电涡流制动的工作原理及其在汽车上应用陈娟

电涡流制动的工作原理及其在汽车上应用陈娟
电涡流制动的工作原理及其在汽车上应用陈娟

电涡流制动的工作原理及其在汽车上应用陈娟

发表时间:2018-01-24T20:21:03.637Z 来源:《基层建设》2017年第31期作者:陈娟

[导读] 摘要:随着当前社会经济的发展,汽车工业得到了快速的发展,电涡流制动在汽车上有着十分广泛的应用,本文就电涡流制动的工作原理及其在汽车上应用进行阐述和分析。

山东理工大学山东淄博 255049;齐河县职业中等专业学校山东德州 251114

摘要:随着当前社会经济的发展,汽车工业得到了快速的发展,电涡流制动在汽车上有着十分广泛的应用,本文就电涡流制动的工作原理及其在汽车上应用进行阐述和分析。

关键词:电涡流制动;工作原理;汽车上应用

1.前言

电涡流制动在汽车上的应用大大提升了汽车的运行效率,满足汽车行业发展的需要。

2.构成及工作原理

电涡流缓速器一般由定子、转子及固定支架等组成,如图1所示。该装置安装在车辆驱动桥与变速器之间,通过电磁感应原理实现无接触制动。转子随传动轴一起旋转时,定子线圈内通电产生磁场,缓速器工作,转子切割定子电磁场,在转子盘内部产生旋涡状的感应电流(电涡流),并在转子上产生一个与转子转动方向相反的力矩。同时电涡流在具有一定电阻的转子盘内流动,产生热效应,使转子发热。转子盘上设有叶片,其产生的风力可将热量迅速吹散。通过以上过程,车辆行驶的动能即通过感应电流转化为热能。

2.1电涡流缓速器的性能特点

提高车辆行驶的安全性

采用电涡流缓速器进行制动,可使车轮制动器温升大为降低,确保车轮制动器处于良好工作状态,进而缓解车辆跑偏、制动失灵和爆胎等安全隐患。电涡流缓速器是一个相对独立、反应灵敏的辅助制动系统,其转子与传动轴紧固在一起,能按驾驶员的意愿提供制动力矩,因而它的性能优于发动机排气制动。电涡流缓速器采用电流直接驱动,无中间环节,其操纵响应时间仅40ms,比液力缓速器响应时间快加倍。电涡流缓速器是一种完全独立于车轮制动器的车辆缓速装置,如果制动系统突然失效,仍可用电涡流缓速器来使车辆保留一定的减速制动功能。电涡流缓速器能分担原制动系统30%-90%的工作量,大大减轻了行车制动器负荷,使其温升降低,有效避免“热衰退”现象,有利于提高车辆在山区行驶的安全性。电涡流缓速器采用的是驱动车轮共控式,承担着整车的主要制动功能,这样就能改善传统制动系统左右车轮制动不一致的问题,避免制动跑偏现象发生。同时还能使车辆获得较好的转向操纵性,特别是有利于提高潮湿、冰雪路段驾驶的安全性。安装申‘涡流缓速器后,制动时轮胎温度明显下降,降低了爆胎的可能性。

2.2提高车辆环保性能

电涡流缓速器实行非接触式制动,工作时没有摩擦材料接触,本身不会发出制动噪声;由于它可以使传统制动器工作负荷大大减轻,故汽车制动时发出的“尖叫”声也不再产生。电涡流缓速器工作不产生粉尘,同时也减少了传统制动系统在制动时摩擦材料产生的粉尘。

2.3提高操作与行驶舒适性

安装电涡流缓速器后,驾驶员可方便地通过手控开关来实施多挡缓速,还可按下恒速功能开关来使缓速器自动工作,减轻了驾驶员在下坡路段的精神压力。由于电涡流缓速器工作平稳,能提供平滑、渐进、安静的缓速效果,并能在任何车速下得到所需的减速力,因而使车辆驾驶更加容易、更加舒适。

2.4提高车辆经济性

由于电涡流缓速器的定子和转子之间没有接触,不存在磨损,因而故障率极低。平时除了做好例行检查、保持清洁以外,其他维护工作量很少,所以维护费用极低。电涡流缓速器能够承担车辆部分制动力矩,因而能够延长车轮制动器的使用寿命,降低用于车辆制动系统的维修费用,提高经济效益。据统计,安装电涡流缓速器的车辆,其车轮制动器寿命比不安装电涡流缓速器的车辆延长4一7倍,轮胎寿命延长20%。安装电涡流缓速器能减少车轮制动系统的保养费用。安装电涡流缓速器可使车辆的制动摩擦片寿命延长4倍左右,使轮胎寿命延长20%以上。

