焊缝宽度计算(仅限借鉴)

焊缝宽度计算(仅限借鉴)
焊缝宽度计算(仅限借鉴)

焊缝尺寸计算公式的研究及应用

1、在金属焊接过程中,焊缝过宽、焊脚尺寸过大,不但焊接接头受热严重,引起焊缝晶粒粗大,塑性、韧性下降,而且焊接热影响区较大,易产生焊接应力及变形;再者浪费材料增加成本。反之,焊缝过窄、焊脚尺寸过小,母材与焊缝可能熔合不良,引起应力集中,同时还使焊缝易产生咬边、裂纹等焊接缺陷,影响接头强度。因此正确确定焊缝尺寸是保证焊接质量的关键。经过多年的研究,得出了手弧焊、埋弧焊焊缝尺寸的经验计算公式,本经验公式为焊接工艺中确定手弧焊、埋弧焊焊缝尺寸提供了理论依据,具有较强的实用性。

2、手弧焊焊缝尺寸的经验计算公式

2.1对接焊焊缝尺寸经验计算公式

根据板厚及焊接方法要求不同,对接焊缝可分为I形焊缝(即不开坡口对接焊缝)、V形坡口对接焊缝、U形坡口对接焊缝。

⑴I形焊缝宽度的经验计算公式

生产中,一般板厚小于6mm不开坡口,形成I形焊缝,焊缝宽度

C=δ+2 ⑴

式中δ——工件厚度,mm。

⑵带钝边V形对接焊缝宽度经验计算公式

如图1所示带钝边V形坡口焊缝,坡口角度为α,间隙为b,钝边为P,根据解三角形的方法:

焊缝宽度

C=AB+CD+b+2e=2(δ-P)tan(α/2)+b+2e

≈δ+3 ⑵

式中e——坡口两边焊缝覆盖宽度,一般取e=1.5~2mm。

取P=2,b=2,α=60°,e=1.5。

⑶带钝边的U形坡口对接焊缝宽度经验计算公式

如图2所示的带钝边的U形坡口,钝边为P,间隙为b,坡口角度为β,根部半径为R,根据解三角形的方法:

焊缝宽度

C=2(δ-P-R)tanβ+2R+b+2e

≈0.35δ+12.5 ⑶

取P=2,b=2,e=1.5,R=5,β=10°。

2.2角焊缝焊脚尺寸的经验计算公式

角焊缝时两焊件接合面构成直角式或接近直角所焊接的焊缝,角焊缝的焊缝尺寸主要是指焊脚尺寸。

如图3所示,T形接头角焊缝焊脚尺寸

K=δ+2 ⑷

式中δ——两焊件较薄者厚度

2.3组合焊缝尺寸的经验计算公式

组合焊缝是指同一接头焊缝由几种不同焊缝组成。如图4所示即为带钝边V形对焊缝与角焊缝形成的T形接头组合焊缝。坡口角度为β1,钝边为P,间隙为b,根据解三角形的方法:

焊脚尺寸K=(δ2-P)tanβ1+b+e≈1.2δ2+1.5 (5)

取P=2,b=2,e=2,β1=50°。

3、埋弧自动焊焊缝尺寸经验计算公式

埋弧自动焊焊缝尺寸C=δ+10

式中δ——板厚,mm。

该公式与根据《焊接方法及设备》中焊缝熔宽计算公式进行校验,结果基本一致。

4、结语

⑴本文得出的焊缝尺寸经验计算公式经多年的实际应用证明是正确的,完全能满足生产实际需要;

⑵带钝边V形、带钝边U形等坡口焊缝的焊缝尺寸确定方法,对于类似的坡口形式(如单边V形、双边V形等)可按类似方法计算确定;

⑶按上述方法计算出的焊缝尺寸值,只是一个参数值,实际应用中可视具体情况,在参数基础上略作调整,一般取公差±1mm左右;

