非高炉炼铁技术及在我国发展的展望

非高炉炼铁技术及在我国发展的展望
非高炉炼铁技术及在我国发展的展望

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

北欧国家高炉炼铁技术发展趋势

北欧国家高炉炼铁技术发展趋势 1 技术发展 芬兰鲁基(Ruukki)公司的1号高炉于2010年大修,2号高炉将于2011年大修。另外,2011年烧结厂关闭后,这两座高炉将全部使用球团矿冶炼。 在钢铁联合企业,高炉炼铁是能耗最高的环节。为了保持竞争力,必须减少高炉能耗和还原剂的使用。例如,鲁基和瑞典欧维克(Ovako)公司开发了喷吹重油技术来降低焦比,而瑞典SSAB公司乌克瑟勒松德(Oxelosund)厂采用了氧煤喷枪。同时,由于使用了高品位的铁矿石,北欧高炉普遍实现了低渣量冶炼。 2 氧煤喷枪 喷吹燃料代替部分焦炭,可以大幅度提高高炉利用系数和能源效率。喷吹燃料的高效燃烧是根本性的,是高喷吹量的主要问题。为了改善煤的燃烧,瑞典国家冶金研究院于20世纪90年代初开发了氧煤喷枪。通过单风口喷吹试验,SSAB公司乌克瑟勒松德厂4号高炉全部更换为氧煤喷枪。氧煤枪是内管走煤粉、外管通旋流氧气的同轴套管式直管,氧气对枪管同时起冷却作用。单风口大量喷煤试验表明燃烧十分稳定。乌克瑟勒松德4号高炉换成氧煤枪后,喷煤量由35kg/t增加到喷煤系统最大能力135kg/t。SSAB报告显示,在没有炉顶加压和没有无料钟布料条件下,高炉操作稳定,燃料比(煤+焦)较低,约为465kg/t。另外,由于减少了炉尘量,电除尘效果得到改善,高炉透气性提高。 试验高炉 1997年瑞典矿业公司(LKAB)投资500万欧元,在位于吕勒奥市的瑞典国家冶金研究院建造了试验高炉,这也是北欧研发投入最大的项目。该试验高炉工作容积为9立方米,日产铁水35吨。虽然当时建造试验高炉的目的只是为了LKAB公司内部球团的研究开发,但经过5个炉役的试验,其潜能就得到了发挥。LKAB公司和客户以及其他厂商(包括北欧和欧盟国家)在此做了大量研发项目的试验,包括矿石、焦炭、新型无料钟炉顶、高喷油和富氧、杂料喷吹、测量技术等,至今共进行了25个炉役的试验,每次试验平均运行8个星期。 风口喷吹造渣剂 风口喷吹碱性造渣剂是很有意义的技术开发,工作人员对喷吹高炉炉尘和转炉渣进行了实验室研究和半工业试验。 工作人员在试验高炉和SSAB公司吕勒奥3号高炉上进行了高炉炉尘喷吹试验,主要目的是为了循环利用和回收炉尘中的碳等能源。尽管存在管道磨损问题,但试验表明了该技术的可行性和有效性。喷吹转炉渣时,沿高炉高度方向,从炉腹到风口,炉渣的化学性能得到改善,特别是在使用高铁球团的低渣量冶炼时更是如此。通过风口喷吹造渣剂可以消除极端炉渣成分不合理而对高炉操作产生的影响。煤粉中的酸性灰分在回旋区外围形成不透液的凝固层,阻碍风口高度的煤气流分布。 同样,在使用高铁球团时加入石灰石和其他碱性熔剂,由于炉渣碱度特别高,炉腹渣的黏度和熔点会升高,也影响气流分布。通过喷吹转炉渣和其他碱性物料,可调节高炉炉渣成分,消除风口酸性渣和炉腹碱性渣的极端状况。 在LKAB试验高炉上成功进行了转炉渣喷吹试验,吨铁喷吹量为36.9kg,取得了渣比从136kg/t降低到101kg/t、焦比下降11kg/t的良好效果。同时,铁水硅含量降低了28%,并保持稳定。此外,排碱量和铁水硫含量并未受到明显影响。研究表明,与单独喷煤相比,煤粉和转炉渣混合喷吹会使回旋区疏松、深度变长。影响大规模试验的因素是须将大量转炉渣磨细。 2 含铁原料有效利用 目前北欧国家炼铁所用的铁矿石绝大部分来自瑞典LKAB公司位于拉普兰地区(Lapland)的高品位磁铁矿,该矿区的大规模开采始于20世纪初期,球团矿生产始于1955

