一阶线性方程与常数变易法习题及解答

一阶线性方程与常数变易法习题及解答
一阶线性方程与常数变易法习题及解答

§2.2 一阶线性方程与常数变易法习题及解答

求下列方程的解

1.dx

dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +)

=e x [-

2

1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt

dx +3x=e t 2 解:原方程可化为:

dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -?-dt 3c dt +)

=e t 3- (5

1e t 5+c) =c e t 3-+5

1e t 2 是原方程的解。 3.dt ds =-s t cos +2

1t 2sin 解:s=e ?-tdt cos (t 2sin 2

1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin )

= e t sin -(c e te t t +-sin sin sin )

=1sin sin -+-t ce t 是原方程的解。

4.

dx dy n x x e y n

x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n

n x dx x n

+??=?-

)(c e x x n += 是原方程的解.

5.dx dy +1212--y x

x =0

解:原方程可化为:dx dy =-1212+-y x

x ?=-dx x x e

y 212(c dx e dx x x +?-221) )21(ln 2+=x e )(1

ln 2?+--c dx e x x =)1(12x

ce x + 是原方程的解.

6. dx dy 234xy

x x += 解:dx dy 234xy x x += =23y

x +x y 令

x

y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2

u x 21u dx du = dx du u =2

c x u +=33

1 c x x u +=-33 (*)

将x

y u =带入 (*)中 得:3433cx x y =-是原方程的解.

3

3

3

2

()21()2

27.

(1)1

2(1)1

2(),()(1)1(1)(())

1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++??==+??++??P(x)dx 232解:方程的通解为:

y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+2

32

2

1

(1)()2

11,()(())

dy y x c dy y dx x y dx x y dy y y

Q y y y

e y Q y dy c -+++==+=??==??+??2

243P(y)dy P(y)dy P(y)dy 1)dx+c)

=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。

8. =x+y 解:则P(y)= e 方程的通解为:

x=e e 23

31*)2

2

y dy c y

y cy y ++? =y( =即 x= +cy是方程的通解 ,且y=0也是方程的解。

()()()19.

,1),()(())

01a

dx P x dx a x P x dx P x dx

a a dy ay x a dx x x

a x P x Q x x x e e x e e Q x dx c a a -+=++==??==??+==?为常数解:(方程的通解为: y=1x+1 =x (dx+c) x x

当 时,方程的通解为 y=x+ln/x/+c

当 时,方程01a a a

≠a 的通解为

y=cx+xln/x/-1

当 ,时,方程的通解为

x 1 y=cx +- 1-

3

3

3

1()()()310.11(),()1(())

(*)dx P x dx x P x dx P x dx dy x y x dx

dy y x dx x

P x Q x x x

e e x

e e Q x dx c x x dx c c x

c x --+==-+=-=??==??++++??33解:方程的通解为:

y=1 =x

x =4x 方程的通解为: y=4

()()()2

233

33

23

323233

2311.2()2()()2,()2(())((2)p x xdx x p x p x x dy xy x y dx

xy x y dx

xy x y dx

xy x dx

y z

dz xz x dx

P x x Q x x e dx e e e dx e dxQ x dx c e x -----+==-+=-+=--+==--+==-??==?

?+-??23

-2

x dy 解:两边除以y dy dy 令方程的通解为:

z= =e 222)

1

1)1,0x x dx c ce y ce y +++++==22 =x 故方程的通解为:(x 且也是方程的解。

222

1

211

1()()222ln 112.(ln 2)424

ln 2ln 2ln 22ln 2ln (),()(())

ln 1(())(P x dx P x dx dx dx x x c x y x ydx xdy x dy x y y dx x x

y dy x y y dx x x

dy x y dx x x

y z

dz x z dx x x

x P x Q x x x

z e e Q x dx c x z e e dx c x x -------=++=-=-=-==-==-??=+??=-+=??解: 两边除以 令方程的通解为:

