材料力学研究的内容

材料力学研究的内容
材料力学研究的内容

目录

第1章 概论

1-1“材料力学”的研究内容

1-2杆件的受力与变形形式

1-3工程构件静力学设计的主要内容

1-4关于材料的基本假定

1-5 弹性体受力与变形特征

1-6材料力学的分析方法

1-7应力、应变及其相互关系

1-8 结论与讨论

第2章拉伸与压缩杆件的应力变形分析与强度计算

2-1轴力与轴力图

2-2拉伸与压缩杆件横截面上的应力

2-3最简单的强度问题

2-4拉伸与的变形压缩杆件的变形分析

2-5 材料的力学性能

2-6结论与讨论

第3章连接件强度的工程假定计算

3-1铆接件的强度失效形式及相应的强度计算方法

3-2焊缝强度的剪切假定计算

3-3结论与讨论

第4章圆轴扭转时的强度与刚度计算

4-1外加扭力矩、扭矩与扭矩图

4-2剪应力互等定理剪切胡克定律

4-3圆轴扭转时横截面上的剪应力分析与强度计算

4-4圆杆扭转时的变形分析及刚度条件

4-5结论与讨论

第5章弯曲问题(1)-剪力图与弯矩图

5-1工程中的弯曲构件

5-2梁的内力及其与外力的相互关系

5-3剪力方程与弯矩方程

5-4剪力图与弯矩图

5-5载荷集度、剪力、弯矩之间的微分关系及其应用

5-6刚架的内力与内力图

5-7 结论与讨论

第6章弯曲问题(2)-截面的几何性质

6-1为什么要研究截面的几何性质

6-2静矩、形心及其相互关系

6-3惯性矩、极惯性矩、惯性半径

6-4惯性矩与惯性积的移轴定理

6-5惯性矩与惯性积的转轴定理

6-6主轴与形心主轴、主惯性矩与形心主惯性矩的概念

6-7 组合图形的形心主轴与形心主惯性矩

6-8 结论与讨论

第7章弯曲问题(3)-应力分析与强度计算

7-1平面弯曲时梁横截面上的正应力

7-2斜弯曲的应力计算

7-3弯矩与轴力同时作用时横截面上的正应力

7-4弯曲剪应力

7-5弯曲强度计算

7-6 结论与讨论

第8章弯曲问题(4)-位移分析与刚度问题

8-1梁的变形与梁的位移

8-2梁的小挠度微分方程及其积分

8-3叠加法确定梁的挠度与转角

8-4梁的刚度计算

8-5简单的静不定梁

8-6结论与讨论

第9章应力状态与强度理论及其工程应用

9-1应力状态的基本概念

9-2平面应力状态任意方向面上的应力

9-3应力状态中的主应力与最大剪应力

9-4 应力圆及其应用

9-5 广义胡克定律

9-6 应变能与应变能密度

9-7强度理论概述

9-8关于脆性断裂的强度理论

9-9关于屈服的强度理论

9-10工程应用之一——组合截面梁的强度全面校核

9-11工程应用之二——圆轴承受弯曲与扭转共同作用时的强度计算

9-12工程应用之三——圆柱形薄壁容器的应力状态与强度计算

9-13 结论与讨论

第10章压杆的稳定问题

10-1 压杆稳定的基本概念

10-2两端铰支压杆的临界载荷欧拉公式

10-3不同刚性支承对压杆临界载荷的影响

10-4临界应力与临界应力总图

10-5压杆稳定性设计的安全因数法

10-6 其他形式的屈曲问题

10-7结论与讨论

基础篇之一

第1章概论

材料力学主要研究变形体受力后发生的变形;研究由于变形而产生的附加内力;研究由此而产生的失效以及控制失效的准则。在此基础上导出工程构件静力学设计的基本方法。

材料力学与理论力学在分析方法上,也不完全相同。材料力学的分析方法是在实验基础上,对于问题作一些科学的假定,将复杂的问题加以简化,从而得到便于工程应用的理论成果与数学公式。

本章介绍材料力学的基础知识、研究方法以及材料力学对于工程设计的重要意义。

1—1 “材料力学”的研究内容

材料力学(strength of materials)的研究内容分属于两个学科。第一个学科是固体力学(solid mechanics),即研究物体在外力作用下的应力、变形和能量,统称为应力分析(stress analysis)。但是,材料力学所研究的仅限于杆、轴、梁等物体,其几何特征是纵向尺寸(长度)远大于横向(横截面)尺寸,这类物体统称为杆或杆件(bars或rods)。大多数工程结构的构件或机器的零部件都可以简化为杆件。第二个学科是材料科学(materials science)中的材料的力学行为(behaviours of materials),即研究材料在外力和温度作用下所表现出的力学性能(mechanical properties)和失效(failure)行为。但是,材料力学所研究的仅限于材料的宏观力学行为,不涉及材料的微观机理。