⑷该公式简明,容易记忆,使用方便,不仅适用于工程技术人员和操作工人,而且特别适用于经验不足者。

轴的计算

14.3轴的强度计算 14 .3 .1 按扭转强度计算 轴不是标准零件,需要自己设计计算。在满足强度和保证轴正常工作的条件 下来设计轴。例如用于带式运输机的单级斜齿圆柱齿轮减速器的低速轴。 这种计算方法主要应用于传动轴,也可以初步估算轴的最小直径,在此基础 上进行轴的结构设计。 按扭转强度计算公式 式中,—许用扭转切应力,; —轴传递的转矩,也是轴承受的扭矩,; —轴的抗扭截面系数,; —轴传递的功率, KW; d—轴的直径, mm ; n—轴的转速, r/min 。 C—为由轴的材料和受载情况所决定的常数(见下表)。 -轴传递的转矩,也是轴承受的扭矩,单位: N.mm 按公式计算轴的直径,当轴截面上有一个键槽时,轴径应增大5%;有两个键 槽时,应增大10%。 轴常用材料的值和C值 注:当作用在轴上的弯矩比转矩小或只受转矩时,C取较小值,否则C取较 大值。 14 . 3 . 2 轴的刚度计算概念 按弯扭合成强度计算

1.作轴的受力简图 轴上零件所受的作用力,其作用点在轮毂宽度的中间点。而轴承处支承反力 作用点的位置,要根据轴承的类型和布置方式确定。 如果轴上的载荷不在同一平面内,需求出两个互相垂直平面的支承反力。 即 水平面和垂直面支承反力。 2.作弯矩图 根据受力简图分别作出水平面弯矩图和垂直面的弯矩,求出合成 弯 矩并作合成弯矩图。 3.作轴的扭矩图 4.作当量弯矩图 根据已作出合成弯矩图和扭矩图,按第三强度理论计算各剖面上的当量弯矩 ,并作当量弯矩图。 式中,—根据扭矩性质而定的校正系数,对于不变的扭矩,; 对 于脉动循环变化的扭矩,;对于对称循环变化的扭矩,。 5.轴的强度计算 求出危险截面的当量弯矩后,按强度条件计算: —轴的危险截面的抗弯截面系数,。 表 12.3 轴材料的许用弯曲应力:

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

各种焊接工艺及焊条烟尘产生量

各种焊接工艺及焊条烟 尘产生量 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

各种焊接工艺及焊条烟尘产生量 注:本表摘自《焊接工作的劳动保护》 焊接车间环境污染及控制技术进展 作者:孙大光马小凡 摘要从焊接车间的环境污染因素分类、成因、特性及对操作者健康的危害机理入手,在充分借鉴国内外相关处理技术与设计理念的基础上,针对我国一般工业企业的实际情况提出相应的治理方法。对焊接车间环境污染控制技术的发展进行了展望。提出焊接车间环境污染控制工程的设计原则。为完善现有治理理论和提高现有设计的处理效率提供科学参考。 关键词:焊接车间污染因素防治对策 1 引言 焊接是利用电能加热,促使被焊接金属局部达到液态或接近液态,而使之结合形成牢固的不可拆卸接头的工艺方法。它是一种在工厂极为常见的机械工艺方法。 焊接过程中产生的污染种类多、危害大,能导致多种职业病(如焊工硅肺、锰中毒、电光性眼炎等)的发生,已成为一大环境公害。随着相关研究的深入,治理技术日趋完善,焊接污染已得到了相对有效的控制。本文依据我国焊接车间具体情况,结合国内外最新的研究成果及实用技术,从焊接污染的形成、特点及危害入手,提出切实可行的防治对策。 2 国内外焊接车间污染控制技术的现状分析 国外对焊接污染研究开始得比我国早,处理技术相对先进、成熟。焊接污染处理设备从单一性、固定式、大型化,向成套性、组合性、可移动性、小型化、资源低耗方向发展。对主要污染焊接烟尘的处理采用局部通风为主、全面通风为辅的手段,以此改善作业环境的污染。 我国对焊接污染研究虽然起步较晚,但发展较快。在充分借鉴国外相关产品设计和研究成果的基础上,形成了适合我国国情的设计思想。但由于整体水平上的差距,导致在处理设备设计制造、运行费用控制以及处理效果上与国外同类产品相比还有一定的差距。 3 焊接车间污染 焊接车间的污染按不同的形成方式,可以分为化学有害污染和物理有害污染两大类。 化学有害污染 化学有害污染是指焊接过程中形成的焊接烟尘和有害气体。 3.1.1 焊接烟尘[1]