钢铁冶炼技术的发展

钢铁冶炼技术的发展 我国古代冶铁术发展得很早。中国和埃及、巴比伦、印度都是最先进入铁时代的国家。中国最早在什么年代开始会炼铁尚无定论,但从考古发现知道,早在3300年前,人们就有意识地使用铁了。1972年,河北出土一把商代的铜钺,铜钺上有铁刃,已经全部锈成氧化铁。其年代在公元前14世纪前后,属殷墟文化早期。这说明当时的人们认识到了铁的部分功能,并且能够进行锻造加工。还有一些考古发现的那个年代的铁刃铜兵器。这些发现都表明,最迟在商朝中叶,我国人民已经掌握了铁的锻造工艺。从考古发掘的结果来看,我国最早人工冶炼的铁器约出现于公元前6世纪,即春秋末期。出土铁器中农具和手工业工具占绝大部分;铁器的质地既有锻成的块炼铁,也有铸造的生铁。人类冶炼铁矿石制作铁器,推测是在公元前1500~2000年间。这个时期的炼铁方法,是把铁矿石放在简单的火坑里,加上木炭燃烧加热升温,得到的温度在铁的液化点之下,产品铁块中含有渣,再把铁块中的渣用锻打的方式挤出,锻成块炼铁。这种由铁矿石直接得到产品的方法实际上就是直接炼铁法。为了得到液态的铁水,需要提高炉子的温度,想提高炉温就需要增大炉子高度,从而产生了现代高炉的雏形。炉子高了,炉内的料层对空气流通的阻力增大,因此必须强制向炉内鼓风,从而发展出了各种各样的鼓风方式。到了15世纪(意大利文艺复兴时代),强制送风的高炉(熔矿炉)在莱茵河上游出现。用这种方法得到了熔融状态的铁水。由于这种方法使用大量的木炭作为还原剂及燃料,造成了森林的枯竭,为此1709年前后英国人A.Darby开发出了用煤制造的焦碳代替木炭的高炉,这种还原方法一直持续至今。另外,继续增大鼓风效率,使得原始炼铁炉的高度继续增加,渐渐演变成为现代的高炉。现代的巨型高炉和最早形成的高炉相比,规模、生产率和装备条件上有天壤之别,但冶炼原理仍然基本相同。为了使铁能够锻造,需要把生铁中所含的碳去掉一部分或大部分,于是出现了当时的炼钢法—炒钢法。我国东汉时期就有了炒钢的文字记载,地下发掘出的实物也证明,至迟在东汉时炒钢就出现了。生铁中的碳被氧化后熔点升高,而温度升高炉内金属逐渐成为半熔的状态,取出锻打成坯,挤出其中的渣子。含有一些碳的就是钢,碳非常低的就是熟铁。由于很难控制金属中的碳,大多一直炒到底成为熟铁,炒钢法也称为炒熟铁法。炒钢法的出现标志着钢铁冶炼技术进入了一个新阶段—“二步法”诞生,也就是铁矿石在高炉中用焦炭还原并且渗碳成为生铁,生铁经过氧化脱碳成为熟铁或钢。欧洲产业革命迎来了钢的大生产时代,发明了几种钢的熔融精炼法。1856年发明酸性底吹转炉法(贝塞麦法)、1879年发明碱性底吹转炉法(托马斯法)、1856年发明平炉法(西门子-马丁法)、1899年发明电炉法(埃鲁法);从此进入了以铁水作为原料高效精炼钢水的大生产时代。

非高炉炼铁工艺发展现状

万方数据

万方数据

非高炉炼铁工艺发展现状 作者:王振智 作者单位:中冶天工上海十三冶建设有限公司设备安装分公司,上海,201900 刊名: 中国高新技术企业 英文刊名:CHINA HIGH TECHNOLOGY ENTERPRISES 年,卷(期):2011(2) 参考文献(7条) 1.王保利发展直接还原铁是解决废钢资源短缺的有效途径 1998(02) 2.钱晖;周渝生HYL-III直接还原技术[期刊论文]-世界钢铁 2005(01) 3.Oehlberg R J;Arthur G.McKee FIOR process for direct reduction of iron ore 1974(04) 4.阴继翔煤基直接还原技术的发展[期刊论文]-太原理工大学学报 2000(03) 5.Borl é e J;Steyls D;Colin R COMET:a coal-based process for the production of high quality DRI from iron ore fines 1999(03) 6.余琨原矿原煤冶炼-21世纪与高炉竞争的炼铁方式[期刊论文]-东北大学学报(自然科学版) 1998(04) 7.徐国群Corex技术的最新发展与发展前景[期刊论文]-炼铁 2004(23) 本文读者也读过(7条) 1.宁振.郑志强.NING Zhen.ZHENG Zhiqiang浅谈非高炉冶炼技术的发展前景[期刊论文]-科技传播2011(11) 2.崔胜楠.杨吉春对非高炉炼铁技术发展现状的综述[期刊论文]-科技信息2011(6) 3.唐恩.周强.翟兴华.阮建波适合我国发展的非高炉炼铁技术[期刊论文]-炼铁2007,26(4) 4.储满生.赵庆杰.CHU Man-sheng.ZHAO Qing-jie中国发展非高炉炼铁的现状及展望[期刊论文]-中国冶金2008,18(9) 5.庞建明.郭培民.赵沛.Pang Jianming.Guo Peimin.Zhao Pei煤基直接还原炼铁技术分析[期刊论文]-鞍钢技术2011(3) 6.花皑.崔于飞.吴培珍.李可卿.HUA Ai.CUI Yu-fei.WU Pei-zhen.LI Ke-qing直接还原铁的制造工艺及设备[期刊论文]-工业加热2011,40(1) 7.周渝生.钱晖.张友平.冯华堂非高炉炼铁技术的发展方向和策略[期刊论文]-世界钢铁2009,9(1) 本文链接:https://www.360docs.net/doc/ed1661571.html,/Periodical_zggxjsqy201102025.aspx