3.电涡流制动在汽车上的应用

工信部出台的《关于进一步提高大中型客货车安全技术性能加强车辆(公告)管理和注册登记管理工作的通知》中规定:危险货物运输车、总质量大于12t的货车应装备缓速器或其他辅助制动装置。出台的新国标GB7258《机动车运行安全技术条件》规定:车长大于9m的客车(对专用校车为车长大于8m)、总质量大于等于12000kg的货车和专项作业车、所有危险货物运输车,应装备缓速器或其他辅助制动装置。汽车辅助制动装置主要有以下几种:排气制动、发动机缓速制动、电涡流缓速器和液力缓速器等。排气制动和发动机缓速制动力矩太小,液力缓速器由于成本高并且控制复杂,并未大规模应用在汽车上,目前为应用最广泛的是电涡流缓速器。按机械装置和安装位置的不同,电涡流缓速器可以分为三类:安装于变速箱输出端或驱动桥输入端。该类缓速器为两转子-定子结构,此类缓速器适合于安装在发动机后置的客车和短轴距牵引车上。安装在传动轴中问。该类缓速器也是两转子、定子的结构,此类缓速器适合安装在传动轴较长的车型。(3)转筒式电涡流缓速器。该类缓速器结构如同一个“巨”字形状,转子形状为圆筒状,定子线圈沿定子架的径向均匀分布。

永磁缓速器是一种新型的节能环保辅助制动装置,制动时不消耗电能,提高了汽车的经济性。永磁缓速器的结构按转子形状分为盘式和转筒式两种类型,但是盘式永磁缓速器存在体积大且难以控制等缺点,所以目前永磁缓速器基本都是转筒式结构。由于永磁缓速器中永磁体的磁场一直都存在,所以永磁缓速器一般都会有磁场屏蔽装置。开启或解除制动,是通过气缸等元件来推动磁场屏蔽装置使磁场处于开启和屏蔽状态即可。虽然永磁缓速器不消耗电能,但是永磁缓速器制动力矩小、控制复杂且存在漏磁现象,所以永磁缓速器也需要进一步的改进。

4.存在的问题和展望

4.1问题分析

4.1.1制动装置温升问题

根据能量守恒定律,永磁涡流制动过程将运动物体的动能转化为热能散发掉了,这会引起制动装置温升。再加上外界温度的灼热效应,使

制动主缸与真空助力器结构及原理知识分享

制动主缸与真空助力器结构及原理

真空助力器带制动主缸和比例阀的结构原理及故障分析 真空助力器带制动主缸和比例阀的结构原理及故障分析

一真空助力器与制动主缸的结构及原理 (一)液压管路联接形式 奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。 制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。两个制动管路4、5呈交叉型对角线布置。 这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。此外,这种制动系统结构简单,而且直行时紧急制动的稳定性好。 (二)串联式双腔制动主缸

1 带补尝孔串联式双腔制动主缸 奇瑞轿车采用补尝孔串联式双腔制动主缸,其结构原理如图2所示。 制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克服第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。 解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开始回位,高压制动液顺管路回流入制动主缸。由于活塞回位速度迅速,工作腔内容积相对增大,致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。当活塞完全回到位时,工作腔通过补尝孔

客车电磁涡流刹车制动扭矩分析

客车电磁涡流刹车制动扭矩分析 摘要随着汽车制造行业的高速发展,车辆的各项动力性能也在不断提高,使得车辆的行驶速度不断加快,因此车辆的制动性能要求随之增高。对于一些客车来说,经常跑一些长途路线,制动性能尤为重要。而电磁涡流刹车制动扭矩作为当今主流辅助刹车系统,已被汽车行业广泛应用。如果不对客车电磁涡流刹车制动扭矩进行一个充分的了解,将会对汽车制动造成一个潜在的威胁。本文主要针对电磁涡流刹车制动扭矩的各项数据进行详细分析,并提出了改进客车刹车制动的方法。 关键词客车;电磁涡流;刹车;制动扭矩 中图分类号U46 文献标识码 A 文章编号1674-6708(2016)162-0145-02 随着现代人们生活水平的提高,出行方式越来越偏向于驾驶车辆出行。我国的城乡道路建设越来越规范,原来的乡村土路也变成了一条条的水泥路和柏油路,各种车辆的运行速度越来越快,公路上的车辆越来越多,对人们的出行构成了潜在的威胁,车辆经常需要在复杂的交通环境下进行频繁制动。超速行驶、超载行驶严重影响了车辆的制动安全。传统的车辆制动方式通常采用的是车轮制动器和缓速器制动,