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化

焊条计算

焊条计算油漆计算 油漆的每平方米的用量是0.2千克,一升油漆重1.2-1.3千克 一张无齿锯片能切割60-90根20*60*2MM的矩形管,(※切割断面的面积※和切割锯数) 在进行焊接施工时,正确地估算焊条的需用量是相当重要的,估算过多,将造成仓库积压:估算过少,将造成工程预算经费的不足,有时甚至影响工程的正常进行。焊条的消耗量主要由焊接结构的接头形式、坡口形式和焊缝长度等因素决定,可查阅有关焊条用量定额手册等,也可按下述公式进行计算: 1) 焊条消耗量通常按下式计算: m=alp/1 — K S 式中 m ——焊条消耗量 (g) ; A ——焊缝横截面积 (cm2) ; J——焊缝长度 (cm) ; p——熔敷金属的密度 (g/cm3) ; K s——焊条损失系数,见表 3 — 17。 上式中的焊缝横截面积 A 可按表 3 — 16中的公式进行计算。 2) 非铁粉型焊条消耗量也可按下式计算:s m=alp/K n * (1+K b) 式中 m——焊条消耗量 (g) ; A ——焊缝横截面积(cm2),见表3—16 :

l——焊缝长度 (cm) ; p——熔敷金属的密度 (g/cm3) : K b——药皮质量系数,见表 3 — 18 : K n——金属由焊条到焊缝的转熔系数(包括因烧损、飞溅及焊条头在内的损失 ),见表 3-19 。 表 3-19 焊条损失系数 K s 一根φ3.2×350焊条焊60mm长的角焊缝,焊角高6mm,31根/KG,; φ4×400焊条焊95mm长的角焊缝,焊角高6mm,17根/KG。 发表于 2007-3-9 15:24 一般是按算出来的理论有胶量*20%控制用胶普通玻璃幕墙是一平方半支耐候胶左右,焊条一般没有明确的算法用看设计 发表于 2007-4-14 11:50 我基本上是算胶缝长度,然后再算支数

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

焊条用量计算

焊条消耗量计算 最直接的方法就是先计算焊缝金属的重量,然后再除以焊材的利用率就可以了. 注意焊材的利用率分很多,焊条和焊丝是不一样的,直径大小不同时也不一样. 一般来讲,焊丝利用率要高于焊条的利用率. 另外,有些行业会有焊材重量计算的推荐表.主要是按照坡口的大小分的,多少度的坡口每米 需使用焊材多少(这种情况下一般都包含了利用率). 如果没有这方面的资料,可以自己做一个电子表格,作好公式,然后每次填表就可以了. 在进行焊接施工时,正确地估算焊条的需用量是相当重要的,估算过多,将造成仓库积压:估算过少,将造成工程预算经费的不足,有时甚至影响工程的正常进行。焊条的消耗量主要由焊接结构的接头形式、坡口形式和焊缝长度等因素决定,可查阅有关焊条用量定额手册等,也可按下述公式进行计算: 1) 焊条消耗量通常按下式计算: m=alp/1 — K S 式中m ——焊条消耗量(g) ; A ——焊缝横截面积(cm2) ; J——焊缝长度(cm) ; p——熔敷金属的密度(g/cm3) ; Ks——焊条损失系数,见表3 — 17。 上式中的焊缝横截面积A 可按表3 — 16中的公式进行计算。 2) 非铁粉型焊条消耗量也可按下式计算:s m=alp/Kn * (1+Kb) 式中m——焊条消耗量(g) ; A ——焊缝横截面积(cm2),见表3—16 : l——焊缝长度(cm) ; p——熔敷金属的密度(g/cm3) : Kb——药皮质量系数,见表3 — 18 : Kn——金属由焊条到焊缝的转熔系数(包括因烧损、飞溅及焊条头在内的损失),见表3-19 。 表3-19 焊条损失系数Ks 焊条型号(牌号) E4303 E4320 E5014 E5015 (J422) (J424) J502Fe) (J507) Ks 0.465 0.47 0.41 0.44

轴强度校核

一、横截面上的切应力 实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布 导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。即横截面上距圆心τp任意一点处的切应力p与p的关系 为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式 实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变 图8-56 扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ

图8-57 现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力 图8-58 1.几何方面 小变形条件下 dφ为dx长度内半径的转角,γ为单元体的角应变 图8-59 或

