2020年经典求极限方法

2020年经典求极限方法
2020年经典求极限方法

作者:旧在几

作品编号:2254487796631145587263GF24000022 时间:2020.12.13

求极限的各种方法

1.约去零因子求极限

例1:求极限1

1

lim 41--→x x x

【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1

)

1)(1)(1(lim

2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限

例2:求极限1

3lim 32

3+-∞→x x x x

【说明】

型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3

11323=

+-=+-∞→∞→x x

x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ????

???

=<∞>=++++++----∞→n

m b a n m n m b x b x b a x a x a n n

m m m m n n n n x 0lim 01101

1 3.分子(母)有理化求极限

例3:求极限)13(lim 22+-++∞

→x x x

【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1

3)

13)(13(lim

)13(lim 2

2

22222

2

+++++++-+=+-++∞

→+∞

→x x x x x x x x x x

01

32lim

2

2

=+++=+∞

→x x x

例4:求极限3

sin 1tan 1lim

x

x

x x +-+→ 【解】x

x x x

x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim

3030

+-+-=+-+→→ 41

sin tan lim 21sin tan lim

sin 1tan 11

lim

30300

=-=-+++=→→→x x x x x x x

x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键

4.应用两个重要极限求极限

两个重要极限是1sin lim 0=→x

x

x 和e x n x x x n n x x =+=+=+→∞→∞→1

0)1(lim )11(lim )11(lim ,第

一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。

例5:求极限x

x x x ??

?

??-++∞→11lim

【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X

1

+,最后凑指数部分。

【解】22

212

12112111lim 121lim 11lim e x x x x x x x x

x x x =????

????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =???

??-++∞→x

x a x a x ,求a 。

5.用等价无穷小量代换求极限 【说明】

(1)常见等价无穷小有:

当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x

-,

()abx ax x x b

~11,2

1~

cos 12-+-;

(2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....

。 例7:求极限0ln(1)

lim

1cos x x x x →+=-

【解】 002

ln(1)lim lim 211cos 2

x x x x x x

x x →→+?==-.

例8:求极限x

x

x x 30tan sin lim -→

【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 22

2102030-=-==-=-=→→→x

x x x x x x x x x 6.用罗必塔法则求极限

例9:求极限2

20)

sin 1ln(2cos ln lim x x x x +-→

【说明】

∞∞或0

型的极限,可通过罗必塔法则来求。 【解】220)sin 1ln(2cos ln lim x x x x +-→x x x

x x x 2sin 12sin 2cos 2sin 2lim

20+--=→ 3sin 11

2cos 222sin lim

2

0-=??

?

??+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解

例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim

??--→x x

x dt

t x f x dt

t f t x

【解】 由于

?

??

=-=

-=-0

)())(()(x

x

x

u t x du u f du u f dt t x f ,于是

?????-=--→→x

x

x

x x x

x du

u f x dt

t tf dt t f x dt

t x f x dt

t f t x 00

)()()(lim

)()()(lim

=?

?+-+→x

x

x x xf du u f x xf x xf dt t f 0

)

()()

()()(lim

=?

?+→x x

x x xf du u f dt

t f 0

)

()()(lim

=)

()()(lim

x f x du

u f x dt

t f x

x

x +?

?

→=

.2

1

)0()0()0(=+f f f

7.用对数恒等式求)()(lim x g x f 极限

例11:极限x

x x 20

)]1ln(1[lim ++→

【解】 x

x x 20

)]1ln(1[lim ++→=)]1ln(1ln[2

lim x x

x e

++→=.2)

1ln(2lim

)]1ln(1ln[2lim

00e e

e x x x x x x ==+++→→

【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式

)()(lim x g x f )1(∞=)()1)(lim(x g x f e -

因为

===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -

例12:求极限3

01

2cos lim 13x x x x

→??+??-?? ???????

.

【解1】 原式2cos ln 33

1lim

x x x e

x +??

???

→-=202cos ln 3lim x x x

→+?? ???= 20ln 2cos ln 3lim x x x →+-=()01

sin 2cos lim 2x x x x →?-+=()

011sin 1

lim 22cos 6

x x x x →=-?=-+

【解2】 原式2cos ln 33

1lim

x x x e

x +??

???