现有主要炼铁工艺的优缺点和研发方向

现有主要炼铁工艺的优缺点和研发方向 摘要:当前,钢铁企业炼铁工艺中,热效率已经很高,工艺技术设备也已完善,大型化、长寿化的高炉炼铁工艺作为我国主要炼铁设备,将继续在炼铁领域占统治地位。在我国社会主义市场经济体制改革不断深入的背景下,钢铁企业要不断进行自主创新,提高炼铁工艺基础管理水平,积极引进或开发最新炼铁工艺,特别是节能减排技术,切实保证产品质量,促进企业经济效益和社会效益的提高。 关键词:炼铁工艺;优缺点;发展 一、钢铁企业炼铁工艺发展现状及问题 近几年随着我国市场经济的快速发展和科学技术的不断进步,钢铁企业高炉炼铁工艺不断优化,具有热效率高、技术完善、设备使用寿命长等优点,同时我国炼铁技术取得了一定的成就,比如提高转炉炉龄,提高转炉作业率,强化供氧技术等等;特别是“十二五”规划以来,我国钢铁企业重视炼铁工艺优化,重点进行节能减排技术的开发,比如滚筒法连续处理工艺等,大力引进先进设备,生铁产量逐年提高,说明我国节能减排工作取得了一定的进展。但是,目前我国钢铁企业炼铁工艺中还是存在一定的问题: 一是我国炼铁工艺的能耗、废弃物回收利用和环境治理等与国家炼铁水平还是有很大的差距。 二是炼铁工艺管理不够规范,比如说辅料、铁合金等的分类管理。 三是当下炼铁中的二氧化碳的排放量高于国际水平,产品质量没达到国际水平。 四是炼铁工艺设计缺乏创新,一定程度上影响了炼铁工艺的使用。 二、高炉炼铁工艺 在当前,主要的钢铁生产都是以高炉流程生产的.高炉流程是现代钢铁生产流程的龙头。因此,就对高炉炼铁工艺的优缺点进行分析: 高炉反应器的优点是热效率高、技术完善,设备已大型化、长寿化,单座高炉年产铁最高可达400万吨左右,一代炉役的产铁量可达5000万吨以上,可以说,没有现代化的大型高炉就没有现代化的钢铁工业大生产。在今后相当长时期内,高炉流程在我国将继续是主要产铁设备,继续占统治地位.我国已完全掌握现代先进高炉技术,单位建设投资和生产成本相对较低. 但目前人们对高炉工艺流程有种种不满: 一是高炉必须要用较多焦炭,而炼焦煤越来越少,焦炭越来越贵;

炼铁技术第一章到第三章作业参考答案

第一章到第三章作业答案 1、试述高炉炼铁的生产过程,画出现代高炉炼铁生产工艺流程图; 答高炉炼铁的生产过程的描述: 冶炼过程中,炉料(矿石、熔剂、焦炭)按照确定的比例通过装料设备分批地从炉顶装入炉内,高温热风从下部风口鼓入,与焦炭反应生成高温还原性煤气;炉料在下降过程中被加热、还原、熔化、造渣,发生一系列物理化学变化,最后生成液态渣、铁聚集于炉缸,周期地从高炉排出。煤气流上升过程中,温度不断降低,成分不断变化,最后形成高炉煤气从炉顶排出。 现代高炉炼铁生产工艺流程图 2、根据物料存在形态的不同,高炉内可划分为哪六个区(带)? 答根据物料存在形态的不同,可将高炉划分为六个区(带),从上到下依次是块状带、软熔带、滴落带、燃烧带、中心焦堆、渣铁盛聚带。 3、解释名词: 干焦比:指每冶炼一吨生铁所消耗的干焦量,kg焦/t铁; 有效容积利用系数:指每立方米高炉有效容积在一昼夜生产的生铁吨数,t/(m3.d) 焦负荷:每批炉料中铁、锰矿石的总质量与焦炭重量之比,或单位重量的焦炭上所负载的矿石重量。是用以评估燃料利用水平,调节炉料分布的重要参数。 有效熔剂性:按照炉渣碱度要求,扣除熔剂自身所含的酸性氧化物所消耗的碱性氧化物后,剩余的碱性氧化物含量(%)。 4、高炉常用的天然铁矿石有哪几种?评价铁矿石质量的标准有哪些? 答:天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿、菱铁矿; 评价铁矿石质量的标准有铁矿石的成分(矿石品位、脉石成分、有害杂质和有益元素的含量)、粒度和强度、还原性、化学成分稳定性以及铁矿石的软熔性等。 5、焦炭在高炉生产中起什么作用,高炉冶炼过程对焦炭质量提出哪些要求? 答焦炭在高炉生产中的作用:作发热剂、作还原剂、做料柱的骨架。 高炉冶炼对焦炭质量要求:(1)含碳量高,灰分低。(2)有害杂质少。(3)成分稳定,挥发分

流态化还原炼铁技术

流态化还原炼铁技术 流态化(fluidization)是一种由于流体向上流过固体颗粒堆积的床层而使得 固体颗粒具有一般流体性质的物理现象,是现代多相相际接触的工程技术。使用流态化技术的流化床反应器因具有相际接触面积大,温度、浓度均匀,传热传质条件好,运行效率高等优点而应用于现代工业生产。 高炉炼铁技术在矿产资源受限和环保压力增大等形势下,将面临着前所未有的挑战。铁矿石对外依存度过高、铁矿石粒度越来越小和焦炭资源枯竭等状况,迫使人们加快步伐探索改进或替代高炉工艺的非高炉型炼铁工艺。以气固流态化还原技术为代表的非高炉炼铁工艺逐步受到重视。 新工艺的建立和发展需要理论研究作为支撑。目前国内对于流态化还原炼铁 过程中的气固两相流规律的认识还不够深入,特别是对不同属性铁矿粉的流态化特性、不同操作条件下的流态化还原特性,以及反应器结构对流态化还原过程的影响等相关研究还不够充分,基于流态化还原技术的新工艺要成熟应用于大规模工业生产还有明显距离。 发展流态化技术须重视基础研究 流态化技术可以把固体散料悬浮于运动的流体之中,使颗粒与颗粒之间脱离接触,从而消除颗粒间的内摩擦现象,使固体颗粒具有一般流体的特性,以期得到良好的物理化学条件。流态化技术很早就被引入冶金行业,成为非高炉炼铁技术气基还原流程中的一类重要工艺。流态化技术在直接还原炼铁过程中主要有铁矿粉磁化焙烧、粉铁矿预热和低度预还原、生产直接还原铁的冶金功能。 我国从上世纪50年代后期开始流态化炼铁技术的研究。1973年~1982年,为 了开发攀枝花资源,我国进行了3次流态化还原综合回收钒钛铁的试验研究。中国科学院结合资源特点对贫铁矿、多金属共生矿的综合利用,开展了流态化还原过程和设备的研究;钢铁研究总院于2004年提出低温快速预还原炼铁方法(FROL TS),并