这种制动方式在车辆超载或者车辆下坡时间长时频繁制动会导致制动器发热,降低制动性能,虽然有很多司机向制动器浇水让制动器冷却,从而减缓制动器发热,但是没有取得很好的效果。仍然有很多交通事故因为制动失灵而发生,不能从根本上解决制动失灵问题。但是电磁涡流刹车制动系统很好地解决了车辆的制动问题,能够令车辆行驶的安全性能提高,下面进行详细分析。 1 电磁涡流刹车的工作原理 车辆制动减速器按照不同的工作原理主要分为这样几种制动系统:液力减速、发动机排气减速和电磁涡流减速刹车。液力减速器主要是和液力传动变速器结合运用,才能起到减速制动的作用。在液力传动变速器的两个不同位置区分为输入和输出减速器,输入减速器主要作用是在动力传入变速器时,通过不同的档位进行变化,从而减缓汽车动力,输入减速器起到一个很好的减速器输入轴的作用。而输出减速器主要作用是输出轴变速器,在输出动力时,比较平缓,方便控制制动系统,可以调节不同的档位。发动机排气减速系统造价比较低,结构较为简单,不需要在汽车的传动系统上进行改动,只需要在发动机排气系统上进行改动,但是对发动机的使用效果有一些不利影响。和这两种汽车缓速器进行对比,电磁涡流刹车缓速器性能更加优良,拥有更好的市场发展前景。

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

制动主缸与真空助力器结构及原理

真空助力器带制动主缸和比例阀的结构原理及故障分析 真空助力器带制动主缸和比例阀的结构原理及故障分析 一真空助力器与制动主缸的结构及原理 (一)液压管路联接形式 奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。 制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。两个制动管路4、5呈交叉型对角线布置。 这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。此外,这种制动系统结构简单,而且直行时紧急制动的稳定性好。 (二)串联式双腔制动主缸 1 带补尝孔串联式双腔制动主缸 奇瑞轿车采用补尝孔串联式双腔制动主缸,其结构原理如图2所示。 制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克服第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。 解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开始回位,高压制动液顺管路回流入制动主缸。由于活塞回位速度迅速,工作腔内容积相对增大,

致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。当活塞完全回到位时,工作腔通过补尝孔与贮液罐相通,这时多余的制动液经补尝孔流回到贮液罐。等待下一次制动,这样往复循环进行。 2 带ABS的中心阀式双腔制动主缸 ABS系统配备于奇瑞豪华轿车,大大提高了整车的安全性和制动稳定性,为了提高ABS系统工作的可靠性,奇瑞轿车采用了中心阀式双腔制动主缸,其结构如图3所示。 其特点是取消了串联式双腔制动主缸的补尝孔,采用中心单向阀来取代它们的作用。该中心单向阀结构安装在第一、二活塞内,其结构如图4所示。 制动时,活塞在助力器的推力作用下开始左移,当中心阀芯5、14脱离控制销8、17时,中心阀芯在中心阀簧作用下将中心阀口关闭,这时工作腔3、12建立起液压并通过出油口传递给制动管路。

涡流制动器工作原理

电涡流制动器使用说明书 一、概述: 电涡流制动器是一种性能优越的自动控制元件,它是利用涡流损耗的原理来吸收功率的。其输出转矩与激磁电流呈良好的线性关系。并具有响应速度快、结构简单等优点。 电涡流制动器广泛应用于测功机的加载。即测量电机、内燃机、减变速机等动力及传动机械的转矩、转速、功率、效率、电流、电压、功率因数时,用电涡流制动器作为模拟加载器。并可与计算机接口实现自动控制。与我公司生产的TR-1型转矩转速功率测量仪、CGQ型转矩转速传感器、WLK型自动控制器、自动测试软件可组成成套自动测功系统。 电涡流制动器广泛应用于印刷、包装、造纸及纸品加工、纺织、印染、电线、电缆、橡胶皮革、金属板带加工等有关卷绕装置的张力自动控制系统中。与我公司生产的WLK型控制器配套,可组成手动张力控制系统。与我公司生产的ZK 型自动张力控制仪及张力检测传感器配套,可组成闭环自动张力控制系统.。 二、主要特点: 1、转矩与激磁电流线性关系良好,适合于自动控制; 2、结构简单,运行稳定、价格低廉、使用维护方便; 3、采用水冷却,噪音低、振动小; 4、输入转速范围宽,可用于变频调速等各类电动机及动力机械的型式试验; 5、控制器采用直流电源,控制功率小。