222ln ())ln 1424

ln 1:()1,424

x dx c x x c x x c x y x -+=++++=?方程的通解为且y=0也是解。 13

222(2)2122xydy y x dx

dy y x y dx xy x y

=--==- 这是n=-1时的伯努利方程。 两边同除以1y

, 212

dy y y dx x =- 令2y z = 2dz dy y dx dx

= 22211dz y z dx x x

=-=-

P(x)=2x

Q(x)=-1 由一阶线性方程的求解公式

22

()dx dx x x z e e dx c -??=-+? =2x x c +

22y x x c =+

14 23y dy e x dx x

+= 两边同乘以y e 22()3y y

y

dy e xe e dx x += 令y e z = y

dz dy e dx dx

= 22

2233dz z xz z z dx x x x

+==+ 这是n=2时的伯努利方程。 两边同除以2z

22131dz z dx xz x =+ 令1T z

= 21dT dz dx z dx =- 231dT T dx x x

-=+ P (x )=3x - Q(x)=21x - 由一阶线性方程的求解公式

3321()dx dx x x T e e dx c x

--??=+? =321()2

x x c --+ =1312

x cx ---+ 131()12

z x cx ---+= 131()12

y e x cx ---+= 2312

y y x e ce x -+= 2312

y x x e c -+=

15 33

1dy dx xy x y =+

33dx yx y x dy =+ 这是n=3时的伯努利方程。

两边同除以3x 3321dx y y x dy x

=+ 令2x z -= 32dz dx x dy dy

-=- 3222dz y y dy x

=--=322yz y -- P(y)=-2y Q(y)=32y - 由一阶线性方程的求解公式

223(2)ydy ydy z e y e dy c ---??=-+?

=2

23(2)y y e y e dy c --+?

=221y y ce --++ 222(1)1y x y ce --++=

22222(1)y y y x e y ce e --++=

2

2222(1)y e x x y cx -+=

16 y=x e +0()x y t dt ? ()x dy e y x dx

=+ x dy y e dx

=+ P(x)=1 Q(x)=x e 由一阶线性方程的求解公式

11()dx dx x y e e e dx c -??=+?

=()x x x e e e dx c -+?

=()x e x c +

0()()x

x x x e x c e e x c dx +=++? c=1

y=()x e x c +

17 设函数?(t)于-∞

试求此函数。

令t=s=0 得?(0+0)=?(0)?(0) 即?(0)=2(0)? 故(0)0?=或(0)1?=

(1) 当(0)0?=时 ()(0)()(0)t t t ????=+= 即()0t ?=

(t ?∈-∞,+∞)

(2) 当(0)1?=时 '0()()()lim t t t t t t ????→+?-=?=0()()()lim t t t t t ????→?-?

=0()(()1)lim t t t t ???→?-?=0(0)(0)()lim t t t t ????→?+-?

='(0)()t ?? 于是'(0)()d t dt

???= 变量分离得'(0)d dt ???= 积分 '(0)t ce ??= 由于(0)1?=,即t=0时1?= 1=0ce ?c=1

故'

(0)()t t e ??=

20.试证:

(1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程(2.3)之解;

(2)若()y y x =是(2.3)的非零解,而()y y x =是(2.28)的解,则方程(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.

(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解. 证明:()()dy P x y Q x dx

=+ (2.28) ()dy P x y dx

= (2.3) (1) 设1y ,2y 是(2.28)的任意两个解

则 11()()dy P x y Q x dx

=+ (1) 22()()dy P x y Q x dx

=+ (2) (1)-(2)得

()1212()()d y y P x y y dx

-=- 即12y y y =-是满足方程(2.3)

所以,命题成立。

(2) 由题意得:

()()dy x P x y dx

= (3) ()()()()d y x P x y x Q x dx

=+ (4) 1)先证y cy y =+是(2.28)的一个解。

于是 ()()34c ?+ 得

()()()cdy d y cP x y P x y Q x dx dx

+=++ ()()()()d cy y P x cy y Q x dx

+=++

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

微分方程复习题(1)

常微分方程复习题 一、填空题 1.微分方程0)(22=+-+x y dx dy dx dy n 的阶数是____________. 答:1 2.形如_ 的方程称为齐次方程. 答: )(x y g dx dy = 3.方程04=+''y y 的基本解组是 . 答:cos 2,sin 2x x . 1. 二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 . 答:线性无关(或:它们的朗斯基行列式不等于零) 2. 方程02=+'-''y y y 的基本解组是 . 答:x x x e ,e 3. 若()t ?和()t ψ都是()X A t X ''=的基解矩阵,则()t ?和()t ψ具有的关系是 。 4.一阶微分方程0),(),(=+dy y x N dx y x M 是全微分方程的充分必要条件是 。 5. 方程0),(),(=+dy y x N dx y x M 有只含x 的积分因子的充要条件是 。有只含y 的积分因子的充要条件是 。 6. 一曲线经过原点,且曲线上任意一点()y x ,处 的切线斜率为y x +2,则曲线方程为 。 7. 称为n 阶齐线性微分方程。 8. 常系数非齐线性方程()(1)11()n n x n n m y a y a y a y e P x α--'+++=(其中()m P x 是m 次多项式)中,则方程有形如 的特解。 9. 二阶常系数线性微分方程32x y y y e '''-+=有一个形如 的特解。