非高炉炼铁工艺发展现状_王振智

2011.01 57 摘要: 文章阐述了非高炉炼铁技术的发展现状及分类,并对主要工艺流程法作了较为详细的介绍,并对各种工艺流程的特点进行了分析,展望了非高炉炼铁技术在新世纪的发展前 景。 关键词: 非高炉炼铁;直接还原;熔融还原;二步法熔融还原;转底炉法中图分类号: TF557 文献标识码:A 文章编号:1009-2374(2011)03-0057-02非高炉炼铁工艺发展现状 王振智 (中冶天工上海十三冶建设有限公司设备安装分公司,上海 201900) 高炉炼铁发展至今,因其必须使用储量有限的焦炭为主要燃料,需要以一定粒径的块状铁矿石入炉冶炼等原因,面临着能源、环境、投资等方面的困扰。近几十年来世界各国的冶金工作者们一直致力于研究和改进各种非高炉炼铁技术。 一、非高炉炼铁生产工艺技术 直接还原和熔融还原是两种最主要的非高炉炼铁思路,他们较高炉炼铁具有更多的优势,因而具有较大的发展空间。直接还原分为气基和煤基直接还原,其中气基直接还原主要是气基竖炉法、气基流化床法,是利用天然气经裂化产出的H 2和CO作为还原剂,在竖炉中将铁矿石在固态温度下还原而成海绵铁,目前主要方法有Midrex和HYL法两种。煤基直接还原是用煤作还原剂在回转窑或循环流化床中将铁矿石在固态温度下还原成海绵铁,其中回转窑工艺是最成熟、应用最广的方法,具有代表性的是SL/RN法。熔融还原法是以煤炭为主要能源,使用天然富矿、人造富矿(烧结矿或球团矿)取代高炉生产液态生铁的方法。 二、直接还原工艺 (一)气基直接还原工艺 Midrex技术和HYL-III技术占直接还原铁产量的85%以上,是直接还原铁的两大主流技术。两者均采用逆流移动床作为反应器,还原气为天然气,天然气经转化炉变成H 2+CO的混合气,进入还原竖炉与氧化球团矿反应,最终金属化率>90%。HYL-III技术的特点是其还原温度比Midrex技术高约50℃~100℃(Midrex技术还原温度为800℃~900℃),另外,HYL-III反应器内压力>0.55MPa,其高温、高压、高氢气浓度的条件保证其高的还原速率。 Midrex技术和HYL-III技术具有污染较小,能耗低的特点,但都只解决了不使用焦炭这一个问题,仍必须使用球团矿,另外我国天然气资源严重缺乏,这两 种工艺难以适应我国国情。 图1 Midrex 竖炉结构示意图 F i o r 法和C i r c o f e r 法均采用流化床技术。Circofer法工艺原理:粉矿经过两段预热后进入反应器,在高于900℃的温度下被还原。反应器由流化床反应炉、再循环旋风收尘器和气化器组成。还原反应器中的流态化介质为还原性气体。在气化器中,煤与氧发生氧化,气体和再循环物料将反应热带入还原反应器内,氧化铁被还原为金属铁。目前流化床技术存在的问题是粉矿粘结及其对设备带来的损害。 (二)煤基直接还原工艺 煤基直接还原工艺主要包括回转窑法(如SL-RN 法)和转底炉法(如COMET法)。 SL-RN法工艺原理:铁矿石或球团矿与煤粉同时由窑尾加入窑内,借助于炉体的倾斜和转动,使炉料向窑头方向运动,经过预热带、还原带而得到产品。 COMET法是一种转底炉法,1997年由比利时的CRM 公司开发的一种用粉矿和煤生产优质海绵铁的工艺,工艺原理:采用转底炉,将煤层和铁矿粉交替铺在炉床上,通过煤气烧嘴加热。这样的混合物可使温度很快上升到1300℃以上。此工艺可以使用粉矿,但煤层和铁矿粉的交替铺层必然导致其生产率低的弱点。煤基直接还原有着自己的特点,我国煤资源丰富,此工 交流园地 E xchange Field DOI:10.13535/https://www.360docs.net/doc/ed1661571.html,ki.11-4406/n.2011.03.015