四、特性曲线 注:P0为最大冷却功率; n1为额定最低转速; n2为额定最高转速。

五、使用环境 1、最高环境温度不超过40℃; 2、海拔高度不超过2000m; 3、当环境温度为20℃时,相对湿度不大于85%。 六、冷却水 1、水质。冷却水为自来水,一般工业用水、地下水、河水。水中不含有直径1mm 以上的固体颗粒或其它杂物,其pH值为6-8,硬度为200ppm以下为宜,最大值为300ppm。 2、水压。进水压力一般为不小于0.1Mpa,不大于0.3Mpa。用户在使用本产品时应安装水压表和进水阀门,以方便监控和调节水量。 3、水量。冷却水量见参数表,进水量的大小按测试功率的不同进行调节。 4、水温。进水温度最高不超过30℃,出水温度约为50℃-60℃为宜,使用时可根据出水温度的高低调节水量。 七、注意事项: 1、按额定转矩、转速、功率选用涡流制动器。严禁超转矩、超功率、超转速使 用。 2、运行前须对电涡流制动器进行检查。核定铭牌数据是否为要求的规格;检查 紧固件是否松动,各接线板接线是否正确,接触是否良好,如有缺陷或不良应予排除或更换;用500伏的兆欧表检查励磁绕组

汽车各系统工作原理

发动机工作原理概述 汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。所以,一部车引擎的特性可以作为决定整部车性能的重要指标。也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。 汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。这一切的物理、化学变化都是在燃烧室内进行的。 首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。 在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。 在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。在活塞运动到下止点后,一个完整的工作流程结束。由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。

通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运 汽车总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。

电磁涡流刹车制动扭矩减小原因分析资料报告

电磁涡流刹车制动扭矩减小原因分析 目前,电磁涡流刹车已经广泛应用于石油钻机辅助刹车系统中。它利用电磁感应原理进行无磨损制动,应用电磁涡流刹车可大幅度减少主刹车的磨损,延长刹车盘的使用寿命,降低劳动强度。在一般情况下,只要操作司钻开关或自动控制给定信号而不必使用刹把(主刹车)就能可靠地控制钻具下放速度。将钻具平稳地座落在转盘或卡瓦上。下面从现场使用过程中制动扭矩减小的故障入手,对影响电磁刹车使用性能的故障原因进行分析,并提出了对于类似故障检修的方法和防措施。 1故障概况及经过 配套DWS50电磁涡流刹车的50D钻机在运转过程中,操作人员反映起下钻过程中,挂合电磁刹车始终感觉无法达到理想的制动转矩,其制动功能明显低于正常状态。经检测控制柜控制功能良好,无交、直流故障显示,直流电压输出可达额定值。 2故障原因及时效机理分析 2.1电磁涡流刹车基本结构和工作原理 分析电磁刹车制动力矩减小的原因,应该首先从电磁刹车的基本结构和原理入手。电磁涡流刹车装置一般由刹车主体、可控硅整流装置、司钻开关、冷却系统等组成。电磁刹车是将钻具下放时产生的巨大机械能转换为电能,又将电能转化为热能的非摩擦式能量转换装置。其应用的是电磁感应原理。当刹车工作时,可控硅整流装置向定子线圈通入直流电流,于是在转子与定子之间便有磁通相连,使转子处在磁场闭合回路中。磁场所产生的磁力线通过磁极→气隙→电枢→气隙→磁极形成一个闭合回路。绞车滚筒带动电磁刹车主轴上的转子以相同转速在该磁场旋转。在这个磁场中,磁力线在磁级的齿部(凸极部分)分布较密,而在磁极的槽部(齿间部分)分布较稀,因此随着转子与定子的相对运动,转子各点上的磁通便处