以上两方面的结合使材料力学成为工程设计(engineering design)的重要组成部分,即设计出杆状构件或零部件的合理形状和尺寸,以保证它们具有足够的强度(strength)、刚度(stiffness)和稳定性(stability)。

1-2 杆件的受力与变形形式

实际杆件的受力可以是各式各样的,但都可以归纳为4种基本受力和变形形式:轴向拉伸(或压缩)、剪切、扭转和弯曲,以及由两种或两种以上基本受力和变形形式叠加而成的组合受力与变形形式。

n拉伸或压缩(tension or compression)-当杆件两端承受沿轴线方向的拉力或压力载荷时,杆件将产生轴向伸长或压缩变形,分别如图1一1a、b所示。图中实线为变形前的位置;虚线为变形后的位置。

n 剪切(shearing )-在平行于杆横截面的两个相距很近的平面内,方向相对地作用着两个横向力,当这两个力相互错动并保持二者之间的距离不变时,杆件将产生剪切变形,如图1一2所示。

n 扭转(torsion )-当作用在杆件上的力组成作用在垂直于杆轴平面内的力偶M e 时,杆件将产生扭转变形,即杆件的横截面绕其轴相互转动,如图1一3所示。

n 弯曲(bend )-当外加力偶M (图1-4a)或外力作用于杆件的纵向平面内(图1-4b)时,杆件将发生弯曲变形,其轴线将变成曲线。

n 组合受力与变形(complex loads and deformation )-由上述基本受力形式中的两种或两种以上所共同形成的受力与变形形式即为组合受力与变形,例如图1-5中所示之杆件

的变形,即为拉伸与弯曲的组合(其中力偶M 作用在纸平面内)。组合受力形式中,杆件将产生两种或两种以上的基本变形。

实际杆件的受力不管多么复杂,在一定的条件下,都可以简化为基本受力形式的组合。 工程上将承受拉伸的杆件统称为拉杆,简称杆;受压杆件称为压杆或柱(column )

;承

图1-1 承受拉伸与压缩杆件 图1-2 承受剪切的构件

图1-3 承受扭转的圆轴

图1-4 承受弯曲的梁

图1-5 组合受力的杆件

受扭转或主要承受扭转的杆件统称为轴(shaft);将承受弯曲的杆件统称为梁(beam)。1—3 工程构件静力学设计的主要内容

工程设计的任务之一就是保证结构和构件具有足够的强度刚度和稳定性。

强度(strength)是指构件或零部件具有的一种能力:在确定的外力作用下,不发生破裂或过量塑性变形的能力。

刚度(rigidity)是指构件或零部件具有的另一种能力:在确定的外力作用下,其弹性变形或位移不超过工程允许范围的能力。

稳定性(stability)是指构件或零部件在某些受力形式(例如轴向压力)下具有的能力:在这些受力形式下,构件或零部件的平衡形式不会发生突然转变的能力。

例如,各种桥的桥面结构,采取什么形式才能保证不发生破坏,也不发生过大的弹性变形,即不仅保证桥梁具有足够的强度,而且具有足够的刚度,同时还要具有重量轻、节省材料等优点。

图1-6 大型桥梁

又如,建筑施工的脚手架不仅需要有足够的强度和刚度,而且还要保证有足够的稳定性,否则在施工过程中会由于局部杆件或整体结构的不稳定性而导致整个脚手架的倾覆与坍塌,造成人民生命和国家财产的巨大损失。

图1-7 建筑施工中的脚手架

此外,各种大型水利设施、核反应堆容器、计算机硬盘驱动器以及航空航天器及其发射装置等等也都有大量的强度、刚度和稳定性问题。

1—4 关于材料的基本假定

1-4-1 各向同性假定

在所有方向上均具有相同的物理和力学性能的材料,称为各向同性(isotropy)材料。

如果材料在不同方向上具有不同的物理和力学性能,则称这种材料为各向异性(anisotropy)材料。

大多数工程材料虽然微观上不是各向同性的,例如金属材料,其单个晶粒呈结晶各向异性(anisotropy of crystallographic),但当它们形成多晶聚集体的金属时,呈随机取向,因而在宏观上表现为各向同性。“材料力学”中所涉及的金属材料都假定为各向同性材料。这假定称为各向同性假定(isotropy assumption)。就总体的力学性能而言,这一假定也适用于混凝土材料。