直接还原炼铁技术的最新发展doc

直接还原炼铁技术的最新发展 作者: 胡俊鸽,吴美庆,毛艳丽, 钢铁研究 摘要撰写人TsingHua 出版日期:2006年4月30日 直接还原铁可以作为电炉、高炉和转炉的炉料。DRI代替优质废钢更适合于生产对氮和有害元素有严格要求的钢种,如用于石油套管、钢丝绳、电缆线等的钢种。近年,由于钢铁市场升温,废钢资源呈现世界性紧缺。2003年,我国钢铁企业生产回收的废钢铁和非生产回收废钢铁合计为1502万t;而全年炼钢消耗废钢与辅助炼钢消耗废钢之和为4 750万t。显然,国内的废钢缺口很大。未来几年,随着国际市场废钢资源的短缺,世界对废钢的需求量将不断增长。当今,在废钢资源全球性紧缺、国际市场价格频频上扬的情况下,对于我国来说,寻找废钢替代品已迫在眉捷。直接还原铁和热压块铁是最好的废钢替代品。1直接还原炼铁技术发展状况2003年世界直接还原铁总量为4900万t。比2002年增加了10%,不同工艺所生产直接还原铁所占份额如下:Midrex 为64.6%,HyLⅢ为18.4%,HyLⅠ为1.3%,Finmet为5.2%,其他气基为0.4%,煤基为10.2%。直接还原工艺根据还原剂不同可分为气基和煤基。气基直接还原工艺中,竖炉Midrex、Arex(Midrex改进型)和HyLⅢ工艺、反应罐法Hy LⅠ、流化床法Fior和Finmet工艺,都已获得了工业应用,流化床法Fior、Cir cored和碳化铁法在工业上应用不久就停产了。煤基直接还原法中,获得工业应用的有回转窑法和转底炉法(Inmet-co、Fastmet、Sidcomet、DRylron),新开发的多层转底炉Primus工艺已于2003年2月投产。 1.1气基直接还原工艺气基还原工艺可分为使用球团矿或者块矿的工艺和使用铁矿粉的工艺。各种气基直接还原铁工艺发展状况如表1所示。表1各种气基直接还原铁工艺发展状况工艺装备工艺特点所用原料目前状况研究发展F ior(委内瑞拉)4个流化床反应器生产能耗高于竖炉Midrex和HyLⅢ铁矿粉Side tur厂于1976年投产,1985年开始,年产量达到35万t~41万t。由于市场原因于2000年停产。由委内瑞拉和奥钢联进一步发展成FinmetFinmet(奥钢联和委内瑞拉)4个流化床反应器铁矿靠重力从较高反应器流向较低反应器直接使用矿粉,是Fior 的进一步改进,比Fior能耗低、人员需求少。与Fior相比,其还原气体中H2含量少,CO没被氧化去。在Finmet工艺中,矿粉在流化床第一段被还原过程产生的热气体预热,其较高的CO含量可以提高热平衡,并使HBI的w(C)达3%。铁矿

高炉炼铁原料

高炉炼铁原料 1.铁矿石和燃料 高炉炼铁必备的三种原料中,焦炭作为燃料和还原剂,是主要能源;熔剂,如石灰石,主要用来助熔、造渣;铁矿石则是冶炼的对象。这些原料是高炉冶炼的物质基础,其质量对冶炼过程及冶炼效果影响极大。 铁矿石 铁矿石分类及特性 高炉冶炼用的铁矿石有天然富矿和人造富矿两大类,含铁量在50%以上的天然富矿经适当破碎、筛分处理后可直接用于高炉冶炼。贫铁矿一般不能直接入炉,需要破碎、富矿并重新造块,制成人造富矿(烧结矿或球团矿)再入高炉。人造富矿含铁量一般在55%~65%之间。由于人造富矿事先经过焙烧或者烧结高温处理,因此又称为熟料,其冶炼性能远比天然富矿优越,是现代高炉冶炼的主要原料。天然块矿统称成为生料。 我国富矿储量很少,多数是含Fe30%左右的贫矿,需要经过富矿才能使用。A.矿石和脉石 能从中经济合理的提炼出金属来的矿物成为矿石。如铁元素广泛地、程度不同地分布在地壳的岩石和土壤中,有的比较集中,形成天然的富铁矿,可以直接利用来炼铁;有的比较分散,形成贫铁矿,用于冶炼及困难又不经济。随着选矿和冶炼技术的发展,矿石的来源和范围不断扩大。含铁较低的贫矿经过富选也可用于炼铁。 矿石中除了用来提炼金属的有用矿物外,还含有一些工业上没有提炼价值的矿物或岩石,称为脉石。对冶炼不利的脉石矿物,应在选矿和其他处理过程中尽

量去除。但矿石中脉石的结构和分布直接影响矿石的选冶性能。如果含铁矿物结晶颗粒比较粗大,则在选矿过程中易于实现有用矿物的单体分离;反之,如果含铁矿物呈颗粒结晶嵌布在脉石中,则要进一步细磨矿石才能分离出有用单体。 B.天然矿石的分类及特性 天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种,主要矿物组成及特征见下表。 磁铁矿,主要含铁矿物为Fe3O4,具有磁性。其化学组成可视为Fe2O3* FeO,其中FeO 30%,Fe2O3 69%,Tfe 72.4%, O27.6%。磁铁矿颜色为灰色或黑色,由于其结晶结构致密,所以还原性比其他铁矿差。磁铁矿的熔融温度为:1500-1580摄氏度。这种矿物与TiO2和V2O5共生,叫钒钛磁铁矿;只与TiO2共生的叫钛磁铁矿,其他常见混入元素还有镍、铬、钴等。在自然界中纯磁铁矿很少见,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。假象赤铁矿仍保留着磁铁矿的外形,但Fe3O4已被氧化成Fe2O3的矿石。一般用TFe / FeO的比值来区分: TFe / FeO = 2.33 为纯磁铁矿石 TFe / FeO < 3.5 为磁铁矿石 TFe / FeO = 3.5~7.0 为半假象赤铁矿石 TFe / FeO > 7.0 为假象赤铁矿石 式中TFe –矿石含铁总量(又称全铁)

高炉炼铁工艺流程(经典)

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要 方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降