→-=2

02cos ln 3lim x x x →+?? ???= 20

cos 1

ln 3lim

x x x

→-+

=(1)

20cos 11lim 36x x x →-==- 8.利用Taylor 公式求极限

例13 求极限 ) 0 ( ,2

lim

2

0>-+-→a x a a x x x . 【解】 ) (ln 2

ln 122

2ln x a x a x e

a a

x x +++==,

) (ln 2

ln 122

2x a x a x a

x

++-=-;

). (ln 2222x a x a a x x +=-+-

∴ a x

x a x x a a x x x x 22222020ln )

(ln lim 2lim =+=-+→-→ . 例14 求极限011

lim (cot )x x x x

→-. 【解】 0

0111sin cos lim (cot )lim sin x x x x x x x x x x x

→→--= 323

230()[1()]3!2!lim x x x x x x x x

οο→-+--+= 3

33011(

)()

1

2!3!lim 3x x x x ο→-+==.

9.数列极限转化成函数极限求解

例15:极限2

1sin lim n n n n ??? ?

?

∞→

【说明】这是∞1形式的的数列极限,由于数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。

【解】考虑辅助极限6

1

1sin 1

10

11sin 222

lim lim 1sin lim -

???

? ??-→?

?? ?

?

-+∞

→+∞→===?

?? ?

?

+e e

e

x x y y y y x x x x x x

所以,6

1

2

1sin lim -

∞→=?

?? ?

?

e n n n n

10.n 项和数列极限问题

n 项和数列极限问题极限问题有两种处理方法 (1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.

例16:极限???

?

??++++++∞→2222221

211

1lim n n n n n 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。

?=????

????? ??++??? ??+??

? ??∞→10)(211lim dx x f n n f n f n f n n 【解】原式=??????

?

?

?

???

??++

+??? ??++?

?? ??+∞→22211

2111111lim n n n n n n 121

2ln

2111

10

2+--=+=?

dx x

例17:极限???

?

??++++++∞→n n n n n 2221

211

1lim 【说明】(1)该题遇上一题类似,但是不能凑成???

? ????? ??++???

??+???

??∞→n n f n f n f n n 211lim

的形式,因而用两边夹法则求解;

(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。

【解】???

?

??++++++∞→n n n n n 2221

211

1lim

因为

1

1211

12

2

2

2

2

+≤

++

+++

+≤+n n n

n n n n

n n

又 n

n n

n +∞

→2

lim

11

lim

2

=+=∞

→n n n

所以 ???

?

??++++++∞→n n n n n 2221

2111lim =1 12.单调有界数列的极限问题

例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==

(Ⅰ)证明lim n n x →∞

存在,并求该极限;

(Ⅱ)计算2

1

1lim n x n n n x x +→∞

?? ???

. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.

作者:旧在几

作品编号:2254487796631145587263GF24000022 时间:2020.12.13

【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.

于是

1sin 1n n

n n

x x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞

存在.

设lim n n x l →∞

=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞

=.

(Ⅱ) 因 22

11

1sin lim lim n

n x x n n n n n n x x x x +→∞

→∞

??

??= ?

???

??

,由(Ⅰ)知该极限为1∞

型, 6

1

sin 0

1sin 11003

2

22

1lim lim sin 1lim -

-→??

? ??-→→===??

? ??+++e e

e x x x

x x x x x x x x

x (使用了罗必塔法则)

22

11

1

16

sin

lim lim e

n n

x x

n n

n n

n n

x x

x x

-

+

→∞→∞

????

== ? ?

????

.

作者:旧在几

作品编号:2254487796631145587263GF24000022 时间:2020.12.13

高数中求极限的16种方法

高数中求极限的16种方法——好东西 首先对极限的总结如下: 极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致 一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种) 二、求极限的方法如下: 1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2.罗比达法则(大题目有时候会有暗示,要你使用这个方法) 首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0 注意:罗比达法则分为3种情况 0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0) 3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!) E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助 4.面对无穷大比上无穷大形式的解决办法 取大头原则,最大项除分子分母!!!!!!!!!!! 5.无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。 面对非常复杂的函数可能只需要知道它的范围结果就出来了!!! 6.夹逼定理(主要对付数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7.等比等差数列公式应用(对付数列极限,q绝对值符号要小于1) 8.各项的拆分相加(来消掉中间的大多数,对付的还是数列极限) 可以使用待定系数法来拆分化简函数 9.求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn 的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10.两个重要极限的应用。第一个是X趋近0时候的sinx与x比值。第二个是趋近无穷大无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用第2 个重要极限) 11.还有个方法,非常方便的方法,就是当趋近于无穷大,不同函数趋近于无穷的