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

涡流制动器

一种涡流制动器调速系统,是利用检测感应电动机转子电压作为转速反馈信号的转速单闭环系统,当转速给定值与实际值比较后产生差值时,此差值经速度调节器,令可控硅整流装置调节涡流制动器的制动转矩,使系统在给定转速下运行,其特征在于所述的调整速系统是在转速闭环的基础上,增设了克服涡流制动器电惯性的电流环,为了确保系统的安全可靠,再增设励磁电流快速上升补偿环节、励磁电流全过程监控环节及停顿制动环节,所述的转速闭环的转速反馈信号,是采用检测感应电动机的转子频率,并将频率快速转换成电压的测速方法。 涡流制动器,还有涡流阻尼器,原理是导体在磁场中运动,导体内产生感生电势感生电流,并受到阻碍其运动的制动电磁力矩。电涡流制动器 一、概述 涡流制动器又称电磁制动器,它是利用涡流损耗的原理来吸收功率的。通常由涡流制动器、控制器及测力装置组成测功装置,可以测取被测机械的输出转矩和转速,从而得出输出功率,它可以取代磁粉离合器、水力测功机、直流发电机组等,用来测量各种电动机、变频器、发动机、齿轮箱等动力机械的性能,成为型式试验的必要设备,与其它测功装置相比,WZ

系列测功装置具有更高的可靠性、实用性和稳定性,价格也便宜很多。 二、主要特点 1、结构简单、运行稳定、价格低廉、使用维护方便; 2、采用水冷却,噪音低、振动小; 3、输入转速范围宽,可用于变频调速等各类电动机及动力机械的型式试验; 4、控制器采用单相交流电源,控制功率小; 5、转矩的测量可以采用普通磅秤、电子磅秤或高精度转矩转速测量仪,适用于不同测量精度的场合; 6、该装置还能作制动器用,制动力矩大,耐高转速。 三、产品规格及主要数据 1、型号说明 A:双轴伸,基本形式(可省略)B:单轴伸

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

制动主缸装车基础理论及常出问题汇总解说

制动主缸装车基础理论及常出问题汇总简析图例一

按图说明:图为制动主缸在车身上正确安装图例,任何的故障或现象均在“正确安装的基础之上进行判断、验证” 1.首先保证制动主缸活塞与助力器挺杆之间的间隙或过盈配合合理。即总成的主缸空行程在1- 2.5mm之间; 2.图中尺寸2除以尺寸1为踏板比、在踏行程和制动力判断上均会考虑到此数值。见尺寸3,此尺寸只允许短不允许长, 这里的长、短只表示在未踩刹车时不能让主缸有预压缩而导致主缸无空行程。这也是各种故障及现象查找验证的基础条件之一; 3.在现场处理问题时如发现有踏板预压情况,可适当调节刹车灯开关来解决,或调整推叉的尺寸即尺寸3。 注:原则上制动踏板的高度与油门踏板的高度持平或高于油门踏板,不允许低于油门踏板的高度; 知识:商品承用车制动踏板的设计要满足制动主缸的全行程及主缸单腔失效后的制动效果,但是制动踏板全程不允许超过150mm; 踏板力不允许超500N;综合路面的整车减速度达0.8g时的踏板有效行程约为踏板总行程的三分之一为适,管路液压一般不超10MPa。 GB/T7258的标准里有相关规定

二、真空助力器带制动总泵总成基本原理/主要技术参数介绍 基本功能: 真空助力器带泵总成是由真空助力器、制动主缸、贮液油壶三部分组成。真空助力器带制动主缸总成为制动系统中的驱动机构。制动主缸、制动油管、ABS/ESP压力调节系统(比例阀、三通)、制动轮缸组成一个封闭的液压回路系统。当驾驶员踩刹车时,由制动踏板将驾驶员的下踩力,成比例的传递到真空助力器,再由助力器产生助力后成比例的传递到制动主缸,由助力推杆推动主缸活塞。主缸活塞再推动液压回路中的制动液,使之在这个回路中建立起相应的压力。然后再由制动系统中执行机构――制动器,将回路中的压力转换成理想制动力,因而达到一个良好的制动效果。 真空助力器的基本结构及工作原理简述: 真空助力器原则是不可拆卸的零部件总成,它是由前壳、后壳铆接成型的,其内部结构分:真空腔、变压腔、皮膜、控制阀体、阀门总成、柱塞总成等重要部件,皮膜前端为真空腔皮膜后端为变压腔,阀门总成与控制动阀体组成大气通道与真空通道的开启机构,由柱塞总成来完成大气通道与真空通道的开启与关闭。 工作原理:即无工作时真空腔与变压腔是相通,两腔均为真空状态,当助力器推杆向前推动柱塞,关闭真空阀门,此时两腔为第一个平衡点即两腔均为真空平衡状态,继续向前推动柱塞则会打开打气阀门,此时外部的大气进入到变压腔。那么皮膜的前端的为真空腔为真空状态,皮膜后端的变压腔冲入大气,此时会有一个伺服力产生,助力器开始助力并会向前移动,而推动制动主缸活塞。 制动主缸的基本结构及工作原理简述: 制动主缸是可拆卸,可更换内部零件(需专业人员),制动主缸为双腔串列式主缸。其特性是其中一腔失效另一腔仍能建立起最高工作液压。其内部结构分为第一腔(与助力器连接端)与第二腔(尾端),如果为补偿孔结构,不易与ABS或ESP连接使用。它是由第一活塞、第一副皮碗、主皮碗、第二活塞、第二副皮碗、主皮碗、阀门、回位弹簧等主要部件组成。 工作原理:当助力器推杆推动第一活塞时,由于是串连结构且第二回位弹簧力小于第一回位弹簧力,所以两腔活塞会带动皮碗同时向前移动,当第二腔阀门关闭第一腔主皮碗走过补偿孔时开始建压,0.1MPa时为此制动主缸的初始建压行程(空行程),再向前推动开始建压直至制动所需要的液压,即良好的制动压力。