因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系) 由平面假设:对同一截面上各点 θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数 所以截面上任一点的切应力与该点到轴心的距离p成正比 p为圆截面上任一点到轴心距离,R为圆轴半径 图8-60 上式为切应力的变化规律 2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律 由于G和为常数,所以

轴的强度校核

轴的强度校核方法 摘要 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、 齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传 递。轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、 结构、强度和刚度。其中对于轴的强度校核尤为重要,通过校核来确 定轴的设计是否能达到使用要求,最终实现产品的完整设计。 本文根据轴的受载及应.力情况采取相应的计算方法,对于1、仅 受扭矩的轴2、仅受弯矩的轴3、既承受弯矩.又承受扭矩的轴三种受 载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安个 系数做了具体的简绍。校核结果如不满足承载要求时,则必须修改原结构设 计结果,再 重新校核。 轴的强度校核方法可分为四种: 1)按扭矩估算 2)按弯矩估算 3)按弯扭合成力矩近视计算 4)精确计算(安全系数校核) 关键词:安全系数;弯矩;扭矩目录 第一章引言一---一-一一-一-一-一一-------一--------一-----一1 1. 1轴的特点------------------------------------------一1 1. 2轴的种类------------------------------------------一1 1. 3轴的设计重点--------------------------------------一1 第二章轴的强度校核方法-------------------------一4 2. 1强度校核的定义-___-_______________________________4 2. 2轴的强度校核计算-_-_______________________________4 2. 3几种常用的计算方-_-_______________________________5 2. 3. 1按扭转强度条件计算-------一---------------一-______5 2.3.2按弯曲强度条件计算-______________________________6 2. 3. 3按弯扭合成强度条件计算-__________________________7 2.3.4精确计算(安全系数校核计算)______________________9 2. 4提高轴的疲劳强度和刚度的措施-_____-___-_-___-12 第三章总结---------------------------------------一13 参考文献-----------------------------------------一14 第一章引言 1. 1轴的特点: 轴是组成机械的主要零件之二。一切作回转运动的传动零件,都 必须装在轴上刁‘能进行运动及动.力的传递,同时它又通过轴承和机架 联接,由此形成·个以轴为基准的组合体一轴系部件。 1. 2轴的种类 1、根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴

焊条用量预计、计算式

第四章电焊条的需用量 在进行焊接施工时,正确地估计焊条的需用量是相当重要的,假如需用量估计不正确,当实际使用量比预计数大时,将造成工程预算经费的不足,有时甚至会影响工程的正常进行。反之,当预计数过多时,将造成仓库积压。因此,必须正确地计算焊条的需用量。这里介绍的是计算低碳钢焊条需用量的大致标准。 (一)对接接头 对于对接接头,由于V形、X形、U形等坡口形式不同,焊条的使用量也不同,但不管是什么样的坡口形式,各种形式焊缝的余高基本上是相近的。 每米焊缝的焊条需用量 例如,对于低碳钢焊条,设(考虑到低碳钢焊条夹持端部分50mm 舍去;用不含铁粉的普通焊条),则得每米焊缝的焊条需用量 对于坡口角度为o、板厚为t(mm)、根部间隙为s(mm)的v形对接接头(见图4—1),则 因此,在单面焊接[见图4-1(b)]时,每米焊缝的焊条需用量 在双面焊接[见图4—1(c)]时,对于背面打底焊,一般每米焊缝使用焊条约为0.6kg,故

对于X形对接接头(见图4-2),每米焊缝的焊条需用量 (二)等边直角焊缝 每米等边直角焊缝(见图4—3)的焊条需用量 按上述公式计算的角焊时焊条需用量见表4—1。 为了保险起见,最好以比图纸上规定的焊脚尺寸大1mm的数值作为实际的焊缝尺寸来计算。 此外,对于高效铁粉焊条及不锈钢焊条等应参照其焊条的技术资料或通过实测来确定它 的金属回收率,再来计算焊条需用量。 图4—4和图4—5所示分别为对接焊缝和角焊缝时每米焊缝的焊条需用量。 v形对接接头单面焊时焊条需用量估算见表4—2。 第64页