1-4-2 各向同性材料的均匀连续性假定

实际材料的微观结构并不是处处都是均匀连续的,但是,当所考察的物体几何尺度足够大,而且所考察的物体上的点都是宏观尺度上的点,则可以假定所考察的物体的全部体积内,材料在各处是均匀、连续分布的。这一假定称为均匀连续性假定(homogenization and continuity assumption)。

根据这一假定,物体内因受力和变形而产生的内力和位移都将是连续的,因而可以表示为各点坐标的连续函数,从而有利于建立相应的数学模型。所得到的理论结果便于应用于工程设计。

1—5 弹性体受力与变形特征

弹性体受力后,由于变形,其内部将产生相互作用的内力。这种内力不同于物体固有的内力,而是一种由于变形而产生的附加内力,利用一假想截面将弹性体截开,这种附加内

力即可显示出来,如图1-8所示。

根据连续性假定,一般情形下,杆件橫截面上的内力组成一分布力系。

由于整体平衡的要求,对于截开的每一部分也必须是平衡的。因此,作用在每一部分上的外力必须与截面上分布内力相平衡。这表明,弹性体由变形引起的内力不能是任意的。这是弹性体受力、变形的第一个特征。

应用假想截面将弹性体截开,分成两部分,考虑其中任意一部分平衡,从而确定横截面上内力的方法,称为截面法。

在外力作用下,弹性体的变形应使弹性体各相邻部分,既不能断开,也不能发生重叠的现象,图1

-9中为从一弹性体中取出的两相邻部分的三种变形状况,其中图1-9a 、b

上所示的两种情形是不正确的,只有图1一9c 中所示的情形是正确的。这表明,弹性体受力后发生的变形也不是任意的,而必须满足协调(compatibility )一致的要求。这是弹性体受力、变形的第二个特征。 此外,弹性体受力后发生的变形还与物性有关,这表明,受力与变形之间存在确定的关系,称为物性关系。

图1-9 弹性体变形后各相邻部分之间的相互关系

F 1F n F 3

F 2

图1-8 弹性体的分布内力

图1-10 例题1-1

【例题1-1】 等截面直杆AB 两端固定,C 截面处承受沿杆件轴线方向的力F P ,如图1-10所示。关于A 、B 两端的约束力有(A )、(B )、(C )、(D )四种答案,请判断哪一种是正确的。

解:根据约束的性质,以及外力F P 作用线沿着杆件轴线方向的特点,A 、B 两端只有沿杆件轴线方向的约束力,分别用F A 和F B 表示,如图1-11所示。

根据平衡条件0,x F =∑有

P A B F F F += (a)

其中F A 和F B 都是未知量,仅由平衡方程不可能求出两个未知量。对于刚体模型,这个问题是无法求解的。但是,对于弹性体,这个问题是有解的。

作用在弹性体上的力除了满足平衡条件外,还必须使其所产生的变形满足变形协调的要求。本例中,AC 段杆将发生伸长变形,CB 段杆则发生缩短变形,由于AB 杆两端固定,杆件的总变形量必须等于零。

显然,图1-10中的答案(A )和(B )都不能满足上述条件,因而是不正确的。 对于满足胡克定律的材料,其弹性变形,都与杆件受力以及杆件的长度成正比。在答案

(C )中,平衡条件虽然满足,但CB 段杆的缩短量大于AC 段杆的伸长量,因而不能满足总变形量等于零的变形协调要求,所以也是不正确的。答案(D )的约束力,既满足平衡条件,也满足变形协调的要求,因此,答案(D )是正确的。

1—6 材料力学的分析方法

分析构件受力后发生的变形,以及由于变形而产生的内力,需要采用平衡的方法。但是,采用平衡的方法,只能确定横截面上内力的合力,并不能确定横截面上各点内力的大小。研究构件的强度、刚度与稳定性,不仅需要确定内力的合力,还需要知道内力的分布。 图1-11 例题1-1解

F A F B

内力是不可见的,而变形却是可见的,并且各部分的变形相互协调,变形通过物性关系与内力相联系。所以,确定内力的分布,除了考虑平衡,还需要考虑变形协调与物性关系。

对于工程构件,所能观察到的变形,只是构件外部表面的。内部的变形状况,必须根据所观察到的表面变形作一些合理的推测,这种推测通常也称为假定。对于杆状的构件,考察相距很近的两个横截面之间微段的变形,这种假定是不难作出的。

1-7 应力、应变及其相互关系

1-7-1 应力-分布内力集度

分布内力在一点的集度,称为应力(stresses )。作用线垂直于截面的应力称为正应力(normal stress ),用希腊字母σ 表示;作用线位于截面内的应力称为切应力或剪应力