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

电涡流缓速器工作原理及结构

二 电涡流缓速器工作原理及结构 电涡流缓速器是一种非接触式辅助制动系统,俗称“电刹”,其可以有效提高汽车的安全性能。欧洲各国已于20世纪30年代开始在货车上安装电涡流缓速器。因其有效提高重型汽车的安全性能,许多国家将其规定为标准件安装在相关汽车。 2.1 电涡流缓速器结构 图2.1所示为电涡流缓速器的示意图。电涡流缓速器由机械部分和电气部分组成。机械部分包括定子、转子以及支撑架,其主要内容如下:①定子。该结构是缓速器的主要工作部件,在定子圆周方向均匀地固定安装有8个高导磁材料制成的铁心,线圈套在铁心上,铁心起增大磁通的作用。圆周上相对两个励磁线圈串联或并联成一组磁极,并且相邻两个磁极均为N 、S 相间,这样就形成了相互独立的4组磁极。定子通过固定支架刚性安装在车架上(或者驱动桥主减速器外壳上,也可安装在变速器后端盖上),定子相对于车架静止不动。②转子。该结构呈圆环状,由2片前后对称、带散热叶片的转盘组成,前后2转盘中间通过连接环将其固定为一体,前后转盘通过法兰或凸缘与传动轴相连,并随传动轴一起高速旋转。转子一般用导磁率高且剩磁率低的铁磁材料制成。定子和转子之间有一定气隙,可以相对转动。从减小磁阻角度讲,气隙越小越好,但又要保证转子在规定的偏心误差内自由转动,以便使转子盘旋转时不会刮擦到定子,综合考虑缓速器的性能要求以及运行可靠性,定子和转子之间的气隙一般在0.5~1.5mm 之间。这是一个对制动转矩影响很大的结构参数。 电气部分包括控制系统、ABS 连接器、车速信号传感器、制动压力传感器、手控开关信号以及指示灯,其主要内容如下: 1) 控制系统。该结构是电涡流缓速器各种信号的集中分析及处理中心,对缓速器的工作状况发出指令。 2) 车速信号传感器。该结构用于收集车速信息,并将信号以电信号方式传输给控制系统。控制系统根据此车速信号V 以及控制系统内预设的临界车速信号0V 来决定电涡流缓速器系统是否进入制动待命状态。当0V V 时进入制动待命状态,反之退出。 3) 制动压力传感器。一般为线性型传感器,其可以产生的反映制动气压线性变化的电信号并传送给控制系统,以便调整缓速器的励磁电流量值的大小。 4) ABS 连接器。该结构由数十个数字逻辑电路构成,能根据车辆的行驶状况自动控制缓速器的工作状态。如果ABS 发现某个车轮打滑,控制器将立即终止缓速器的制动作用。车轮打滑一旦结束,缓速器又进入待工作状态,始终保持缓速器的制动力矩在地面附着力的范围内。另外,当ABS 有故障时,控制系统将切断电涡流缓速器的脚控功能,手控制动仍然有效,以保证行车安全。因此,电涡流缓速器和ABS 系统是兼容的。 5) 指示灯。安装在仪表板上,显示电涡流缓速器的当前工作状态。

汽车悬架系统开发布置流程

悬架系统开发流程---布置部分 目标设定BENCHMARK 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外