注:1、在焊条作用说明书中有特殊规定时,应按说明书中的规范执行。 2、一般情况下,大规格的焊条应选上限温度及保温时间。

轴的强度计算

第一讲 一、教学目标 (一)能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 (二)知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 二、教学内容 1.轴的分类、材料及热处理 2.轴的结构设计 3.轴的设计计算 三、教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 四、教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。 13.1 概述 13.1.1 轴的分类 根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。

2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。 3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的

空间位置。如牙铝的传动轴。 13.2 轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。 13.2.1 轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 13.2.1 轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。

对接焊缝的焊接及计算

第三章 连接 返回 §3-2 对接焊缝的构造和计算 对接焊缝包括焊透的对接焊缝和T 形对接与角接组合焊接(以下简称对接焊缝),以及部分焊透的对接焊缝和T 形对接与角接组合焊缝。由于部分焊透的对接焊缝的受力与角焊缝相似,将在下节中介绍。 3.2.1对接焊缝的构造 对接焊缝(butt welds )的焊件常需做成坡口,故又叫坡口焊缝(groove welds )。坡口形式与焊件厚度有关。当焊件厚度很小(手工焊6mm ,埋弧焊10mm )时,可用直边缝。对于一般厚度的焊件可采用具有斜坡口的单边V 形或V 形焊缝。斜坡口和根部间隙c 共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p 有托住熔化金属的作用。对于较厚的焊件(t>20mm ),则采用U 形、K 形和X 形坡口(图 3.2.1)。对于V 形缝和U 形缝需对焊缝根部进行补焊。对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《手工电弧焊焊接接头的基本形式与尺寸》和《埋弧焊焊接接头的基本型式与尺寸》的要求进行。 在对接焊缝的拼接处,当焊件的宽度不同或厚度相差4mm 以上时,应分别在宽度方向或厚度方向从一侧或两侧做成坡度不大于1:2.5的斜角(3.2.2),以使截面过渡和缓,减小应力集中。 在焊缝的起灭弧处,常会出现弧坑等缺陷,这些缺陷对承载力影响极大,故焊接时一般应设置引弧板和引出板(图 3.2.3),焊后将它割除。对受静力荷载的结构设置引弧(出)板有困难时,允许不设置引弧(出)板,此时,可令焊缝计算长度等于实际长度减2t (此处t 为较薄焊件厚度)。 3.2.2对接焊缝的计算 对接焊缝的强度与所用钢材的牌号、焊条型号及焊缝质量的检验标准等因素有关。 如果焊缝中不存在任何缺陷,焊缝金属的强度是高于母材的。全由于焊接技术问题,焊缝中可能有气孔、夹渣、咬边、未焊透等缺陷。实验证明,焊接缺陷对受压、受剪的对接焊缝影响不大,故可认为受压、受剪的对接焊缝与母材强

焊条(焊丝)需要量计算方法及焊条单重参考表

焊条(焊丝)需要量计算方法及 焊条单重参考表 1计算公式 熔敷金属重量W D =(A+B ) L r=W 由此可得焊条(焊丝)需要量 W 的计算式为: W= (A B) ■ J n L (cm ):焊缝长度 匸:熔敷金属比重 :熔敷效率 2、标准焊接接头所需焊条(焊丝)重量的概标 假定:焊缝加强部分熔敷金属重量为坡口部分熔敷金属重量的 20%。 对于电焊条,熔敷效率 “为55% (焊钳夹持部舍弃长度为 50mm ),对于实心焊丝, 熔敷效率为95%。 焊条(焊丝)比重为 7.85g/cm 3。 A 、标准角焊缝的焊条(焊丝)需要量计算 每米长度的标准角焊缝焊条(焊丝)需要量按下式计算 : 2 W (g/m )=8.56l [注]l (mm ):焊脚高度 根据上述算式计算出不同I ,每米焊缝长度所需焊条重量如下表。 B 、V 型坡口无衬垫对称焊焊条(焊丝)需要量计算 V 型坡口无衬垫对称焊焊条(焊丝)需要量按下式计算: c :坡口钝边高度(mm ) W= (b") +(t —c)2 ?tan 日/2^1.2汉 P 汽 L n b :坡口根部间隙(mm ) t :板厚(或壁厚)(mm ) 二:坡口角度(度) e * tan 对于实心焊丝:W ( g/m )= 9.92 [bt+(t-c) 2 丁 * tan — 2 ◎ e o e =45 tan =0.414 "50 tan — =0.466 2 2 、 ° e o e 二=60 tan =0.577 =70 tan — =0.700 2 2 对于电焊条: W ( g/m )= 17.13 [bt+(t-c) 2 2 2 [注]A (cm ):坡口内截面积 B (cm 2):焊缝加强部分截面