---非高炉炼铁现状趋势方向 周渝生

1.1 非高炉炼铁主题 高炉炼铁已经发展了几百年,目前在高产、低耗、长寿、效率、优质包括节能、环保等许多方面都有长足的进步,是目前世界上炼铁界占绝对统治地位的炼铁工艺。 但高炉炼铁工艺的进步并不能完全克服它与生俱来的固有的缺点,这就是它对优质冶金焦和人造块矿的强烈的依赖。正因为如此,决定了它的流程比较长即从炼焦、烧结或球团最终到高炉的长流程;决定了它的能耗比较高即需要经过冷态—热态—冷态—热态的反复的转换;也决定了它的污染比较严重,炼焦和烧结一直是冶金工厂中污染排放大户。 更严峻的是主焦煤的资源极为有限而且分布地域不均匀,仅占我国煤资源产储量的25%左右。尽管我国是煤资源的大国,但是随着我国钢铁产量的飞跃发展(目前的产能已经达到 4.7亿吨/年)据有关方面的预测我国的炼焦煤资源只够使用30年。30年后炼焦煤匮乏的将来我们如何生产钢铁?这一问题已经明明白白的摆在我们的面前! 2010年我国的粗钢产量已达到62665万吨,其中约有三分之一是能耗高、污染大的小高炉生产的,对环境造成严重的破坏,国家《钢铁产业发展政策》严格地规定了新建钢厂和现有钢厂淘汰落后的标准规范。另一方面又明确规定“支持企业跟踪、研究、开发和采用直接还原、熔融还原等钢铁生产流程前沿技术”。这一政策为非高炉炼铁技术的发展开拓了广阔的空间。 开发非高炉炼铁技术的主要目的就是要摆脱对冶金焦的依赖,扩大利用非炼焦煤的使用比例并推进冶金能源、资源的高效循环利用,它的目标还在于扩大直接使用低成本难选的低品质(含有过高的氧化硅、氧化镁、氧化铝、磷或硫中的一种或二种杂质)天然块矿或粉矿炼铁。这样可以使原料资源可利用的选择范围进一步拓宽,工艺流程大为缩短,生产成本更有竞争力,投资和污染大幅度降低,是一种清洁的炼铁技术,对钢铁工业的可持续发展具有十分重要的意义。 目前我国的经济发展正面临着以科学的发展观,走循环经济可持续发展道路的转型期。钢铁行业既是我国主导的基础工业又是能耗和污染的大户,而非高炉炼铁技术的诸多优点正是我国钢铁行业调整结构、降低能耗和污染的重要技术。随着宝钢引进COREX技术,韩国POSCO开发Finex技术的强劲势头,国内钢铁界正在形成一股开发、研究、发展、引进非高炉炼铁技术的热潮,并逐渐形成十分强劲的技术需求。 1.1.1直接还原技术的现状与差距 迄今为止,国际上商业化实绩较突出和有一定国际影响的直接还原工艺包括:MIDREX、HYL-Ⅲ、FINMET、FASTMET、RN等。但就还原剂的种类而言,可以分为气基直接还原和煤基直接还原。按生产装置的类型来分类,可以分为:竖炉法、流化床法、回转窑法、转底炉法和隧道窑法。世界上气基直接还原主要在天然气储量丰富、价格低廉的地区得到应用和发展。由于我国天然气价格昂贵气基直接还原一直没有得到发展,首钢正在策划在焦炉煤气富裕的产焦地区建设50万吨/年焦炉煤气HYL-Ⅲ-ZR零重整的气基直接还原装置,但大多数地区因为缺乏还原煤气,只能考虑如何用煤来进行铁矿石的直接还原。由于直接用煤的煤基直接还原回转窑工艺,生产规模较小,而且容易结圈。所以,用煤制气连接气基直接还原工艺受到人们的青睐,宝钢研究院1999年结题的BL法生产直接还原铁工艺就是这一类型技术开发的尝试。随着COREX技术的发展,作为COREX煤气的应用,经过适当的变换后与气基直接还原工艺相连接,生产直接还原铁技术也有新的发展,如南非撒旦那的COREX-Midrex直接还原联合流程。印度JINDAL公司正在奥里萨邦设计建设60万吨/年用鲁奇煤制气--竖炉直接还原工艺生产直接还原铁工程。为了推进含铁固体废物再利用,新日铁先后在君津制铁所和広畑制铁所各