10. 微分方程4210y y y ''''''+-=的一般解为 。 9. 微分方程4 230xy y y ''''++=的阶数为 。 10. 若()(0,1,2, ,)i x t i n =为齐次线性方程的n 个线性无关解,则这一齐线性方程的 通解可表为 . 11. 设()x t 为非齐次线性方程的一个特解, ()(0,1,2, ,)i x t i n =是其对应的齐次线性 方程的一个基本解组, 则非齐线性方程的所有解可表为 . 12. 若()(0,1,2, ,)i x t i n =是齐次线性方程()(1)11()()()0 n n n n y a x y a x y a x y --'+++=的n 个解,)(t w 为其朗斯基行列式,则)(t w 满足一阶线性方程 。 答:1()0w a x w '+= 13. 函数 是微分方程02=-'-''y y y 的通解. 14. 方程02=+'-''y y y 的基本解组是 . 15. 常系数方程有四个特征根分别为11,0,1λ=-(二重根),那么该方程有基本解组 . 16. ()Y A x Y '=一定存在一个基解矩阵()x Φ,如果()x ψ是()Y A x Y '=的任一解,那么()x ψ= 。 17.若)(t Φ是()X A t X '=的基解矩阵,则向量函数)(t ?= 是 ()()X A t X F t '=+的满足初始条件0)(0=t ?的解;向量函数)(t ?= 是()()X A t X F t '=+的满足初始条件η?=)(0t 的解。 18. 设12(),()X t X t 分别是方程组1()()X A t X F t '=+,2()()X A t X F t '=+的解,则满足方程12()()()X A t X F t F t '=++的一个解可以为 。 19. 设* X 为非齐次线性方程组()()X A t X F t '=+的一个特解, )(t Φ是其对应的齐次线性方程组()X A t X '=的基解矩阵, 则非齐线性方程组()()X A t X F t '=+的所有解可表为 . 20.方程组()X A t X '=的n 个解12(),(), ,()n X t X t X t 线性无关的充要条件

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

阶线性方程与常数变易法习题及解答

§ 一阶线性方程与常数变易法习题及解答 求下列方程的解 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解. 5.dx dy +1212--y x x =0

解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 212(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(12x ce x + 是原方程的解. 6. dx dy 23 4xy x x += 解:dx dy 23 4xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2 u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

[整理]一阶线性方程与常数变易法习题及解答.

§2.2 一阶线性方程与常数变易法习题及解答 求下列方程的解 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c d x e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解. 5.dx dy +1212--y x x =0

解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 21 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 2 34xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2 u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

常数变易法

常数变易法的解释 注:本方法是对崔士襄教授写的《“常数变易法”来历的探讨》论文的解释。思路并非本人原创。特此注明。背景详见本人前一篇博文。 我们来看下面的式子: y’+P(x).y = Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x)·y = Q(x) => dy = ( Q(x)-P(x).y ).dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x = u = > y = u·x . 将y = u·x代入(1)式: u’·x+u+P(x)·u·x = Q(x) => u’·x+u·(1+P(x)·x) = Q(x) => du/dx·x = Q(x)-u(1+P(x)·x) => du = [Q(x)-u·(1+ P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。 进一步:变量代换法

最新3-7-一阶线性方程与常数变易法汇总

3-7-一阶线性方程与常数变易法

2.2 一阶线性方程与常数变易公式(First order linear differential equation and constant variation formula ) [教学内容] 1. 认识一阶线性齐次方程和一阶线性非齐次方程; 2.介绍一阶线性非齐次方程的常数变易公式; 3. 介绍电学知识和基尔霍夫定律; 4. 认识Bernoulli方程及其通过变量替换化为一阶线性方程的解法; 5. 介绍其他可化为一阶线性方程的例子. [教学重难点] 重点是知道一阶线性非齐次方程的解法,难点是如何根据方程的形式引入新的变量变换使得新方程为一阶线性方程. [教学方法] 自学1、4;讲授2、3 课堂练习 [考核目标] 1.熟练运用常数变易公式; 2. 知道?Skip Record If...?计算和一些三角函数恒等式; 3. 知道电学一些知识,如电容电流公式、电感电压公式和基尔霍夫定律; 4. 知道溶液混合问题建模; 5. 认识Bernoulli方程并会经过适当变换化为线性方程求解. 6. 知道交换自变量和因变量化非线性方程为一阶线性方程. 1. 认识一阶线性齐次方程和一阶线性非齐次方程(First order (non)homogeneous linear differential equation) (1) 称形如?Skip Record If...?的方程为一阶线性齐次方程,其中?Skip Record If...?连续; 称形如?Skip Record If...?的方程为一阶线性非齐次齐次方程,其中?Skip Record If...?连续且?Skip Record If...?不恒为零. (2) 当?Skip Record If...?时,改写?Skip Record If...?为