轴的强度计算

轴的强度计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:Mpa (11-1> 设计公式:

1、作轴的空间受力简图<将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力<图11-17a)b5E2RGbCAP 2、求水平面支反力RH1、RH2作水平内弯矩图<图11-17b) 3、求垂直平面内支反力RV1、RV2,作垂直平面内的弯矩图<图11-17c) 4、作合成弯矩图<图11-17d) 5、作扭矩图<图11-17e) 6、作当量弯矩图 ——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关 ——扭矩对称循环变化 = ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——Mcamax 处;Mca较大,轴径d较小处。 Mpa (11-6> W——抗弯截面模量 mm3,见表11-4不同截面的W。

焊条用量计算方法

焊条用量计算方法 焊条用量g可按下列公式计算: Fir 9 (1 Kb) K n 式中: F――焊缝熔敷金属截面积,单位为厘米emo根据焊接接头及坡口型式不同按表1中的公式计算; l ----- 焊缝长度,单位为厘米,em; r ----- 熔敷金属比重,单位为克/厘米3, g/cm‘; Kb ------ 药皮的重量系数,如表2所示; 匕一一金属由焊条到焊缝的转熔系数。包括因烧损、飞溅及焊条头损失在内C 如表3所示。

序 号 2 4 5 rt 7 8 9 10 3 11 F= Ioo F =IU5 F ?‘ 100 F= T5o (T f,At ) 表1焊缝熔敷金属横截面积计算公式 计算公式 1 单面I 形焊缝 I 形焊缝 Hi5o(ft+T c *l 3 V 形焊缝(不作封 3 底焊) U 形焊缝(不作封底 焊) 需(护仙号+寻M ) F= Ho(^+^lan T + T fA ) Q P)Z 号 双U 形焊缝(坡口对 称) Z 壽(学+ 皿) 焊缝名称 卜需(沪 討0 2 册 +(9—P)i tan 百袖 单边V 形焊缝(不 作封底焊) V 形、U 形焊缝的 6根部不挑根的封底 焊缝 V 形、U 形焊缝的 根部挑根封底焊缝 X 形焊缝(坡口对 称) F ■疵[笳 + ?r(J-2r-円 +卄 ---------- 2 -------- +刃 12不开坡口的角焊缝 焊接接头及坡口形式和尺寸 /mm r~ W///AA [骷+ 帖一P —r)3 tan/J H K 形对接焊缝(坡口 对称) 保留钢垫板的V

表2药皮的重量系数Kb E4303 E43015 E5015 0.42— 0.48 0.42— 0.5 0.38 — 0.44 表3焊条的转熔系数Kn E4303 E43015 E5015 0.77 0. 77 0.79 单边钝边V 形角 焊缝 K 形T 字接头 焊缝 1 「 如 <5— P)2tana 2 t ' -2十" 4 J

焊条消耗计算

1、焊条的规格、熔敷率及单根重量 (1)焊条的规格 焊条直径(焊芯直径)通常分为:Φ1.6mm、Φ2.0mm、Φ2.5mm、Φ3.2mm、Φ4.0mm、Φ5.0mm、Φ5.8mm、Φ6.0mm、Φ8.0mm、Φ10mm、Φ12mm等几种,单根焊条长度一般在250-450mm之间。其中,铝及铝合金焊条只有Φ3.2mm、Φ4.0mm、Φ5.0mm、Φ6.0mm 四种规格,其长度为:345mm、350mm、355mm;铜及铜合金焊条只有Φ2.5mm、Φ3.2mm、Φ4.0mm、Φ5.0mm、Φ6.0mm五种规格,第一种长度为300mm,其余均为350mm。 (2)焊条的熔敷率 焊条的焊接损失包括:焊条剩头损失,通常为焊条重量的10-15%;燃烧及飞溅损失为5-10%;形成熔渣损失为18-35%。焊条的损失系数K=0.33-0.6。所以,通常一根焊条的熔敷率在40%-67%之间。 (3)单根焊条的重量 根据不同的牌号、成份、规格,不同生产厂家出产的单根焊条的重量是有差距的。一般情况下,一包5公斤350mm长焊条,Φ3.2mm 焊条在150根左右,单根重量在30g左右;Φ4.0mm焊条在90-95根之间,单根重量在52-55g之间,Φ5.0mm焊条在60-65根之间,单根重量在73-83g之间。 2、常用焊丝的规格及熔敷率 (1)实芯焊丝