电磁制动器的原理与设计

1 引言 1.1 课题研究的背景及意义 制动器是保障汽车安全运行、取得预期运行效益的最基本的使用性能,因此汽车制造厂、使用者、汽车维修和管理人员都很重视车辆的制动性。随着车辆技术的进步和汽车行驶速度的提高,这种重要性日渐突出,众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法以及采用新的技术。 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的车辆质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自身质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动(图1.1)是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器,克莱斯勒的四轮液压制动器于1924年问世,通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 1.前轮制动器 2.制动轮缸3、6、8.油管 4.制动踏板机构 5.制动主缸7.后轮制动器

图1.1 在液压鼓式制动器出现的若干年后,人们又发明了液压钳盘式制动器,盘式制动器又称为碟式制动器,顾名思义,是取其形状而得名。由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动。制动卡钳上的两个摩擦片分别装在制动盘的两侧。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1.2 制动系统的现状与发展 目前液压操纵仍然是最可靠、经济的方法,即使增加了防抱制动(ABS)功能后,传统的油液制动系统仍然占有优势地位。传统的控制系统只做一样事情,即均匀分配油液压力。当制动踏板踏下时,主缸就将等量的油液送到通往每个制动器的管路,并通过一个比例阀使前后制动力平衡。而ABS或其他一种制动干预系统则按照每个制动器的需要对油液压力进行调节。传统的液压制动系统发展至今已是非常成熟的技术,随着人们对制动性能要求的不断提高,防抱死制动系统(ABS)、牵引力控制系统(TCS)、电子稳定性控制程序(ESP)、主动避撞技术(ACC)等功能逐渐融入到制动系统中,越来越多的附加机构安装于制动线路上,这使得制动系统结构更加复杂,也增加了液压回路泄露的隐患以及装配、维修的难度。因此,一种结构更简捷,功能更可靠的制动系统呼之欲出。 随着电子,特别是大规模、超大规模集成电路的发展,汽车制动系统的形式也将发生变化。线控制动系统失一个全新的系统,给制动系统带来巨大的变革,为将来的车辆智能控制提供条件。随着汽车电子化的发展,现代汽车制动控制技术正朝着电制动方向发展。电制动系统首先用在混合动力制动系统车辆上,采用液压制动和电制动两种制动系统。但这种混合制动系统也只是全电制动系统的过渡方案,由于两套制动系统共存,使结构复杂,成本偏高。而线控制动因其巨大的优越性,必将取代传统的

汽车刹车泵工作原理

简述刹车系统工作原理 [汽车之家技术] 在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

汽车制动真空助力器带制动主缸总成的轻量化设计

汽车制动真空助力器带制动主缸总成的轻量化设计 作者:葛宏马闯卜凡彬 摘要:从轻量化的概念出发,对汽车制动 真空助力器的轻量化的方法进行总结,并利用计算机的拓补优化,实现真空助力器带制动主缸总成的轻量化设计。 主题词:轻量化真空助力器汽车 0 引言 汽车的轻量化是指在保证汽车的强度和安全性能的前提下,尽可能多地降低整备质量,从而提高汽车的动力性,减少燃料消耗以降低排气污染。研究显示,若汽车整车重量降低10%,燃油效率可提高6%~8%;汽车整备质量每减少100kg,百公里油耗可降低0.3~0.6L,汽车重量降低1%,油耗可降低0.7%。此外,车辆每减重100kg,CO2的排放量可减少约5g/km。 当前,出于环保和节能的需要,汽车的轻量化已经成为世界汽车发展的潮流。 1 汽车真空助力器带制动主缸总成 1.1 汽车真空助力器带制动主缸的主要作用 汽车制动真空助力器总成产品是整车制动系统中的安全件,利用发动机或其他真空源提供的真空,通过控制腔内的真空与大气的压强差,实现对驾驶员制动踏板力的放大,并通过制动主缸转换为制动液压,驱动基础制动部件,实现整车的制动。 1.2 汽车真空助力器带制动主缸总成的主要构成 汽车真空助力器带制动主缸总成根据结构不同,约由40~60个不同零件组成(见图1)。其中助力器的前后壳体和制动主缸缸体的重量约占整体重量的62%~80%,因此,本产品的轻量化设计主要针对这3个零件。