(shrearing stress),用希腊字母τ表示。应力的单位记号为Pa 或MPa ,工程上多用MPa 。

一般情形下的横截面上的附加分布内力,总可以分解为两种:作用线垂直于截面的;作用线位于横截面内的。图1-12中所示为作用在微元面积ΔA 上的总内力ΔF R 及其分量,其中ΔF N 和ΔF Q 的作用线分别垂直和作用于横截面内。于是上述正应力和剪应力的定义可以表示为下列极限表达式:

N Δ0Δlim ΔA F σA

→=, (1-1) Q

Δ0Δlim ΔA F τA →= (1-2)

需要指出的是,上述极限表达式的引入只是为了说明应力的一点概念,二者在应力计算中没有实际意义。

1-7-2 应力与内力分量之间的关系

截面上应力与其作用的微面积乘积,称为应力作用点的内力。通过积分可以建立微内力与内力分量之间的关系。例如,正应力与其作用的微面积乘积的积分组成横截面上沿杆件轴线方向合力:

图1-12 作用在微元面积上的内力及其分量

x A F A N d =∫σ

其中d A 为微面积;A 为横截面面积;A d σ为微面积上的内力。应力与其作用的微面积乘积,再通过积分,还可以合成横截面上其他方向上的合力与合力偶,这些内容将在以后相关章节中介绍。

1-7-3 应变-各点变形程度的度量

如果将弹性体看作由许多微单元体(简称微元体或微元)所组成,弹性体整体的变形则是所有微元体变形累加的结果。而单元体的变形则与作用在其上的应力有关。

围绕受力弹性体中的任意点截取微元体(通常为正六面体),一般情形下微元体的各个面上均有应力作用。下面考察两种最简单的情形,分别如图1-13a 、b 所示。

图1-13 正应变与切应力

对于正应力作用下的微元体(图1-13a ),沿着正应力方向和垂直于正应力方向将产生伸长和缩短,这种变形称为线变形。描写弹性体在各点处线变形程度的量,称为正应变或线应变(normal strain ),用εx 表示。根据微元体变形前、后x 方向长度d x 的相对改变量,有

x

u x d d =ε (1-3) 式中d x 为变形前微元体在正应力作用方向的长度;d u 为微元体变形后相距d x 的两截面沿正应力方向的相对位移;εx 的下标x 表示应变方向。

切应力作用下的微元体将发生剪切变形,剪切变形程度用微元体直角的改变量度量。微元直角改变量称为切应变或剪应变(shearing strain ),用γ表示。在图1—13b 中,βαγ+=。γ 的单位为rad 。

关于正应力和正应变的正负号,一般约定:拉应变为正;压应变为负。产生拉应变的应力(拉应力)为正;产生压应变的应力(压应力)为负。关于切应力和切应变的正负号将在以后介绍。

1-7-4 应力与应变之间的物性关系

对于工程中常用材料,实验结果表明:若在弹性范围内加载(应力小于某一极限值),对于只承受单方向正应力或承受切应力的微元体,正应力与正应变以及切应力与切应变之间存在着线性关系:

E E x x x

x σεεσ=或= (1-4) G

G x x x x τγγτ=或= (1-5)

上述二式统称为胡克定律(Hooke law )。式中,E 和G 为与材料有关的弹性常数:E 称为弹

性模量(modulus of elasticity )

或杨氏模量(Young modulus ); G 称为切变模量(shear modulus )式(1-4)和(1-5)即为描述线弹性材料物性关系的方程。所谓线弹性材料是指弹性范围内加载时应力一应变满足线性关系的材料。

1-8 结论与讨论

1-8-1刚体模型与弹性体模型

所有工程结构的构件,实际上都是可变形的弹性体,当变形很小时,变形对物体运动效应的影响甚小,因而在研究运动和平衡问题时一般可将变形略去,从而将弹性体抽象为刚体。从这一意义讲,刚体和弹性体都是工程构件在确定条件下的简化力学模型。 1-8-2弹性体受力与变形特点

弹性体在载荷作用下,将产生连续分布的内力。弹性体内力应满足:与外力的平衡关系;弹性体自身变形协调关系;力与变形之间的物性关系。这是材料力学与理论力学的重要区别。

1-8-3刚体静力学概念与原理在材料力学中的应用

工程中绝大多数构件受力后所产生的变形相对于构件的尺寸都是很小的,这种变形通常称为“小变形”。在小变形条件下,刚体静力学中关于平衡的理论和方法能否应用于材料力学,下列问题的讨论对于回答这一问题是有益的:

(1) 若将作用在弹性杆上的力(图1—14a ),沿其作用线方向移动(图1-14b )。

(2) 若将作用在弹性杆上的力(图1-15a ),向另一点平移(图1-15b )。

请读者分析:上述两种情形下对弹性杆的平衡和变形将会产生什么影响?