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

江苏大学-常微分方程-3-7 - 一阶线性方程与常数变易法

2.2 一阶线性方程与常数变易公式(First order linear differential equation and constant variation formula ) [教学内容] 1. 认识一阶线性齐次方程和一阶线性非齐次方程; 2.介绍一阶线性非齐次方程的常数变易公式; 3. 介绍电学知识和基尔霍夫定律; 4. 认识Bernoulli 方程及其通过变量替换化为一阶线性方程的解法; 5. 介绍其他可化为一阶线性方程的例子. [教学重难点] 重点是知道一阶线性非齐次方程的解法,难点是如何根据方程的形式引入新的变量变换使得新方程为一阶线性方程. [教学方法] 自学1、4;讲授2、3 课堂练习 [考核目标] 1. 熟练运用常数变易公式; 2. 知道 ? dx bx sin e ax 计算和一些三角函数恒等式; 3. 知道电学 一些知识,如电容电流公式、电感电压公式和基尔霍夫定律; 4. 知道溶液混合问题建模; 5. 认识Bernoulli 方程并会经过适当变换化为线性方程求解. 6. 知道交换自变量和因变量化非线性方程为一阶线性方程. 1. 认识一阶线性齐次方程和一阶线性非齐次方程(First order (non)homogeneous linear differential equation ) (1) 称形如y p(x)dx dy =的方程为一阶线性齐次方程,其中p(x)连续; 称形如 q(x)y p(x)dx dy +=的方程为一阶线性非齐次齐次方程,其中q(x) p(x),连续且q(x)不恒为零. (2) 当0y ≠时,改写 y p(x)dx dy =为 1C dx p(x)|y |ln ,dx p(x)y dy dx, p(x)y dy +===???,其中?dx p(x)表示P(x)的一个原函数(antiderivative). 因此,y p(x)dx dy =通解(general solution)为1C p(x)dx e C ~ ,e C ~y =?±=,此外y=0也是解. 综上, y p(x)dx dy =的解为C ,e C y p(x)dx ?=为任意常数. (3) 常数变易法:如何求 q(x)y p(x)dx dy +=的解呢? 假定上述线性非齐次方程有如下形式的解 ?=p(x)dx e C(x)y ,则代入原方程来确定C(x), q(x)p(x)C(x)e e p(x) C(x)e (x)' C dx dy p(x)dx p(x)dx p(x)dx +?=?+?=, 即q(x)e (x)' C p(x)dx =?,C q(x)dx e C(x) q(x), e (x)' C p(x)dx -p(x)dx +? =? =?-,此处C 为

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

常数变易法原理

常数变易法原理 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常数变易法原理 我们来看下面的式子: y’+P(x).y=Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x).y=Q(x) dy=[Q(x)-P(x).y].dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x=u→ y=u.x .将y=u.x代入(1)式: u’.x+u+P(x).u.x=Q(x) → u’.x+u.(1+P(x).x)=Q(x)→du/dx.x =Q(x)-u(1+P(x).x) →du=[Q(x)-u.(1+P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。

不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。 进一步:变量代换法 筒子们可能觉得要构造这么一个函数会很难。但结果会让你跌破眼镜。y=u·v就是这么符合要求的一个函数。其中u和v都是关于x的函数。这样求y对应于x的函数关系就转变成分别求u对应于x的函数关系和v对应于x的函数关系的问题。你可能觉得把一个函数关系问题变成两个函数关系问题,这简直是脑残的表现——非也,u和v都非常有用,看到下面就知道了。 让我们看看讲代换y=u·v代入(1)式会出现什么: u’.v+u.(v’+P(x).v)=Q(x) (4) 如果现在利用分离变量法来求u对应于x的函数关系,那么u·(v’+ P(x)·v)就是我们刚刚遇到的没法把u单独分离出来的那一项,既然分不出来,那么干脆把这一项变为零好了。怎么变这是v的用处就有了。令v’+P(x)·v=0,解出v对应x的函数关系,这本身就是一个可以分离变量的微分方程问题,可以将其解出来。 dv/dx+P(x)·v=0 →v=C1.e^(-∫P(x)dx) (5)

相关文档
最新文档