炼铁新技术作业

当前非传统高炉炼铁技术的发展及研究现状1学号: 1)北京科技大学冶金生态与工程学院, 北京100083 ?, E-mail:3902@https://www.360docs.net/doc/ed1661571.html, 摘要首先分析了传统高炉炼铁技术发展面临的困扰和障碍,然后叙述了目前非高炉炼铁技术中的直接还原和熔融还原技术,综述了非高炉炼铁技术发展的现状。着重介绍了走向工业生产和即将进入工业生产的Corex 工艺和Finex 技术的优缺点和存在问题。最后叙述了高炉炼铁新技术中的氧气高炉,着重介绍了国内外氧气高炉的工业化试验情况。 关键词炼铁技术;高炉;直接还原;熔融还原;氧气高炉;工业化实验 The current untraditional blast furnace ironmaking technology development and research status Sxxxxxxei1 1)School of of metallurgical and ecological engineering, University of Science and Technology Beijing, Beijing 100083, China ?SxxN xei, E-mail:3xxx0802@https://www.360docs.net/doc/ed1661571.html, ABSTRACT Firstly, analyzes the problems and barriers to developing the traditional blast furnace ironmaking technology, then introduced the direct reduction and smelting reduction technology in currentnon-blast-furnace iron making technology, summarizes the present situation of the non-blast-furnace iron making technology development.Focus on the advantages and disadvantages and the existing problems of Corex process and of Finex technology whichapplied or will be applied to industrial production. Finally describes the oxygen blast furnace of new technology ofblast furnace ironmaking, focus onthe industrial test stage of oxygen blast furnace at home and abroad. KEY WORDS ironmaking technology; blast furnace; direct reduction; smelting reduction;oxygen blast furnace; industrialization experiment 1传统高炉发展面临的困扰和障碍 (1) 必须使用焦炭为主要燃料 高炉炼铁必须使用焦炭。焦炭不仅是高炉还原剂和热量的主要来源,而且是炉内维持料柱的骨架。大量的冶金焦是现代高炉炼铁不可或缺的燃料。 ①焦煤的资源越来越少。焦煤的供应即使像我国这样富有焦煤资源的国家,其供应也越来越紧张和困难。特别是焦炭价格成倍上升,导致了生铁成本的大幅上升。这已成为远离焦煤产地的钢铁企业发展的瓶颈。由于资源是不可再生的,从长远的角度看,这种状况是不可能逆转的。同时也应为后代多留一些,不能用之竭尽。 ②为保证高炉炼铁焦炭的来源还必须配有相应的建设焦炉生产设施。不但其投资费用相当昂贵,而且现代焦炉生产焦炭的工艺仍对人类的生态和环境造成了很大的污染,很难从根本上克服。所以,在发达国家已是明令禁止新建和严格控制生产。在我国大量使用焦炭,大规模的建设焦炉生产焦炭,对环境所造成污染,也已到了不能容忍的程度。 (2) 必须以一定粒级的块状铁矿石入炉冶炼 高炉采用竖炉鼓风冶炼技术,块状的焦炭和块矿石组成透气的料柱,并通过风口燃烧

先进非高炉炼铁工艺技术经济分析

先进非高炉炼铁工艺技术经济分析 胡俊鸽,周文涛,郭艳玲,赵小燕 (鞍钢股份有限公司技术中心。辽宁鞍山114009) 摘要:简要介绍了先进非高炉炼铁技术的发展现状,对Midrex、HYL/HYL Energiron、Corex、Finex和ITmk3工艺的成熟性、生产成本、投资费用和环境友好性进行了对比分析,得出经济上较具优势的为Midrex和HYL/HYL Energiron工艺,并指出Midrex和HYL/HYL Energiron工艺在我国应用存在的问题和需要进一步研究的课题。 关键词:非高炉炼铁;Midrex;HYL/HYL Energiron;Corex;Finex;ITmk3 非高炉炼铁因不用或者少用焦煤而受到人们的关注。虽然高炉炼铁仍是当今炼铁生产的主体流程,但非高炉炼铁法已成为炼铁技术发展的方向。非高炉炼铁技术在我国“十二五”规划中作为国家鼓励的项目之一,仍将是钢铁企业扩大产能规模的重要途径之一。在诸多非高炉炼铁工艺中,考虑产能规模、污染物排放、能耗和产品质量等因素,认为在这些技术中,已获得工业化应用的比较先进的技术有,属于直接还原范畴的Midrex和HYL/HYL Energiron工艺以及属于熔融还原范畴的Corex、Finex和ITmk3工艺。本文在简要介绍这些工艺现状的基础上,对其经济性进行对比,从而进一步深入地了解和认识这些工艺,为下一步研究非高炉炼铁工艺提供参考。 1先进非高炉炼铁技术现状 1.1 Midrex工艺 Midrex技术最初由美国Midrex公司开发,于1984年被日本神户钢铁公司并购。近年。Midrex工艺年产量约占世界直接还原铁(DRI)总量的60%,在所有直接还原工艺中居第1位。目前,正在运行的Midrex炉中单炉最大产能为176万t/a,正在建设中的单炉最大产能为180万t/a。部分工业炉超过设计产能在运行,如安赛乐米塔尔的Midrex直接还原厂甚至以超过设计产能33%的状态运行。Midrex工艺在使用天然气为还原剂的情况下,能耗为9.61 GJ/t;一些炉子利用系数达15.2 t/(m3·d),冶炼速度达230 t/h。 Midrex工业生产炉中。只有南非撒尔达那的1座炉子使用Corex排出的煤气作还原气源。为了在缺少天然气资源的地区进行推广,Midrex技术公司开发了以煤气化气作还原剂的工艺,并开发了炉顶煤气循环利用技术,把炉顶煤气脱CO2后作为还原气重新返回系统循环利用。目前,印度JSPL正在建1座Midrex炉,年产能为180万t/a,使用鲁奇煤气化技术,预计2012年完工投产。 1.2 HYL/HYL Energiron工艺 HYL/HYL Energiron技术最初是由墨西哥希尔公司开发的,2006年被Techint Group并购,之后又与Tenova和达涅利公司联合组成Energiron公司,在HYL ZR工艺基础上,形成新的技术牌名HYL Energiron。该工艺采用炉顶煤气循环利用技术,把炉顶煤气脱CO2后作为还原气体重新返回系统。 与Midrex工艺比,其最大特点是竖炉工作压力较高,Midrex工艺的压力为0.3 MPa,HYL/HYLEnergiron的压力为0.5~0.6 MPa。近年,HYL/HYLEnergiron产量在所有直接还原工艺中居第2位。正在运行的HYL/HYL Energiron单炉最大产能为160万t/a,大部分炉子都高出设计产能在运行。以天然气为还原剂,能耗仅为9.61 GJ/t。HYL/HYL Energiron工艺可以直接使用天然气,也可以使用煤气化气、焦炉煤气等作还原气源。达涅利将为印度JSPL设计4座年产能250万t的炉子,采用HYL ZR技术,以煤制气作还原剂,第1座炉子合同刚生效。 HYL/HYL Energiron单炉年产能正向大型化发展。除上述将为JSPL设计建设的250万t/a的炉子外,达涅利将为纽柯公司设计1座年产能250万t的炉子。该炉子采用HYL ZR 技术,计划2014年试车投产:为埃及Suez钢公司设计1座年产能195万t的炉子,采用