图1-14 力沿作用线移动的结果

图1-15 力沿作用线向一点平移的结果

材料力学研究课题

剪线钳力学分析 12级机械电子一班 叶兴状 3126113024 我做的研究课题是剪线钳使用及其断裂失效原因分析,由于时间紧、期末忙于复习考试难免会有错误,希望老师加以批评指正、不吝赐教。 我们家里都有用过剪线钳这一普通工具,剪线钳用于各种操作,通常用来剪尺寸正常的铜线、铁线等。下图是我找到的一把普通剪线钳,目视检查后,分三步进行分析 并预测其失效的原因。首先进行应 力计算,事先准备一根10TW(直径 0.259cm)的铜线,通过去图书馆查 阅资料知道剪断这种型号的铜线 需要D 的力为F=436N,而且我在 实验过程中发现剪线钳只发生弹 性弯曲,连续完成三个实验后,剪线 钳没有明显的损伤。剪线钳是由Q255钢制成的,施加在剪线钳上的最大外层应力可以用简支梁的计算公式计算: I M y =σ 简单粗略计算得:式中 M ——为力矩=6.4cm*438N y ——为0.34cm I ——为惯性矩=0.0112 cm 4 所以 =σ 8.4*104 Pa

查阅资料得:该型号剪线钳抗拉压强度[σ]=1.24*108Pa 将剪线钳的一边看成外伸梁,如图 d1=14cm d2=3cm F1=436N F2=-F1=-436N 直径d=1.2cm 查表知:E=45GPa 则M A =F1*d1+F2*d2=46.51N/m 抗弯截面系数W=d/2I 其中I=64 d *d *d *d π则W=32 d *d *d π=1.8*10-7cm 3 横截面积A=4d *d π=1.13*10-4 压应力=σA F 1=3.9*106Pa 由M MAX =Fd1 强度条件为 M MAX <=W[σ] 联立解得F<=1.6KN 所以根据上述计算可知,只要施加在剪线钳上的最大压紧力不超过 1.6KN ,该剪线钳就不会损坏,所以平时要注意,这样就可以保护好剪线钳。

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

工程材料力学性能 东北大学

课后答案 第一章 一、解释下列名词 材料单向静拉伸载荷下的力学性能 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。包辛格效应可以用位错理论解释。 第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。 其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。可以从河流花样的反“河流”方向去寻找裂纹源。解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。) 2.2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学·随堂练习2020秋华南理工大学网络教育答案

材料力学(C)应力的单位是

6.(单选题) 图示桁架中4杆的内力为()。 (A)0 (B)-2F (压)(C)-F(压)(D)F(拉)答题: A. B. C. D. (已提交) 参考答案:D 问题解析:

(A)25(B)15(C)5(D)45 8.(单选题) 梁AB受力如图所示,截面1-1剪力和弯矩分别为()。 答题: A. B. C. D. (已提交) 参考答案:A 问题解析:

10.(单选题) 图示杆件横截面上的内力为()。 答题: A. B. C. D. (已提交) 参考答案:A 问题解析: 11.(单选题) 已知变截面圆杆受力如图所示, , ,正确的说法是()。

12.(单选题) 边长为100mm的正方形杆件受力如图示,正确的是()。 (A)最大轴力数值为180kN,最大压应力为 (B)最大轴力数值为300kN,最大压应力为 (C)最大轴力数值为180kN,最大压应力为 (D)最大轴力数值为300kN,最大压应力为 答题: A. B. C. D. (已提交) 参考答案:B 问题解析: 13.(单选题) 变截面直杆如图所示。已知。关于杆

(A)AB段的变形量为,AC段的变形量为 (B)AB段的变形量为,AC段的变形量为 (C)BC段的变形量为,AC段的变形量为 (D)BC段的变形量为,AC段的变形量为 14.(单选题) 图示杆系结构中,杆1、2为木制,两杆横截面积相等;杆3、4为钢制,两杆横截面积相等。按强度条件计算,正确的说法是()。 (A)杆2比杆1危险,杆3比杆4危险 (B)杆2比杆1危险,杆4比杆3危险 (C)杆1比杆2危险,杆3比杆4危险 (D)杆1比杆2危险,杆4比杆3危险 答题: A. B. C. D. (已提交) 参考答案:C 问题解析:

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

材料力学性能-考前复习总结(前三章)

金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。 材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR 材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性 第一章单向静拉伸力学性能 应力和应变:条件应力条件应变 = 真应力真应变 应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。其中必有一主平面,切应力为零,只有主应力,且 ,满足胡克定律。 应力软性系数:最大切应力与最大正应力的相对大小。 1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。ae=1/2σeεe=σe2/2E。取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。需通过合金强化及组织控制提高弹性极限。 2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。 ①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。金属中点缺陷的移动,长时间回火消除。 弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。吸收变形功 循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。 ②包申格效应: 定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。(反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了) 解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。卸载后同向拉伸,位错线不能显著运动。但反向载荷使得位错做反向运动,阻碍