2 汽车真空助力器总成的轻量化设计方法 汽车真空助力器的轻量化设计,绝不是等同于减轻材料,它是在保证产品性能和整车安全性能的前提下,充分利用最新设计技术,新材料以及最先进的分析手段和试验技术对现有产品的优化设计。现阶段,主要从以下方面进行。 2.1 结构设计-利用贯穿杆结构取代传统结构 传统结构的汽车真空助力器的前后壳体,是主要的承力部件;贯穿杆结构的汽车真空助力器的主要承力部件是贯穿杆,助力器的前后壳体是辅助的承力部件(见图2)。由此工作原理的优化,可大幅度减薄前后壳体的材料厚度,从而降低产品重量。

电磁涡流刹车使用说明书

DWS70 电磁涡流刹车 使用说明书上海申通石油机械厂

一、性能及说明 DWS70型涡流刹车作为钻深为7000米的海洋或陆地钻机的辅助刹车,既可与绞车成套供应,也可为矿场已经使用的钻机配套作为单独部件供应。 1、技术规范 最大扭矩110000N.m 钻井深度(用41/2"钻杆)7000m 作用原理感应涡流制动 线圈个数 4 每个线圈额定电阻(20°C时)10.722Ω 线圈绝缘等级H级 励磁功率23KW 励磁电流(四线圈并联时)84A 需用冷却水量560L/min 最大出水温度(当进水温度42°C时)78°C 重量11000kg 二、结构 电磁涡流刹车由刹车主体、可控硅整流装置及司钻开关等三部分组成。 1、刹车主体 它由两个基本部分组成,如图一所示。其一为静止部分,称为定子;其二为转动部分,称为转子。在定子与转子之间有一定的气隙,称为工作气隙,电磁涡流刹车的刹车主体采用外电枢结构的型式,也就是说,其转子在定子外面旋转。 刹车的定子由磁极和激磁线圈构成。磁极是磁路的一部分,采用电工钢成,这种材料的导磁系数高,矫顽力小,以满足下钻时有用制动扭矩大,而起空吊卡时无用制动扭矩小的要求。激磁线圈是刹车的电路部分,工作时通以直流电流,它固定于磁极上,与磁极组成一个整体成为定子。刹车在运行时要产生大量的热量,因此激磁线圈采用了耐高温的电磁线与相应的绝缘材料,以保证线圈在高温下仍具有良好的绝缘性能。

图一电磁涡流刹车结构示意图 1. 端盖 2. 转子 3. 机座 4. 定子 5. 激磁线圈 6.上呼吸器 7.下呼吸器

刹车的转子通过齿式离合器与绞车滚筒轴相联,由绞车滚筒驱动,与滚筒同速旋转。转子既是磁路的一部分,又是电路的一部分,采用电工钢制成。 它和定子磁极、工作气隙构成刹车的完整磁路。 2.可控硅整流装置: 它由整流变压器和可控硅半控桥式整流电路组成。用以将钻机交流发电机或交流电网供给的交流电压变成可调直流电压,给激磁线圈通以可调直流电流。考虑到使用电磁涡流刹车进行下钻作业时,其下钻速度的调整精度、调节系统的稳定性以及过渡过程动态品质方面的指标都要求不高,因此采用比较简单的闭环调节系统即可满足钻井工艺的要求。通过调节激磁线圈的直流电流,便可调节刹车的制动扭矩,从而改变钻具的下放速度。 3.司钻开关: 它实际上是一台可调的差动变压器,由铁芯、线圈、调节机构等部分组成。 将铁芯位置的变化转换成交流信号电压的变化,经桥式整流作为给定信号电压,去控制可控硅的导通角,达到改变直流电压,从而改变激磁线圈直流电流,改变制动扭矩,调节滚筒转速的目的。 壳体两侧装有四个排除不锈钢护罩内冷凝水的呼吸器及两个润滑轴承的黄油嘴。 涡流刹车输出轴端直径为190.52mm(71/2")锥度为8:77ft。 刹车的外形尺寸为: 长度1346mm(53") 宽度1926mm(76") 高度1926mm(76") 三、冷却系统 涡流刹车与绞车的滚筒共用一个水冷却系统,由一个水泵供应冷却水,流经刹车的冷却水返回一个容积为40m3的水箱以便散热,刹车需用的冷却水量为560L/min确保涡流刹车的进出水温度在规定的范围内。冷却水系统的流程图如图二所示。 水质要求含有较低的矿物质(PH值不超过7~7.5),与内燃机水套内的水质要求相近,如果水质不合要求,则需进行化学处理,当刹车用于海洋时,也可以装置专门的海水冷却器。

相关文档
最新文档