高炉炼铁工艺流程(经典)

高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示: 二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态

——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。 三、高炉冶炼主要工艺设备简介 高护炼铁设备组成有:①高炉本体;②供料设备;③送风设备;④喷吹设备;⑤煤气处理设备;⑥渣铁处理设备。 通常,辅助系统的建设投资是高炉本体的4~5倍。生产中,各个系统互相配合、互相制约,形成一个连续的、大规模的高温生产过程。高炉开炉之后,整个系统必须日以继夜地连续生产,除了计划检修和特殊事故暂时休风外,一般要到一代寿命终了时才停炉。 高炉炼铁系统(炉体系统、渣处理系统、上料系统、除尘系统、送风系统)主要设备简要介绍一下。

秦汉时期冶铁技术的发展

秦汉时期冶铁技术的发展 秦汉冶铁业的发展 秦所采取的政治经济措施,促进了冶铁业的发展,有利于钢铁技术的进步。始皇陵侧出土的秦代大型铁铧长达三百毫米,重十余斤。近年来河北围场县等地也先后出土秦代铁权。从战国时已用“铁杖”,“铁殳”作兵器看,《史记·张良传》记载夯土使用重一百二十斤的大铁椎,当非虚传。 汉代冶铁业较秦有更大发展。西汉中期,武帝刘彻和桑弘羊等实行盐铁官营,全国设立了四十九处铁官,人力物力相对集中,推广先进技术。西汉三大手工业中,冶铁业占着主导地位。《汉书·贡禹传》说:当时“攻山取铜铁,一岁功十万人以上”。实际上包括民间开采以及《盐铁论》所说“家人合会”这类小规模经营方式在内,参与冶炼铜铁的人数远不止此。西汉末年和新莽时期以盗铸论罪的数以十万计,就是证明。在广大群众实践的基础上,汉代出现了规模宏大的冶铁作坊。以河南为例,解放以来,经过普查、发掘和据文献所载,可以确定有冶铁遗址的所在已有十八处,所占面积达数万平方米至十余万平方米。其中,如巩县铁生沟、南阳瓦房庄、郑州古荥镇均经大规模科学发掘。巩县铁生沟发现大量经破碎拣选的矿石和木炭、铁渣,炼炉遗址十八座和藏铁坑、大铁块多件。南阳瓦房庄在三千平方米的发掘区域内,找到三个铸造区和一个炼钢锻造区,发现多个熔炉遗址,“人排”遗迹,大量铁范、泥范和各类铁器、耐火砖等。郑州古荥镇1965 年、1975 年两次发掘,发现两座大型炼铁高炉遗址,大积铁多块,其中最重者达二十多吨,烘窑十余座和大量泥范、铁器、铁渣、鼓风管、矿石等。温县西招贤村冶铁遗址在一座烘范窑内出土三百多套完整的叠铸泥范。这些重大发现为研究汉代冶铁生产和冶铁技术提供了十分重要的资料。 炼铁技术 在炼铁技术方面,以古荥冶铁遗址为例,一号高炉炉缸呈椭圆形,面积达8.5 平方米,炉高约5—6 米,炉容达到50 立方米左右,估计日产量有半吨到一吨,在当时技术条件下,这是相当可观的,也是世界上绝无仅有的。椭圆形炉型反映了冶铁工匠增大炼炉产量的重大努力和对鼓风与炉径相互制约关系的深入认识。在古代鼓风器风量、风压较小的情况下,这是扩大炉容,多加鼓风器,使风能达到炉缸中心的一个途径。炉基南面的坑中重达二十余吨的大积铁,证明高炉曾多次修筑、使用。对积铁、铁块和铁渣的分析和计算,证实汉代已有意识在炉料中加入石灰石作熔剂,以降低炼渣的熔点,改善渣的流动性和炉况。 汉代的生铁一般是高碳低硅的白口铁。由于炉温增高和熔铸技术的改进,从西汉前期起,就出现质量比白口铁为优的灰口铸铁,如河北满城刘胜墓所出车■就是用灰口铸铁造的。南阳瓦房庄出土的西汉东汉铁釜、浇口各一件则是高磷灰口铸铁。磷份增高,使铁水流动性改善,适用于薄壁大型容器的铸造,即使在现代也还有这样使用的。汉代出现这种新的铸铁材料,应是冶铁工匠有意地加入高磷铁矿或富磷熔剂的结果。特别重要的是,在巩县铁生沟和南阳瓦房庄出土的铁器组织中还发现了质量十分优良的球状石墨(铁生沟铁铲和瓦房庄铁 ),与现行球墨铸铁国家标准中的一类A 级球状石墨相当。球墨铸铁是1947 年才在英国研制成功的一种高强度铸铁材料,目前在工业生产中应用广泛。在其研究过程中曾受到韧性铸铁中偶而出现的球状石墨的启发。而我国早在西汉后期已出现了球墨铸铁,可说是冶铸史上的一个奇迹。 制钢技术 汉代工农业生产和军事活动的需要,使各种制钢技术得到蓬勃发展。西汉前期刘胜墓所出钢剑,经检验是由块炼铁渗碳反复锻打而成的,由于锻打次数增多,钢的质量比战国燕下都钢剑有明显提高。到了东汉时期,又出现了以炒钢为原料的经“三十炼”的金马书刀和钢刀。

相关文档
最新文档