量和密度升高。可引起菌群失调症。 19.定位转移: 是指正常菌群由原籍生境转移到外籍生境或本来无菌生存部位的现象,正常菌群定位转移后可成为致病菌。

20.毒血症: 致病菌侵入宿主体后,只在机体局部生长繁殖,不进入血循环,但其产生的外毒素入血,引起特殊的临床症状。 21.败血症: 致病菌侵入血流并大量繁殖,产生毒性产物造成机体严重损害,出现全身性中毒症状。 22.脓毒血症: 化脓性病菌侵入血流并大量繁殖,通过血流扩散至宿主其它组织或器官,产生新的化脓性病灶。 23.带菌状态: 有时宿主在显性或隐性感染后,致病菌并未立即消失,而在体内继续留存一定时间,与机体免疫出于相对平衡状态,是为带菌状态,该宿主称为带菌者。24.医院感染: 又称医院获得性感染,主要是指患者在医院接受诊断、治疗、护理及其它医疗保健过程中或在医院逗留期间获得的一切感染。 25.交叉感染: 由医院内患者、病原携带者、医务人员直接或或间接传播引起的感染。26.医源性感染: 在治疗、诊断和预防过程中,由于所用器械消毒不严而造成的感染。27.ASO试验: 又称抗O试验,即抗链球菌溶素O试验,是一种传统的体外毒素抗毒素中和实验,是用已知的链球菌溶素O抗原检测患者血清中是否有相应链球菌O抗体的中和试验,常用于风湿热或肾小球肾炎的辅助诊断。 28.肠产毒性大肠埃希菌(ETEC): 是旅游者和婴幼儿腹泻的常见病因,热带尤为常见,由食入污染食物或水而致病,一般不侵入细胞内。

微生物学周德庆名词解释及简答论述题

1.微生物:是一切肉眼看不见或看不清的微小生物的总称。它们是个体微小(<10mm)、 构造简单的低等生物。 2.微生物学:是一门在分子、细胞或群体水平上研究微生物的形态构造、生理代谢、遗传 变异、生态分布和分类进化等生命活动基本规律。 3.原核生物:即广义的细菌,指一大类细胞核无核膜包裹,只存在称作核区的裸露DNA 的原始单细胞生物,包括真细菌和古生菌两大类群。 4.真核生物:是一大类细胞核具有核膜,能进行有丝分裂,细胞质中存在线粒体或同时存 在叶绿体等多种细胞器的生物。 5.细菌:狭义的细菌是指一类细胞细短(直径约0.5微米,长度0.5~5微米)、结构简单、 胞壁坚韧、多以二分裂方式繁殖和水生性较强的原核生物;广义的细菌则是指所有的原核生物。 6.缺壁细菌:指细胞壁缺乏或缺损的细菌。包括原生质体、球状体、L 型细菌和支原体。 7.原生质体:人工条件下用溶菌酶除去细胞壁或用青霉素抑制细胞壁合成后,所留下的仅 由一层细胞膜包裹的圆球状细胞。一般由G+形成。 8.噬菌斑:由于噬菌体粒子对敏感菌宿主细胞的侵染和裂解,而在菌苔上形成具有一定大 小、形状、边缘的透明圈,称为噬菌斑。 9.菌落:在适宜的培养条件下,微生物在固体培养基表面(有时为内部)生长繁殖,形成 以母细胞为中心的一堆肉眼可见的、有一定形态构造的子细胞集团,这就是菌落。10.菌苔:如果将某一纯种的大量细胞密集地接种到固体培养基表面,结果长成的各“菌落” 互相连成一片,这就是菌苔。 11.革兰氏染色法:各种细菌经革兰氏染色法染色后,能区分为两大类,一类最终染成紫色, 称革兰氏阳性细菌G+,另一类被染成红色,称革兰氏阴性菌G—。 12.(细菌)细胞壁:是位于细胞最外的一层厚实、坚韧的外被,主要成分为肽聚糖,具有 固定细胞外形和保护细胞不受损伤等多种生理功能。 13.肽聚糖:又称黏肽、胞壁质或黏质复合物,是真细菌细胞壁中的特有成分 14.磷壁酸:是结合在G+细菌细胞壁上的一种酸性多糖,主要成分为甘油磷酸或核糖醇磷酸。 15.间体:是一种由细胞膜內褶而形成的囊状构造,其内充满着层状或管状的泡囊。多见于 G+细菌。每个细胞含一至数个。 16.细胞质:是指被细胞膜包围的除核区以外的一切半透明、胶体状、颗粒状物质的总称。 17.细胞内含物:指细胞质内一些显微镜下可见、形状较大的有机或无机的颗粒状构造。 18.贮藏物:一类由不同化学成分累积而成的不溶性颗粒,主要功能有储存营养物。 19.磁小体:存在于少数G—细菌趋磁细菌中,是一种纳米级、高纯度、高均匀度、有独特 结构的链状单磁畴磁晶体,大小均匀、数目不等,为平行六面体、横截八面体,成分为Fe3O4,外有一层磷脂、蛋白质或糖蛋白包裹,无毒,一般排列成链,具导向功能。20.羧酶体:称羧化体,也称多角体,是存在于一些自养细菌细胞内的多角形或六角形内含体, 是自养细菌所特有的内膜结构,大小与噬菌体相仿(约100nm)。羧酶体由以蛋白质为主的单层膜(非单位膜)包围,厚约3.5nm,内含固定CO2所需的1,5-二磷酸核酮糖羧化酶和5-磷酸核酮糖激酶,是自养型细菌固定CO2的部位。存在于化能自养的硫杆菌属,贝日阿托氏菌属和一些光能自养的蓝细菌中. 21.气泡:是存在于许多光能营养型、无鞭毛运动水生细菌中的泡囊状内含物,内里充满气 体,内有数排柱形小空泡,外由2mm厚的蛋白质膜包裹。 22.载色体:植物细胞中含有色素的质体。 23.核糖体:是存在于一切细胞中的少数无膜包裹的颗粒状细胞器,具有蛋白质合成功能。 24.核区:指原核生物所特有的无核膜包裹、无固定形态的原始细胞核。

相关文档
最新文档