材料力学科技实践题目

序 材料力学科技实践活动的目的在于对材料力学的教学模式进行改革,目标是把学生被动的学习变为主动学习,给学生留出充分的创造性思维空间,锻炼学生动手能力,训练学生科学的观察、思考及总结的方法,并从中学到课本以外的知识,提高学生的综合素质。 具体方式: 首先,在传统的授课计划内抽出一定学时,在大学二年级学生可以按时完成工作的前提下,以科研工作的形式要求同学分组选定研究题目。课题的内容覆盖材料力学基本知识点,使用钢铁、有机玻璃、黄铜、铝合金、PVC、塑料、复合材料、混凝土等材料来完成剪切、挤压、拉伸、压缩、弯曲、扭转、结构失稳、冲击和应力腐蚀等项实验。由于这些材料的机械性质各有差异(有些是目前工程上越来越多使用的新材料),力学响应的规律也不同。目前使用的大部分材力教材没有详细介绍,课堂上也不讲实验中的现象,学生不知道实验的结果。学生在教师的指导下自主选择实验方案,设计实验步骤和数值计算模型。在研究过程中观察各种现象、采集处理实验数据。根据在课堂教学中所学的知识点,学生通过文献检索对研究内容有基本认识。在实验室里,由老师监督安全,可以较好完成实践动手的环节。 其次,为进行数值计算,预先给同学补充有限元的基本概念与使用方法。要求结合有限元软件的教学穿插介绍相关的力学知识和基本理论, 但讲解以形象化、结论化为主, 舍弃大的理论推导过程。结合实际工程间题, 提出计算分析的一般步骤,建立合理的计算模型, 实现有效的有限元模拟。在使用有限元程序时,要求学生熟练掌握软件系统的有关操作内容,如图形界面、操作过程、功能块等。学生自主完成数值模拟工作,最后写出研究报告。 研究报告内容渋及文献综述、方案描述、制备试样、试验方法和数据采集分析和数值模拟结果讨论等内容。最后,以科技报告答辩会的形式完成。在研究报告撰写中,即有写作格式要求,也给学生留下思考的空间。学生通过分工查找资料,对实验现象和计算结果做出比较合理的解释。 Odeh Engineers, a local company led by David Odeh'93 has a number of projects. 1、One involves the Tabernacle, a historic structure on Marth's Vineyard. They are involved in rehabilitating the structure, and need a nonlinear stress analysis for wind loading. The structure consists of various wrought-iron (or possibly a mix of wrought iron and cast iron) steel arches (similar to the Eiffel tower on a much smaller scale). They are getting some material samples tested over the next couple of weeks. Building plans would be used to model some of the structural elements to try to establish an ultimate strength interaction surface (P-M diagram) using the tensile test results.

材料力学课程设计

材料力学课程设计指导书 聂毓琴修订 吉林大学 2005年6月

前言 材料力学是工科院校一门重要的学科基础课,高等学校中使用的各种材料力学教材,往往将杆件的变形分成几种基本形式。并针对这几种基本变形形式在各自的范围内分别独立地给予解答。我们在教学中体会到这种做法的优越性。但同时也感到这种孤立地研究某一问题的方式也有其自身的弱点。其中最为突出的,就是学生很难从整体上把握材料力学的全貌,更难于利用材料力学的知识去解决工程实际问题。为此,我们试图针对学生的专业特点和不同专业的要求,从强度、刚度、稳定性的观点出发,在工程实际中选取一些较为复杂的构件,要求学生从全面的、整体的角度予以解答,这样就既可以深化课堂上的知识,使知识系统话,同时也培养了学生解决实际问题的能力,既把所学过的基础课(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)系统应用。又为后继课程的学习打下基础,使各教学环节和教学内容有机地联系起来。对学生来说,通过材料力学课程设计可初步了解工程中的设计思想和设计方法,也激发了学习积极性和创造精神。对教师来说,在拓宽知识面,改进教学方法、教学态度,提高教学水平上都有一定的益处。在总体上可以使教学质量有所提高。作为教学改革的内容之一,我们的工作还只是探索性。我们的目的不仅于课程设计本身,更着眼于材料力学课程本身的建设和改革。 材料力学课程设计这一崭新的教学环节是我校于1987年率先开始试点,并在以后的几年中进行了集中安排一周另四天分散和分散五周安排等方式的实践,取得了宝贵的经验,并在全校产品类专业中逐步推广成为材料力学课程建设的主要内容之一。材料力学课程设计做为教改研究项目已于1991年4月通过校级鉴定。得到校内、外专家的充分肯定与赞扬,1993年3月,获校优秀教学成果奖;也得到国家教委理工科院校材料力学课程指导小组组长、副组长的高度评价。并于1993年5月获吉林省优秀教学成果一等奖。“材料力学课程设计”作为附加项目及创新点,使材料力学课程的教学改革与实践在2001年获吉林大学教学成果二等奖;以此为特色,2002年材料力学课程被评为吉林大学精品课程;材料力学课程的教学改革与创新于2005年获吉林大学教学成果一等奖;获吉林省教学成果二等奖。 本次修订引入了部分工程实际构件的零件图,抽象的力学简图全部由CAD绘制,采用了最新国家标准规定的物理量的名称和符号,常用金属材料的牌号也采用了最新标准。 本书的前期工作有初日德、聂毓琴、刘寒冰、魏媛、卢衍榕、郭学东等老师参加,特别是已退休的初日德及卢衍榕教授对“材料力学课程设计”这一教改课题做了大量的工作,对此表示忠心感谢。 修订者:聂毓琴 2005年6月