实芯焊丝是经过热轧线材经拉丝加工而成的。为了防止焊丝生锈,除不锈钢焊丝以外,一般表面须进行镀铜处理。 ①埋弧焊用实芯焊丝 埋弧焊一般采用粗焊丝,常用的焊丝规格包括:Φ1.6mm、Φ2.0mm、Φ2.4mm、Φ2.8mm、Φ3.0mm、Φ3.2mm、Φ4.0mm、Φ4.8mm、Φ5.0mm、Φ5.6mm、Φ6.0mm、Φ6.8mm等,焊接时的熔敷率在95%-98%。 ②气保护焊用实芯焊丝 气保护焊一般采用细焊丝,常用的焊丝规格包括:Φ0.9mm、Φ1.0mm、Φ1.2mm、Φ1.6mm、Φ2.0mm、Φ2.4mm、Φ3.2mm、Φ4.0mm、Φ4.8 mm等,焊接时的熔敷率在90%-95%。 (2)药芯焊丝 药芯焊丝也称粉芯焊丝或管状焊丝。按照保护气体的有无,可分为气保护药芯焊丝和自保护药芯焊丝;根据内层填料中有无造渣剂,可分为药粉型焊丝和金属粉型焊丝。 ①气保护药芯焊丝 常用的气保护药芯焊丝规格包括:Φ0.9mm、Φ1.0mm、Φ1.2mm、Φ1.6mm、Φ2.0mm、Φ2.4mm、Φ3.2mm、Φ4.0mm、Φ4.8 mm等,焊接时的熔敷率一般在70%-85%左右。其中金属粉型药芯焊丝的熔敷率在90-95%之间。 ②自保护药芯焊丝 常用的自保护药芯焊丝规格包括: Φ1.2mm、Φ1.6mm、Φ

轴的强度校核方法

中国石油大学(北京)现代远程教育毕业设计(论文) 轴的强度校核方法 姓名: 学号: 性别: 专业: 批次: 电子邮箱: 联系方式: 学习中心: 指导教师: 2XXX年X月X日

中国石油大学(北京)现代远程教育毕业设计(论文) 轴的强度校核方法 摘要 轴是用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递的重要的零件。为实现机械产品的完整和可靠设计,轴的设计应考虑选材、结构、强度和刚度等要求。并应对轴的材料或设备的力学性能进行检测并调节,轴的强度校核应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。最后确定轴的设计能否达到使用要求,对轴的设计十分重要。 本文根据轴的受载及应力情况,介绍了几种典型的常用的对轴的强度校核计算的方法,并对如何精确计算轴的安全系数做了具体的介绍。当校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 最后,本文对提高轴的疲劳强度和刚度提出相应改进方法,并对新材料,新技术的应用进行了展望。 关键词:轴;强度;弯矩;扭矩;

目录 第一章引言 (5) 1.1轴类零件的特点 (5) 1.2轴类零件的分类 (6) 1.3轴类零件的设计要求 (6) 1.3.1、轴的设计概要 (6) 1.3.2、轴的材料 (6) 1.3.3、轴的结构设计 (7) 1.4课题研究意义 (9) 第二章轴的强度校核方法 (11) 2.1强度校核的定义 (11) 2.2常用的轴的强度校核计算方法 (11) 2.2.1按扭转强度条件计算: (11) 2.2.2按弯曲强度条件计算: (13) 2.2.3按弯扭合成强度条件计算 (13) 2.2.4精确计算(安全系数校核计算) (20) 第三章提高轴的疲劳强度和刚度的措施 (25) 3.1合理的选择轴的材料 (25) 3.2合理安排轴的结构和工艺 (25) 3.3国内外同行业新材料、新技术的应用现状 (26) 总结 (31) 参考文献 (32)

相关文档
最新文档