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4)

五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要

引言: 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。 数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在 0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。 一.利用导数定义求极限 据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?, 则)()(00x f x x f y -?+=? 如果x x f x x f x x ?-?+=→?→? ) ()(lim lim 000 0存在,则此极限值就 称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?) ()(lim )('0000在这 种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。 例1:求a x x a a x x a a a a x --→lim 解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a a x x a a a a x a a a a a x x a x x ,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a a a y y a ln |)'(0=?== 一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

几道经典极限问题

1、设0,01>>a x ,)(211n n n x a x x +=+,证明:}{n x 收敛并求其极限。 证明:显然0>n x ,又a x a x x n n n ≥+= +)(211(中学中不等式) 又1)1(2121≤+=+n n n x a x x ,所以}{n x 单调减少,有下界,故}{n x 收敛,令A x n n =∞→lim ,由 )(21A a A A +=,则a A =。 2、求20cos 2cos cos 1lim x nx x x n x -→。 解答: +-+-=-→→→2 020202cos cos cos lim cos 1lim cos 2cos cos 1lim x x x x x x x nx x x x x n x 2 10cos 2cos cos )1cos(2cos cos lim x nx x x x n x x n n x --+-→,而21cos 1lim 20=-→x x x , 2020202cos 1lim 2cos 1cos lim 2cos cos cos lim x x x x x x x x x x x x -=-=-→→→, 因为22~cos 1x a x a -,所以22)2(41~2cos 1x x x =-,于是12cos 1lim 2 0=-→x x x , 同理 ,233cos 2cos cos 2cos cos lim 230=-→x x x x x x x , 2cos 2cos cos )1cos(2cos cos lim 2 10n x nx x x x n x x n n x =---→ , 所以原式4 )1(22221+=+++= n n n 。 3、设0,0>>b a ,求][lim 0x b a x x ?+→。 解答:令θ+=n x b ,其中10<<θ,当+→0x 时,+∞→n ,则θ+=n b x , 于是a b n n a b x b a x n x =?+=?∞→+→)(lim ][lim 0θ。 4、⑴证明:当x 充分小时,不等式422tan 0x x x ≤-≤成立。

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

大学数学经典极限方法(最全)

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞ →x x a x a x ,求a 。

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

经典求极限解题方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ

3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第 一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】2 2 2 12 1 2112111lim 121lim 11lim e x x x x x x x x x x x =???? ????? ???? ? ?-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

浅谈求极限的方法与技巧

目录 中文摘要 (2) 外文摘要 (3) 引言 (4) 1.求极限的相关技巧与方法 (4) 1.1 利用极限的四则运算法则求极限 (4) 1.2 利用函数的连续性求极限 (5) 1.3 利用无穷小的性质求极限 (6) 1.4 利用等价无穷小的代换求极限 (6) 1.5 利用两个重要极限求极限 (7) 1.6 利用两个极限存在准则求极限 (9) 1.7 利用L'Hospital法则求极限 (10) 1.8 利用泰勒展式求极限 (11) 1.9 利用积分求极限 (13) 1.10 利用Lagrange中值定理求极限 (14) 1.11 利用微分中值定理来求极限 (15) 1.12 用Stolz法求极限 (16) 1.13 用代数函数方法求极限 (17) 2.多种极限方法的综合运用 (19) 参考文献 (22) 致谢 (23)

浅谈求极限的方法与技巧 陶习满 指导老师:胡玲 (黄山学院数学系,黄山,安徽 245041) 摘要:极限的概念是高等数学中最重要、最基本的概念之一,它是研究分析方法的重要理论基础,但极限定义并未直接提供如何去求极限。然而求极限的方法很多,本文总结几种常用的求极限的方法。 关键词:极限;技巧;方法。

Of Getting The Methods And Techniques Limit Tao Ximan Director : Hu Ling (The mathematics department of huangshan university, Huangshan,Anhui,245041) Abstract:The concept of limit of higher mathematics is the most important and one of the most basic concepts,the definition does not tell us how to seek limits.There are a lot of methods to get limits, This paper summarizes several common ways to limit demand for reference. Key Words: Limit; skills; method.