材料力学总结Ⅱ(乱序,建议最后阶段复习)

材料力学阶段总结 一.材料力学的一些基本概念 1. 材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系,内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、 作用方向、和符号规定。 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E ——I 巴 EA 剪切虎克定律:两线段 夹角的变化。 Gr 适用条件:应力?应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压): 一张C - &图,两个塑性指标3、书,三个应力特征点: p 、 s 、 b ,四个 变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G,泊松比v , G E 2(1 V ) 正应力 压应力 拉应力 应变:反映杆件的变形程度 线应变 角应变

6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。 过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 脆性材料 7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理 论,预测理论应用的 未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。 8. 材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面 上正应力为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维; 正应力 成线性分布规律。 9小变形和叠加原理 小变形: ① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力, 集中力偶,极限荷载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 塑性材料 n s n b

材料力学性能期末考试[1]

第一章 1,静载荷下材料的力学性能包括材料的拉伸、压缩、扭转、弯曲及硬度等性能。2,在弹性变形阶段,大多数金属的应力与应变之间符合胡克定律的正比例关系,其比例系数称为弹性模量。 3,弹性比功为应力-应变曲线下弹性范围内所吸收的变形功。 4,金属材料经过预先加载产生少量塑性变形(残余应变小余1%~4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包辛格效应。 包辛格效应消除方法:(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶 温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。 5,屈服标准: (1),比利极限:应力-应变曲线上符合线性关系的最高应力。 (2),弹性极限:试样加载后再卸载,以不出现残留的永久变形为准则,材料能够完全弹性恢复的最高应力。 (3),屈服强度:以规定发生一定的残余变形为标准。 6,影响材料强度的内在因素有:结合键、组织、结构、原子本性。 影响材料强度的外在因素有:温度、应变速度、应力状态。 7,影响金属材料的屈服强度的四种强化机制: ①固溶强化;②形变强化;③沉淀强化和弥散强化;④晶界和亚晶强化。8,加工硬化的作用: (1) 加工硬化可使金属机件具有一定的抗偶然过载能力,保证机件安全。 (2) 加工硬化和塑性变形适当配合可使金属均匀塑性变形,保证冷变形工艺顺利实施。(如果没有加工硬化能力,任何冷加工成型的工艺都是无法进行。)(3) 可降低塑性,改善低碳钢的切削加工性能。 9,应力状态软性系数α: α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。 10,冲击弯曲试验的作用:主要测定脆性或低塑性材料的抗弯强度。 第二章 1,由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将会发生变化,产生所谓的“缺口效应”。 2,冲击韧性的定义是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用标准试样的冲击吸收功A k表示。 3,细化晶粒提高韧性的原因: (1) 晶界是裂纹扩展的阻力; (2) 晶界前塞积的位错数减少,有利于降低应力集中; (3) 晶界总面积增加,使晶界上杂质浓度减小,避免了产生沿晶脆性断裂。 4,断裂机理由微孔聚集型变为穿晶解理,断口特征由纤维状变为结晶状,这就是低温脆性。 5,韧脆转变温度:

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

材料力学性能期末考试

一、名词解释 包辛格效应、疲劳门槛值、应力腐蚀门槛值、平面应力状态、平面应变状态、蠕变极限、低周疲劳、高周疲劳、滞弹性、弹性比功、冲击韧性、断裂韧性、氢脆、应力腐蚀、粘着磨损、磨粒磨损、微动磨损、蠕变、持久强度、应力松弛、腐蚀疲劳、加工硬化指数 二、指出下列力学性能指标的名称,物理意义及单位 A K 、K 1、K IC 、K 1SCC 、c a 、E 、σf 、σb 、σ 0.2、σys 、σP 、δ、σ-1、th K ?、C 650103σ、ε、?、H B 、HRC 、H V 、G 、G IC 、 三、填空题 1、低碳钢拉伸试验的过程可以分为 、 和 三个阶段。 2、材料常规力学性能的五大指标为: 、 、 、 。 3、陶瓷材料增韧的主要途径有 、 、 、 显微结构增韧以及复合增韧六种。 4、常用测定硬度的方法有 、 和 测试法。 1、聚合物的弹性模量对 非常敏感,它的粘弹性表现为滞后环、 和 ,这种现象与温度、时间密切有关。 2、影响屈服强度的内在因素有: 、 、 、 ;外在因素有: 、 、 。 3、缺口对材料的力学性能的影响归结为四个方面: 、 、 、 。 4、材料或零件在 和腐蚀介质的共同作用下造成的失效叫腐蚀疲劳。 四、请说明下面公式各符号的名称以及其物理意义 c IC c a Y K /=σ、、n SS A σε= 、n K S ε=、 m K c dN da )(?= 五、简答题 1. 金属疲劳破坏的特点是什么?典型疲劳断口具有什么特征?提高疲劳强度的途径有哪些? 2. 和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?造成这种差别的原因何在? 3. 提高金属材料的屈服强度有哪些方法?试用已学过的专业知识就每种方法各举一例。 4. 缺口对材料的性能有哪些影响?为什么缺口冲击韧性被列为材料常规性能的五大指标之一?它和断裂韧性有何关系? 5. 为什么通常体心立方金属显示低温脆性,而面心立方金属一般没有低温脆性? 6. 提高零件的疲劳寿命有哪些方法? 试就每种方法各举一应用实例,并对这种方法具体分析,其在抑制疲劳裂纹的萌生中起有益作用,还是在阻碍疲劳裂纹扩展中有良好的效果? 7. 为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上各有什么实际意义? 8. 缺口冲击韧性为什么被列为材料常规性能的五大指标之一,怎样正确理解冲击韧性的功能:(a)它是

材料力学1

第1讲教学方案 ——绪论

材料力学 材料力学是应用力学的一个分支,是一门技术基础课,是以数学、物理、理论力学为基础 的课,又是某些课的基础,如机械零件、结构力学、机床设计——主要研究构件在外力作用下 的应力和变形。 第一章绪论 §1-1材料力学的基本任务 一、材料力学的任务: 任何机械,各种结构物,在正常工作状态下组成它们的每一个构件都要受到从相邻件或从其它构件传递来的外力——载荷的作用。 例如,车床主轴,切削力,齿轮啮合力 材料力学是一门研究各种构件抗力性能:承载能力的一门科学 1.几个术语 构件与杆件:组成机械的零部件或工程结构中的构件统称为构件。如图1-1a所示桥式起 重机的主梁、吊钩、钢丝绳;图1-2所示悬臂吊车架的横梁AB,斜杆CD都是构件。 实际构件有各种不同的形状,所以根据形状的不同将构件分为:杆件、板和壳、块体。 杆件:长度远大于横向尺寸的构件,其几何要素是横截面和轴线,如图1-3a所示,其中横截面是与轴线垂直的截面;轴线是横截面形心的连线。 按横截面和轴线两个因素可将杆件分为:等截面直杆,如图1-3a、b;变截面直杆,如图1-3c;等截面曲杆和变截面曲杆如图1-3b。 板和壳:构件一个方向的尺寸(厚度)远小于其它两个方向的尺寸,如图1-4a和b所示。

块体:三个方向(长、宽、高)的尺寸相差不多的构件,如图1-4c 所示。 在本教程中,如未作说明,构件即认为是指杆件。 ·变形与小变形:在载荷作用下,构件的形状及尺寸发生变化称为变形,如图1-2所示悬臂吊车架的横梁AB,受力后将由原来的位置弯曲到AB′位置,即产生了变形。 小变形:绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时,通常不考虑变形的影响,而仍可以用变形前的尺寸,此即所谓“原始尺寸原理”。如图1-1a所示桥式起重机主架,变形后简图如图1-1b所示,截面最大垂直位移f一般仅为跨度l的l/1500~1/700,B支撑的水平位移Δ则更微小,在求解支承反力R A、R B时,不考虑这些微小变形的影响。 2.对构件的三项基本要求 强度:构件在外载作用下,具有足够的抵抗断裂破坏的能力。例如储气罐不应爆破;机器中的齿轮轴不应断裂等。 刚度:构件在外载作用下,具有足够的抵抗变形的能力。如机床主轴不应变形过大,否则影响加工精度。

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

相关文档
最新文档