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

浅谈极限的几种求法及注意事项

万方数据

万方数据

浅谈极限的几种求法及注意事项 作者:唐新华 作者单位:山东政法学院 刊名: 科学咨询 英文刊名:SCIENTIFIC CONSULT 年,卷(期):2009,(22) 引用次数:0次 相似文献(10条) 1.期刊论文许利极限--定积分--广义极限-呼伦贝尔学院学报2003,11(1) 本文以极限概念为基础,过渡到定积分概念,并通过对定积分和广义极限概念的剖析.加深了对极限概念的本质的更深层次的认识和理解. 2.期刊论文鲁翠仙.李天荣利用定积分求极限-科技信息(学术版)2008(26) 极限思想贯穿整个高等数学的课程之中,而给定函数极限的求法则成为极限思想的基础,但利用定积分求极限也是一种重要方法.定积分的本质含义是和式的极限,利用积分求解特定形式的极限问题,是微积分学的一个重要方法.本文结合具体的例子说明如何利用积分求解几种特定形式的极限以及求解方法的关键. 3.期刊论文兰光福.LAN Guang-fu利用定积分定义求和式极限的方法初探-重庆科技学院学报(自然科学版)2007,9(1) 和式项数多、抽象,求其极限较困难,举例利用定积分求和式极限,使问题简单化. 4.期刊论文李冠臻.吕志敏.LI Guan-zhen.LU Zhi-min极限、定积分、二重积分概念教法之探讨-天津职业院校联合学报2006,8(5) 在极限、定积分、二重积分的概念教学过程中,运用哲学思想、引用历史典故和逻辑思维及直观图像等方式方法,变抽象数学概念为学生易于接受的信息,使学生更容易掌握新概念、新理论. 5.期刊论文傅苇.FU Wei极限、导数、定积分概念所蕴涵的数学思想方法剖析-重庆科技学院学报(自然科学版)2005,7(4) 论述了加强数学思想方法教学的重要性;分析了高等数学中的极限、导数、定积分概念在形成过程中所蕴涵的数学思想方法;辩证剖析概念中各个变量在变化过程中的量变与质变、近似与精确等对立统一规律. 6.期刊论文张劲一些解决极限问题的方法-科技信息(学术版)2008(7) <高等数学>是高校教学中的一门重要课程,而极限可以说是<高等数学>的基础,它贯穿于<高等数学>整个课程的始终,很多重要的概念如导数.定积分都是由极限给出,笔者结合平时的教学经验,通过几个例子,对一些解决极限问题方法加以总结并给出自己的一些观点. 7.期刊论文王永安.WANG Yong-an广义积分:定积分在极限思想下的自然延伸-西安教育学院学报2004,19(3) 研究函数在某区间上的定积分时,总是假定区间为有限区间,并且函数为该区间上的有界函数.如果去掉这两个限制,则得到无穷区间上有界函数的广义积分与有限区间上无界函数的广义积分.一般对这两类广义积分概念的引入缺乏直观性. 8.期刊论文刘德厚定积分的概念刍议-科技信息(学术版)2008(21) 定积分是数学分析和高等数学研究的重要内容之一,定积分的定义中对被积函数要求的条件过高,适当降低条件也是可以的. 9.期刊论文桂林定积分概念教学初探-高等函授学报(自然科学版)2003,16(2) 人民教育出版社出版的新高中数学试验课本中新增了微积分初步知识,如何教好这部分内容是广大数学教师关注的焦点,其中一个极其重要的概念--定积分的概念教学引发了教师们的思考.本文主要针对定积分概念教学中的问题,从教学目标、教材分析和教学建议等几方面谈了自己的理解和看法. 10.期刊论文候治平定积分与极限运算交换问题-晋东南师范专科学校学报2001,18(3) 极限和定积分是高等数学中的两个非常重要的概念.定积分是源于极限与微分理论,通过对诸多实际问题(如平面上封闭曲线围成的面积、变力作功、变速直线运动的路程、水的压力、立体的体积等)的分析、研究而抽象出来的.经过对这些具体问题在特定区域上细化为若干子区域(分割),在每个子区域上,将"变"的问题转化为局部"不变"的问题(近似代替),然后经过对各个子区域相应问题求和,便得到所求问题的近似解,当每个子区域的长度充分小时,这个和式的极限值就是所求问题的解.这样定积分问题就转化为求具有某种特定结构形式和式的极限问题;同时某些具有特定结构的和式极限运算也可以借助定积分运算来解决. 本文链接:https://www.360docs.net/doc/ed11551581.html,/Periodical_kxzx200922078.aspx 下载时间:2010年1月16日

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

相关文档
最新文档